ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.48
Committed: Mon Mar 24 04:00:45 2014 UTC (10 years ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad4R2P2, rad4R2, rad4R2P1
Changes since 2.47: +2 -3 lines
Log Message:
Minor optimizations should not affect results

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf.c,v 2.47 2014/03/23 23:15:53 greg Exp $";
3 #endif
4 /*
5 * bsdf.c
6 *
7 * Definitions for bidirectional scattering distribution functions.
8 *
9 * Created by Greg Ward on 1/10/11.
10 *
11 */
12
13 #define _USE_MATH_DEFINES
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include <math.h>
18 #include <ctype.h>
19 #include "ezxml.h"
20 #include "hilbert.h"
21 #include "bsdf.h"
22 #include "bsdf_m.h"
23 #include "bsdf_t.h"
24
25 /* English ASCII strings corresponding to ennumerated errors */
26 const char *SDerrorEnglish[] = {
27 "No error",
28 "Memory error",
29 "File input/output error",
30 "File format error",
31 "Illegal argument",
32 "Invalid data",
33 "Unsupported feature",
34 "Internal program error",
35 "Unknown error"
36 };
37
38 /* Pointer to error list in preferred language */
39 const char **SDerrorList = SDerrorEnglish;
40
41 /* Additional information on last error (ASCII English) */
42 char SDerrorDetail[256];
43
44 /* Empty distribution for getCDist() calls that fail for some reason */
45 const SDCDst SDemptyCD;
46
47 /* Cache of loaded BSDFs */
48 struct SDCache_s *SDcacheList = NULL;
49
50 /* Retain BSDFs in cache list */
51 int SDretainSet = SDretainNone;
52
53 /* Report any error to the indicated stream */
54 SDError
55 SDreportError(SDError ec, FILE *fp)
56 {
57 if (!ec)
58 return SDEnone;
59 if ((ec < SDEnone) | (ec > SDEunknown)) {
60 SDerrorDetail[0] = '\0';
61 ec = SDEunknown;
62 }
63 if (fp == NULL)
64 return ec;
65 fputs(SDerrorList[ec], fp);
66 if (SDerrorDetail[0]) {
67 fputs(": ", fp);
68 fputs(SDerrorDetail, fp);
69 }
70 fputc('\n', fp);
71 if (fp != stderr)
72 fflush(fp);
73 return ec;
74 }
75
76 static double
77 to_meters( /* return factor to convert given unit to meters */
78 const char *unit
79 )
80 {
81 if (unit == NULL) return(1.); /* safe assumption? */
82 if (!strcasecmp(unit, "Meter")) return(1.);
83 if (!strcasecmp(unit, "Foot")) return(.3048);
84 if (!strcasecmp(unit, "Inch")) return(.0254);
85 if (!strcasecmp(unit, "Centimeter")) return(.01);
86 if (!strcasecmp(unit, "Millimeter")) return(.001);
87 sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
88 return(-1.);
89 }
90
91 /* Load geometric dimensions and description (if any) */
92 static SDError
93 SDloadGeometry(SDData *sd, ezxml_t wtl)
94 {
95 ezxml_t node, matl, geom;
96 double cfact;
97 const char *fmt = NULL, *mgfstr;
98
99 SDerrorDetail[0] = '\0';
100 sd->matn[0] = '\0'; sd->makr[0] = '\0';
101 sd->dim[0] = sd->dim[1] = sd->dim[2] = 0;
102 matl = ezxml_child(wtl, "Material");
103 if (matl != NULL) { /* get material info. */
104 if ((node = ezxml_child(matl, "Name")) != NULL) {
105 strncpy(sd->matn, ezxml_txt(node), SDnameLn);
106 if (sd->matn[SDnameLn-1])
107 strcpy(sd->matn+(SDnameLn-4), "...");
108 }
109 if ((node = ezxml_child(matl, "Manufacturer")) != NULL) {
110 strncpy(sd->makr, ezxml_txt(node), SDnameLn);
111 if (sd->makr[SDnameLn-1])
112 strcpy(sd->makr+(SDnameLn-4), "...");
113 }
114 if ((node = ezxml_child(matl, "Width")) != NULL)
