| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: bsdf.c,v 2.40 2012/03/05 15:27:08 greg Exp $";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
* bsdf.c
|
| 6 |
*
|
| 7 |
* Definitions for bidirectional scattering distribution functions.
|
| 8 |
*
|
| 9 |
* Created by Greg Ward on 1/10/11.
|
| 10 |
*
|
| 11 |
*/
|
| 12 |
|
| 13 |
#define _USE_MATH_DEFINES
|
| 14 |
#include <stdio.h>
|
| 15 |
#include <stdlib.h>
|
| 16 |
#include <string.h>
|
| 17 |
#include <math.h>
|
| 18 |
#include <ctype.h>
|
| 19 |
#include "ezxml.h"
|
| 20 |
#include "hilbert.h"
|
| 21 |
#include "bsdf.h"
|
| 22 |
#include "bsdf_m.h"
|
| 23 |
#include "bsdf_t.h"
|
| 24 |
|
| 25 |
/* English ASCII strings corresponding to ennumerated errors */
|
| 26 |
const char *SDerrorEnglish[] = {
|
| 27 |
"No error",
|
| 28 |
"Memory error",
|
| 29 |
"File input/output error",
|
| 30 |
"File format error",
|
| 31 |
"Illegal argument",
|
| 32 |
"Invalid data",
|
| 33 |
"Unsupported feature",
|
| 34 |
"Internal program error",
|
| 35 |
"Unknown error"
|
| 36 |
};
|
| 37 |
|
| 38 |
/* Additional information on last error (ASCII English) */
|
| 39 |
char SDerrorDetail[256];
|
| 40 |
|
| 41 |
/* Cache of loaded BSDFs */
|
| 42 |
struct SDCache_s *SDcacheList = NULL;
|
| 43 |
|
| 44 |
/* Retain BSDFs in cache list */
|
| 45 |
int SDretainSet = SDretainNone;
|
| 46 |
|
| 47 |
/* Report any error to the indicated stream (in English) */
|
| 48 |
SDError
|
| 49 |
SDreportEnglish(SDError ec, FILE *fp)
|
| 50 |
{
|
| 51 |
if (!ec)
|
| 52 |
return SDEnone;
|
| 53 |
if ((ec < SDEnone) | (ec > SDEunknown)) {
|
| 54 |
SDerrorDetail[0] = '\0';
|
| 55 |
ec = SDEunknown;
|
| 56 |
}
|
| 57 |
if (fp == NULL)
|
| 58 |
return ec;
|
| 59 |
fputs(SDerrorEnglish[ec], fp);
|
| 60 |
if (SDerrorDetail[0]) {
|
| 61 |
fputs(": ", fp);
|
| 62 |
fputs(SDerrorDetail, fp);
|
| 63 |
}
|
| 64 |
fputc('\n', fp);
|
| 65 |
if (fp != stderr)
|
| 66 |
fflush(fp);
|
| 67 |
return ec;
|
| 68 |
}
|
| 69 |
|
| 70 |
static double
|
| 71 |
to_meters( /* return factor to convert given unit to meters */
|
| 72 |
const char *unit
|
| 73 |
)
|
| 74 |
{
|
| 75 |
if (unit == NULL) return(1.); /* safe assumption? */
|
| 76 |
if (!strcasecmp(unit, "Meter")) return(1.);
|
| 77 |
if (!strcasecmp(unit, "Foot")) return(.3048);
|
| 78 |
if (!strcasecmp(unit, "Inch")) return(.0254);
|
| 79 |
if (!strcasecmp(unit, "Centimeter")) return(.01);
|
| 80 |
if (!strcasecmp(unit, "Millimeter")) return(.001);
|
| 81 |
sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
|
| 82 |
return(-1.);
|
| 83 |
}
|
| 84 |
|
| 85 |
/* Load geometric dimensions and description (if any) */
|
| 86 |
static SDError
|
| 87 |
SDloadGeometry(SDData *sd, ezxml_t wdb)
|
| 88 |
{
|
| 89 |
ezxml_t geom;
|
| 90 |
double cfact;
|
| 91 |
const char *fmt, *mgfstr;
|
| 92 |
|
| 93 |
if (wdb == NULL) /* no geometry section? */
|
| 94 |
return SDEnone;
|
| 95 |
if ((geom = ezxml_child(wdb, "Name")) != NULL) {