115 sd->dim[0] = atof(ezxml_txt(node)) *
116 to_meters(ezxml_attr(node, "unit"));
117 if ((node = ezxml_child(matl, "Height")) != NULL)
118 sd->dim[1] = atof(ezxml_txt(node)) *
119 to_meters(ezxml_attr(node, "unit"));
120 if ((node = ezxml_child(matl, "Thickness")) != NULL)
121 sd->dim[2] = atof(ezxml_txt(node)) *
122 to_meters(ezxml_attr(node, "unit"));
123 if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) {
124 if (!SDerrorDetail[0])
125 sprintf(SDerrorDetail, "Negative dimension in \"%s\"",
126 sd->name);
127 return SDEdata;
128 }
129 }
130 sd->mgf = NULL;
131 geom = ezxml_child(wtl, "Geometry");
132 if (geom == NULL) /* no actual geometry? */
133 return SDEnone;
134 fmt = ezxml_attr(geom, "format");
135 if (fmt != NULL && strcasecmp(fmt, "MGF")) {
136 sprintf(SDerrorDetail,
137 "Unrecognized geometry format '%s' in \"%s\"",
138 fmt, sd->name);
139 return SDEsupport;
140 }
141 if ((node = ezxml_child(geom, "MGFblock")) == NULL ||
142 (mgfstr = ezxml_txt(node)) == NULL)
143 return SDEnone;
144 while (isspace(*mgfstr))
145 ++mgfstr;
146 if (!*mgfstr)
147 return SDEnone;
148 cfact = to_meters(ezxml_attr(node, "unit"));
149 if (cfact <= 0)
150 return SDEformat;
151 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
152 if (sd->mgf == NULL) {
153 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
154 return SDEmemory;
155 }
156 if (cfact < 0.99 || cfact > 1.01)
157 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
158 else
159 strcpy(sd->mgf, mgfstr);
160 return SDEnone;
161 }
162
163 /* Load a BSDF struct from the given file (free first and keep name) */
164 SDError
165 SDloadFile(SDData *sd, const char *fname)
166 {
167 SDError lastErr;
168 ezxml_t fl, wtl;
169
170 if ((sd == NULL) | (fname == NULL || !*fname))
171 return SDEargument;
172 /* free old data, keeping name */
173 SDfreeBSDF(sd);
174 /* parse XML file */
175 fl = ezxml_parse_file(fname);
176 if (fl == NULL) {
177 sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
178 return SDEfile;
179 }
180 if (ezxml_error(fl)[0]) {
181 sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
182 ezxml_free(fl);
183 return SDEformat;
184 }
185 if (strcmp(ezxml_name(fl), "WindowElement")) {
186 sprintf(SDerrorDetail,
187 "BSDF \"%s\": top level node not 'WindowElement'",
188 sd->name);
189 ezxml_free(fl);
190 return SDEformat;
191 }
192 wtl = ezxml_child(fl, "FileType");
193 if (wtl != NULL && strcmp(ezxml_txt(wtl), "BSDF")) {
194 sprintf(SDerrorDetail,
195 "XML \"%s\": wrong FileType (must be 'BSDF')",
196 sd->name);
197 ezxml_free(fl);
198 return SDEformat;
199 }
200 wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
201 if (wtl == NULL) {
202 sprintf(SDerrorDetail, "BSDF \"%s\": no optical layers'",
203 sd->name);
204 ezxml_free(fl);
205 return SDEformat;
206 }
207 /* load geometry if present */
208 lastErr = SDloadGeometry(sd, wtl);
209 if (lastErr) {
210 ezxml_free(fl);
211 return lastErr;
212 }
213 /* try loading variable resolution data */
214 lastErr = SDloadTre(sd, wtl);
215 /* check our result */
216 if (lastErr == SDEsupport) /* try matrix BSDF if not tree data */
217 lastErr = SDloadMtx(sd, wtl);
218
219 /* done with XML file */
220 ezxml_free(fl);
221
222 if (lastErr) { /* was there a load error? */
223 SDfreeBSDF(sd);
224 return lastErr;
225 }
226 /* remove any insignificant components */
227 if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
228 SDfreeSpectralDF(sd->rf); sd->rf = NULL;
229 }
230 if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
231 SDfreeSpectralDF(sd->rb); sd->rb = NULL;
232 }
233 if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
234 SDfreeSpectralDF(sd->tf); sd->tf = NULL;
235 }
236 if (sd->tb != NULL && sd->tb->maxHemi <= .001) {
237 SDfreeSpectralDF(sd->tb); sd->tb = NULL;
238 }
239 /* return success */
240 return SDEnone;
241 }
242
243 /* Allocate new spectral distribution function */
244 SDSpectralDF *
245 SDnewSpectralDF(int nc)
246 {
247 SDSpectralDF *df;
248
249 if (nc <= 0) {
250 strcpy(SDerrorDetail, "Zero component spectral DF request");
251 return NULL;
252 }
253 df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
254 (nc-1)*sizeof(SDComponent));
255 if (df == NULL) {
256 sprintf(SDerrorDetail,
257 "Cannot allocate %d component spectral DF", nc);
258 return NULL;
259 }
260 df->minProjSA = .0;
261 df->maxHemi = .0;
262 df->ncomp = nc;
263 memset(df->comp, 0, nc*sizeof(SDComponent));
264 return df;
265 }
266
267 /* Add component(s) to spectral distribution function */
268 SDSpectralDF *
269 SDaddComponent(SDSpectralDF *odf, int nadd)
270 {
271 SDSpectralDF *df;
272
273 if (odf == NULL)
274 return SDnewSpectralDF(nadd);
275 if (nadd <= 0)
276 return odf;
277 df = (SDSpectralDF *)realloc(odf, sizeof(SDSpectralDF) +
278 (odf->ncomp+nadd-1)*sizeof(SDComponent));
279 if (df == NULL) {
280 sprintf(SDerrorDetail,
281 "Cannot add %d component(s) to spectral DF", nadd);
282 SDfreeSpectralDF(odf);
283 return NULL;
284 }
285 memset(df->comp+df->ncomp, 0, nadd*sizeof(SDComponent));
286 df->ncomp += nadd;
287 return df;
288 }
289
290 /* Free cached cumulative distributions for BSDF component */
291 void
292 SDfreeCumulativeCache(SDSpectralDF *df)
293 {
294 int n;
295 SDCDst *cdp;
296
297 if (df == NULL)
298 return;
299 for (n = df->ncomp; n-- > 0; )
300 while ((cdp = df->comp[n].cdList) != NULL) {
301 df->comp[n].cdList = cdp->next;
302 free(cdp);
303 }
304 }
305
306 /* Free a spectral distribution function */
307 void
308 SDfreeSpectralDF(SDSpectralDF *df)
309 {
310 int n;
311
312 if (df == NULL)
313 return;
314 SDfreeCumulativeCache(df);
315 for (n = df->ncomp; n-- > 0; )
316 if (df->comp[n].dist != NULL)
317 (*df->comp[n].func->freeSC)(df->comp[n].dist);
318 free(df);
319 }
320
321 /* Shorten file path to useable BSDF name, removing suffix */
322 void
323 SDclipName(char *res, const char *fname)
324 {
325 const char *cp, *dot = NULL;
326
327 for (cp = fname; *cp; cp++)
328 if (*cp == '.')
329 dot = cp;
330 if ((dot == NULL) | (dot < fname+2))
331 dot = cp;
332 if (dot - fname >= SDnameLn)
333 fname = dot - SDnameLn + 1;
334 while (fname < dot)
335 *res++ = *fname++;
336 *res = '\0';
337 }
338
339 /* Initialize an unused BSDF struct (simply clears to zeroes) */
340 void
341 SDclearBSDF(SDData *sd, const char *fname)
342 {
343 if (sd == NULL)
344 return;
345 memset(sd, 0, sizeof(SDData));
346 if (fname == NULL)
347 return;
348 SDclipName(sd->name, fname);
349 }
350
351 /* Free data associated with BSDF struct */
352 void
353 SDfreeBSDF(SDData *sd)
354 {
355 if (sd == NULL)
356 return;
357 if (sd->mgf != NULL) {
358 free(sd->mgf);
359 sd->mgf = NULL;
360 }
361 if (sd->rf != NULL) {
362 SDfreeSpectralDF(sd->rf);
363 sd->rf = NULL;
364 }
365 if (sd->rb != NULL) {