|
| 96 |
strncpy(sd->matn, ezxml_txt(geom), SDnameLn);
|
| 97 |
if (sd->matn[SDnameLn-1])
|
| 98 |
strcpy(sd->matn+(SDnameLn-4), "...");
|
| 99 |
}
|
| 100 |
if ((geom = ezxml_child(wdb, "Manufacturer")) != NULL) {
|
| 101 |
strncpy(sd->makr, ezxml_txt(geom), SDnameLn);
|
| 102 |
if (sd->makr[SDnameLn-1])
|
| 103 |
strcpy(sd->makr+(SDnameLn-4), "...");
|
| 104 |
}
|
| 105 |
sd->dim[0] = sd->dim[1] = sd->dim[2] = .0;
|
| 106 |
SDerrorDetail[0] = '\0';
|
| 107 |
if ((geom = ezxml_child(wdb, "Width")) != NULL)
|
| 108 |
sd->dim[0] = atof(ezxml_txt(geom)) *
|
| 109 |
to_meters(ezxml_attr(geom, "unit"));
|
| 110 |
if ((geom = ezxml_child(wdb, "Height")) != NULL)
|
| 111 |
sd->dim[1] = atof(ezxml_txt(geom)) *
|
| 112 |
to_meters(ezxml_attr(geom, "unit"));
|
| 113 |
if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
|
| 114 |
sd->dim[2] = atof(ezxml_txt(geom)) *
|
| 115 |
to_meters(ezxml_attr(geom, "unit"));
|
| 116 |
if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) {
|
| 117 |
if (!SDerrorDetail[0])
|
| 118 |
sprintf(SDerrorDetail, "Negative dimension in \"%s\"",
|
| 119 |
sd->name);
|
| 120 |
return SDEdata;
|
| 121 |
}
|
| 122 |
if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
|
| 123 |
(mgfstr = ezxml_txt(geom)) == NULL)
|
| 124 |
return SDEnone;
|
| 125 |
while (isspace(*mgfstr))
|
| 126 |
++mgfstr;
|
| 127 |
if (!*mgfstr)
|
| 128 |
return SDEnone;
|
| 129 |
if ((fmt = ezxml_attr(geom, "format")) != NULL &&
|
| 130 |
strcasecmp(fmt, "MGF")) {
|
| 131 |
sprintf(SDerrorDetail,
|
| 132 |
"Unrecognized geometry format '%s' in \"%s\"",
|
| 133 |
fmt, sd->name);
|
| 134 |
return SDEsupport;
|
| 135 |
}
|
| 136 |
cfact = to_meters(ezxml_attr(geom, "unit"));
|
| 137 |
if (cfact <= 0)
|
| 138 |
return SDEformat;
|
| 139 |
sd->mgf = (char *)malloc(strlen(mgfstr)+32);
|
| 140 |
if (sd->mgf == NULL) {
|
| 141 |
strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
|
| 142 |
return SDEmemory;
|
| 143 |
}
|
| 144 |
if (cfact < 0.99 || cfact > 1.01)
|
| 145 |
sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
|
| 146 |
else
|
| 147 |
strcpy(sd->mgf, mgfstr);
|
| 148 |
return SDEnone;
|
| 149 |
}
|
| 150 |
|
| 151 |
/* Load a BSDF struct from the given file (free first and keep name) */
|
| 152 |
SDError
|
| 153 |
SDloadFile(SDData *sd, const char *fname)
|
| 154 |
{
|
| 155 |
SDError lastErr;
|
| 156 |
ezxml_t fl, wtl;
|
| 157 |
|
| 158 |
if ((sd == NULL) | (fname == NULL || !*fname))
|
| 159 |
return SDEargument;
|
| 160 |
/* free old data, keeping name */
|
| 161 |
SDfreeBSDF(sd);
|
| 162 |
/* parse XML file */
|
| 163 |
fl = ezxml_parse_file(fname);
|
| 164 |
if (fl == NULL) {
|
| 165 |
sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
|
| 166 |
return SDEfile;
|
| 167 |
}
|
| 168 |
if (ezxml_error(fl)[0]) {
|
| 169 |
sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
|
| 170 |
ezxml_free(fl);
|
| 171 |
return SDEformat;
|
| 172 |
}
|
| 173 |