366 SDfreeSpectralDF(sd->rb);
367 sd->rb = NULL;
368 }
369 if (sd->tf != NULL) {
370 SDfreeSpectralDF(sd->tf);
371 sd->tf = NULL;
372 }
373 if (sd->tb != NULL) {
374 SDfreeSpectralDF(sd->tb);
375 sd->tb = NULL;
376 }
377 sd->rLambFront.cieY = .0;
378 sd->rLambFront.spec.flags = 0;
379 sd->rLambBack.cieY = .0;
380 sd->rLambBack.spec.flags = 0;
381 sd->tLamb.cieY = .0;
382 sd->tLamb.spec.flags = 0;
383 }
384
385 /* Find writeable BSDF by name, or allocate new cache entry if absent */
386 SDData *
387 SDgetCache(const char *bname)
388 {
389 struct SDCache_s *sdl;
390 char sdnam[SDnameLn];
391
392 if (bname == NULL)
393 return NULL;
394
395 SDclipName(sdnam, bname);
396 for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
397 if (!strcmp(sdl->bsdf.name, sdnam)) {
398 sdl->refcnt++;
399 return &sdl->bsdf;
400 }
401
402 sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
403 if (sdl == NULL)
404 return NULL;
405
406 strcpy(sdl->bsdf.name, sdnam);
407 sdl->next = SDcacheList;
408 SDcacheList = sdl;
409
410 sdl->refcnt = 1;
411 return &sdl->bsdf;
412 }
413
414 /* Get loaded BSDF from cache (or load and cache it on first call) */
415 /* Report any problem to stderr and return NULL on failure */
416 const SDData *
417 SDcacheFile(const char *fname)
418 {
419 SDData *sd;
420 SDError ec;
421
422 if (fname == NULL || !*fname)
423 return NULL;
424 SDerrorDetail[0] = '\0';
425 if ((sd = SDgetCache(fname)) == NULL) {
426 SDreportError(SDEmemory, stderr);
427 return NULL;
428 }
429 if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
430 SDreportError(ec, stderr);
431 SDfreeCache(sd);
432 return NULL;
433 }
434 return sd;
435 }
436
437 /* Free a BSDF from our cache (clear all if NULL) */
438 void
439 SDfreeCache(const SDData *sd)
440 {
441 struct SDCache_s *sdl, *sdLast = NULL;
442
443 if (sd == NULL) { /* free entire list */
444 while ((sdl = SDcacheList) != NULL) {
445 SDcacheList = sdl->next;
446 SDfreeBSDF(&sdl->bsdf);
447 free(sdl);
448 }
449 return;
450 }
451 for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
452 if (&sdl->bsdf == sd)
453 break;
454 if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
455 return; /* missing or still in use */
456 /* keep unreferenced data? */
457 if (SDisLoaded(sd) && SDretainSet) {
458 if (SDretainSet == SDretainAll)
459 return; /* keep everything */
460 /* else free cumulative data */
461 SDfreeCumulativeCache(sd->rf);
462 SDfreeCumulativeCache(sd->rb);
463 SDfreeCumulativeCache(sd->tf);
464 SDfreeCumulativeCache(sd->tb);
465 return;
466 }
467 /* remove from list and free */
468 if (sdLast == NULL)
469 SDcacheList = sdl->next;
470 else
471 sdLast->next = sdl->next;
472 SDfreeBSDF(&sdl->bsdf);
473 free(sdl);
474 }
475
476 /* Sample an individual BSDF component */
477 SDError
478 SDsampComponent(SDValue *sv, FVECT ioVec, double randX, SDComponent *sdc)
479 {
480 float coef[SDmaxCh];
481 SDError ec;
482 FVECT inVec;
483 const SDCDst *cd;
484 double d;
485 int n;
486 /* check arguments */
487 if ((sv == NULL) | (ioVec == NULL) | (sdc == NULL))
488 return SDEargument;
489 /* get cumulative distribution */
490 VCOPY(inVec, ioVec);
491 sv->cieY = 0;
492 cd = (*sdc->func->getCDist)(inVec, sdc);
493 if (cd != NULL)
494 sv->cieY = cd->cTotal;
495 if (sv->cieY <= 1e-6) { /* nothing to sample? */
496 sv->spec = c_dfcolor;
497 memset(ioVec, 0, 3*sizeof(double));
498 return SDEnone;
499 }
500 /* compute sample direction */
501 ec = (*sdc->func->sampCDist)(ioVec, randX, cd);
502 if (ec)
503 return ec;
504 /* get BSDF color */
505 n = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
506 if (n <= 0) {
507 strcpy(SDerrorDetail, "BSDF sample value error");
508 return SDEinternal;
509 }
510 sv->spec = sdc->cspec[0];
511 d = coef[0];
512 while (--n) {
513 c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
514 d += coef[n];
515 }
516 /* make sure everything is set */
517 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
518 return SDEnone;
519 }
520
521 #define MS_MAXDIM 15
522
523 /* Convert 1-dimensional random variable to N-dimensional */
524 void
525 SDmultiSamp(double t[], int n, double randX)
526 {
527 unsigned nBits;
528 double scale;
529 bitmask_t ndx, coord[MS_MAXDIM];
530
531 if (n <= 0) /* check corner cases */
532 return;
533 if (randX < 0) randX = 0;
534 else if (randX >= 1.) randX = 0.999999999999999;
535 if (n == 1) {
536 t[0] = randX;
537 return;
538 }
539 while (n > MS_MAXDIM) /* punt for higher dimensions */
540 t[--n] = rand()*(1./(RAND_MAX+.5));
541 nBits = (8*sizeof(bitmask_t) - 1) / n;
542 ndx = randX * (double)((bitmask_t)1 << (nBits*n));
543 /* get coordinate on Hilbert curve */
544 hilbert_i2c(n, nBits, ndx, coord);
545 /* convert back to [0,1) range */
546 scale = 1. / (double)((bitmask_t)1 << nBits);
547 while (n--)
548 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
549 }
550
551 #undef MS_MAXDIM
552
553 /* Generate diffuse hemispherical sample */
554 static void
555 SDdiffuseSamp(FVECT outVec, int outFront, double randX)
556 {
557 /* convert to position on hemisphere */
558 SDmultiSamp(outVec, 2, randX);
559 SDsquare2disk(outVec, outVec[0], outVec[1]);
560 outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
561 outVec[2] = sqrt(outVec[2]*(outVec[2]>0));
562 if (!outFront) /* going out back? */
563 outVec[2] = -outVec[2];
564 }
565
566 /* Query projected solid angle coverage for non-diffuse BSDF direction */
567 SDError
568 SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2,
569 int qflags, const SDData *sd)
570 {
571 SDSpectralDF *rdf, *tdf;
572 SDError ec;
573 int i;
574 /* check arguments */
575 if ((projSA == NULL) | (v1 == NULL) | (sd == NULL))
576 return SDEargument;
577 /* initialize extrema */
578 switch (qflags) {
579 case SDqueryMax:
580 projSA[0] = .0;
581 break;
582 case SDqueryMin+SDqueryMax:
583 projSA[1] = .0;
584 /* fall through */
585 case SDqueryMin:
586 projSA[0] = 10.;
587 break;
588 case 0:
589 return SDEargument;
590 }
591 if (v1[2] > 0) { /* front surface query? */
592 rdf = sd->rf;
593 tdf = (sd->tf != NULL) ? sd->tf : sd->tb;
594 } else {
595 rdf = sd->rb;
596 tdf = (sd->tb != NULL) ? sd->tb : sd->tf;
597 }
598 if (v2 != NULL) /* bidirectional? */
599 if (v1[2] > 0 ^ v2[2] > 0)
600 rdf = NULL;
601 else
602 tdf = NULL;
603 ec = SDEdata; /* run through components */
604 for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
605 ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2,
606 qflags, &rdf->comp[i]);
607 if (ec)
608 return ec;
609 }
610 for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) {
611 ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2,
612 qflags, &tdf->comp[i]);
613 if (ec)
614 return ec;
615 }
616 if (ec) { /* all diffuse? */
617 projSA[0] = M_PI;
618 if (qflags == SDqueryMin+SDqueryMax)
619 projSA[1] = M_PI;
620 } else if (qflags == SDqueryMin+SDqueryMax && projSA[0] > projSA[1])
621 projSA[0] = projSA[1];
622 return SDEnone;
623 }
624
625 /* Return BSDF for the given incident and scattered ray vectors */
626 SDError
627 SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
628 {
629 int inFront, outFront;
630 SDSpectralDF *sdf;
631 float coef[SDmaxCh];
632 int nch, i;
633 /* check arguments */
634 if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
635 return SDEargument;
636 /* whose side are we on? */
637 inFront = (inVec[2] > 0);
638 outFront = (outVec[2] > 0);
639 /* start with diffuse portion */
640 if (inFront & outFront) {
641 *sv = sd->rLambFront;
642 sdf = sd->rf;
643 } else if (!(inFront | outFront)) {
644 *sv = sd->rLambBack;
645 sdf = sd->rb;
646 } else if (inFront) {
647 *sv = sd->tLamb;
648 sdf = (sd->tf != NULL) ? sd->tf : sd->tb;
649 } else /* inBack */ {
650 *sv = sd->tLamb;
651 sdf = (sd->tb != NULL) ? sd->tb : sd->tf;
652 }
653 sv->cieY *= 1./M_PI;
654 /* add non-diffuse components */
655 i = (sdf != NULL) ? sdf->ncomp : 0;
656 while (i-- > 0) {
657 nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
658 &sdf->comp[i]);
659 while (nch-- > 0) {
660 c_cmix(&sv->spec, sv->cieY, &sv->spec,
661 coef[nch], &sdf->comp[i].cspec[nch]);
662 sv->cieY += coef[nch];
663 }
664 }
665 /* make sure everything is set */
666 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
667 return SDEnone;
668 }
669
670 /* Compute directional hemispherical scattering at this incident angle */
671 double
672 SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
673 {
674 double hsum;
675 SDSpectralDF *rdf, *tdf;
676 const SDCDst *cd;
677 int i;
678 /* check arguments */
679 if ((inVec == NULL) | (sd == NULL))
680 return .0;
681 /* gather diffuse components */
682 if (inVec[2] > 0) {
683 hsum = sd->rLambFront.cieY;
684 rdf = sd->rf;
685 tdf = (sd->tf != NULL) ? sd->tf : sd->tb;
686 } else /* !inFront */ {
687 hsum = sd->rLambBack.cieY;
688 rdf = sd->rb;
689 tdf = (sd->tb != NULL) ? sd->tb : sd->tf;
690 }
691 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
692 hsum = .0;
693 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
694 hsum += sd->tLamb.cieY;
695 /* gather non-diffuse components */
696 i = (((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR) &
697 (rdf != NULL)) ? rdf->ncomp : 0;
698 while (i-- > 0) { /* non-diffuse reflection */
699 cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
700 if (cd != NULL)
701 hsum += cd->cTotal;
702 }
703 i = (((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT) &
704 (tdf != NULL)) ? tdf->ncomp : 0;
705 while (i-- > 0) { /* non-diffuse transmission */
706 cd = (*tdf->comp[i].func->getCDist)(inVec, &tdf->comp[i]);
707 if (cd != NULL)
708 hsum += cd->cTotal;
709 }
710 return hsum;
711 }
712
713 /* Sample BSDF direction based on the given random variable */
714 SDError
715 SDsampBSDF(SDValue *sv, FVECT ioVec, double randX, int sflags, const SDData *sd)
716 {
717 SDError ec;
718 FVECT inVec;
719 int inFront;
720 SDSpectralDF *rdf, *tdf;
721 double rdiff;
722 float coef[SDmaxCh];
723 int i, j, n, nr;
724 SDComponent *sdc;
725 const SDCDst **cdarr = NULL;
726 /* check arguments */
727 if ((sv == NULL) | (ioVec == NULL) | (sd == NULL) |
728 (randX < 0) | (randX >= 1.))
729 return SDEargument;
730 /* whose side are we on? */
731 VCOPY(inVec, ioVec);
732 inFront = (inVec[2] > 0);
733 /* remember diffuse portions */
734 if (inFront) {
735 *sv = sd->rLambFront;
736 rdf = sd->rf;
737 tdf = (sd->tf != NULL) ? sd->tf : sd->tb;
738 } else /* !inFront */ {
739 *sv = sd->rLambBack;
740 rdf = sd->rb;
741 tdf = (sd->tb != NULL) ? sd->tb : sd->tf;
742 }
743 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
744 sv->cieY = .0;
745 rdiff = sv->cieY;
746 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
747 sv->cieY += sd->tLamb.cieY;
748 /* gather non-diffuse components */
749 i = nr = (((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR) &
750 (rdf != NULL)) ? rdf->ncomp : 0;
751 j = (((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT) &
752 (tdf != NULL)) ? tdf->ncomp : 0;
753 n = i + j;
754 if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
755 return SDEmemory;
756 while (j-- > 0) { /* non-diffuse transmission */
757 cdarr[i+j] = (*tdf->comp[j].func->getCDist)(inVec, &tdf->comp[j]);
758 if (cdarr[i+j] == NULL)
759 cdarr[i+j] = &SDemptyCD;
760 sv->cieY += cdarr[i+j]->cTotal;
761 }
762 while (i-- > 0) { /* non-diffuse reflection */
763 cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
764 if (cdarr[i] == NULL)
765 cdarr[i] = &SDemptyCD;
766 else
767 sv->cieY += cdarr[i]->cTotal;
768 }
769 if (sv->cieY <= 1e-6) { /* anything to sample? */
770 sv->cieY = .0;
771 memset(ioVec, 0, 3*sizeof(double));
772 return SDEnone;
773 }
774 /* scale random variable */
775 randX *= sv->cieY;
776 /* diffuse reflection? */
777 if (randX < rdiff) {
778 SDdiffuseSamp(ioVec, inFront, randX/rdiff);
779 goto done;
780 }
781 randX -= rdiff;
782 /* diffuse transmission? */
783 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
784 if (randX < sd->tLamb.cieY) {
785 sv->spec = sd->tLamb.spec;
786 SDdiffuseSamp(ioVec, !inFront, randX/sd->tLamb.cieY);
787 goto done;
788 }
789 randX -= sd->tLamb.cieY;
790 }
791 /* else one of cumulative dist. */
792 for (i = 0; i < n && randX > cdarr[i]->cTotal; i++)
793 randX -= cdarr[i]->cTotal;
794 if (i >= n)
795 return SDEinternal;
796 /* compute sample direction */
797 sdc = (i < nr) ? &rdf->comp[i] : &tdf->comp[i-nr];
798 ec = (*sdc->func->sampCDist)(ioVec, randX/cdarr[i]->cTotal, cdarr[i]);
799 if (ec)
800 return ec;
801 /* compute color */
802 j = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
803 if (j <= 0) {
804 sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
805 sd->name);
806 return SDEinternal;
807 }
808 sv->spec = sdc->cspec[0];
809 rdiff = coef[0];
810 while (--j) {
811 c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
812 rdiff += coef[j];
813 }
814 done:
815 if (cdarr != NULL)
816 free(cdarr);
817 /* make sure everything is set */
818 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
819 return SDEnone;
820 }
821
822 /* Compute World->BSDF transform from surface normal and up (Y) vector */
823 SDError
824 SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
825 {
826 if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
827 return SDEargument;
828 VCOPY(vMtx[2], sNrm);
829 if (normalize(vMtx[2]) == 0)
830 return SDEargument;
831 fcross(vMtx[0], uVec, vMtx[2]);
832 if (normalize(vMtx[0]) == 0)
833 return SDEargument;
834 fcross(vMtx[1], vMtx[2], vMtx[0]);
835 return SDEnone;
836 }
837
838 /* Compute inverse transform */
839 SDError
840 SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
841 {
842 RREAL mTmp[3][3];
843 double d;
844
845 if ((iMtx == NULL) | (vMtx == NULL))
846 return SDEargument;
847 /* compute determinant */
848 mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
849 mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
850 mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
851 d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
852 if (d == 0) {
853 strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
854 return SDEargument;
855 }
856 d = 1./d; /* invert matrix */
857 mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
858 mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
859 mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
860 mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
861 mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
862 mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
863 mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
864 memcpy(iMtx, mTmp, sizeof(mTmp));
865 return SDEnone;
866 }
867
868 /* Transform and normalize direction (column) vector */
869 SDError
870 SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
871 {
872 FVECT vTmp;
873
874 if ((resVec == NULL) | (inpVec == NULL))
875 return SDEargument;
876 if (vMtx == NULL) { /* assume they just want to normalize */
877 if (resVec != inpVec)
878 VCOPY(resVec, inpVec);
879 return (normalize(resVec) > 0) ? SDEnone : SDEargument;
880 }
881 vTmp[0] = DOT(vMtx[0], inpVec);
882 vTmp[1] = DOT(vMtx[1], inpVec);
883 vTmp[2] = DOT(vMtx[2], inpVec);
884 if (normalize(vTmp) == 0)
885 return SDEargument;
886 VCOPY(resVec, vTmp);
887 return SDEnone;
888 }