if (strcmp(ezxml_name(fl), "WindowElement")) {
|
| 174 |
sprintf(SDerrorDetail,
|
| 175 |
"BSDF \"%s\": top level node not 'WindowElement'",
|
| 176 |
sd->name);
|
| 177 |
ezxml_free(fl);
|
| 178 |
return SDEformat;
|
| 179 |
}
|
| 180 |
wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
|
| 181 |
if (wtl == NULL) {
|
| 182 |
sprintf(SDerrorDetail, "BSDF \"%s\": no optical layers'",
|
| 183 |
sd->name);
|
| 184 |
ezxml_free(fl);
|
| 185 |
return SDEformat;
|
| 186 |
}
|
| 187 |
/* load geometry if present */
|
| 188 |
lastErr = SDloadGeometry(sd, ezxml_child(wtl, "Material"));
|
| 189 |
if (lastErr) {
|
| 190 |
ezxml_free(fl);
|
| 191 |
return lastErr;
|
| 192 |
}
|
| 193 |
/* try loading variable resolution data */
|
| 194 |
lastErr = SDloadTre(sd, wtl);
|
| 195 |
/* check our result */
|
| 196 |
if (lastErr == SDEsupport) /* try matrix BSDF if not tree data */
|
| 197 |
lastErr = SDloadMtx(sd, wtl);
|
| 198 |
|
| 199 |
/* done with XML file */
|
| 200 |
ezxml_free(fl);
|
| 201 |
|
| 202 |
if (lastErr) { /* was there a load error? */
|
| 203 |
SDfreeBSDF(sd);
|
| 204 |
return lastErr;
|
| 205 |
}
|
| 206 |
/* remove any insignificant components */
|
| 207 |
if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
|
| 208 |
SDfreeSpectralDF(sd->rf); sd->rf = NULL;
|
| 209 |
}
|
| 210 |
if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
|
| 211 |
SDfreeSpectralDF(sd->rb); sd->rb = NULL;
|
| 212 |
}
|
| 213 |
if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
|
| 214 |
SDfreeSpectralDF(sd->tf); sd->tf = NULL;
|
| 215 |
}
|
| 216 |
/* return success */
|
| 217 |
return SDEnone;
|
| 218 |
}
|
| 219 |
|
| 220 |
/* Allocate new spectral distribution function */
|
| 221 |
SDSpectralDF *
|
| 222 |
SDnewSpectralDF(int nc)
|
| 223 |
{
|
| 224 |
SDSpectralDF *df;
|
| 225 |
|
| 226 |
if (nc <= 0) {
|
| 227 |
strcpy(SDerrorDetail, "Zero component spectral DF request");
|
| 228 |
return NULL;
|
| 229 |
}
|
| 230 |
df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
|
| 231 |
(nc-1)*sizeof(SDComponent));
|
| 232 |
if (df == NULL) {
|
| 233 |
sprintf(SDerrorDetail,
|
| 234 |
"Cannot allocate %d component spectral DF", nc);
|
| 235 |
return NULL;
|
| 236 |
}
|
| 237 |
df->minProjSA = .0;
|
| 238 |
df->maxHemi = .0;
|
| 239 |
df->ncomp = nc;
|
| 240 |
memset(df->comp, 0, nc*sizeof(SDComponent));
|
| 241 |
return df;
|
| 242 |
}
|
| 243 |
|
| 244 |
/* Add component(s) to spectral distribution function */
|
| 245 |
SDSpectralDF *
|
| 246 |
SDaddComponent(SDSpectralDF *odf, int nadd)
|
| 247 |
{
|
| 248 |
SDSpectralDF *df;
|
| 249 |
|
| 250 |
if (odf == NULL)
|
| 251 |
return SDnewSpectralDF(nadd);
|
| 252 |
if (nadd <= 0)
|
| 253 |
return odf;
|
| 254 |
df = (SDSpectralDF *)realloc(odf, sizeof(SDSpectralDF) +
|
| 255 |
(odf->ncomp+nadd-1)*sizeof(SDComponent));
|
| 256 |
if (df == NULL) {
|
| 257 |
sprintf(SDerrorDetail,
|
| 258 |
"Cannot add %d component(s) to spectral DF", nadd);
|
| 259 |
SDfreeSpectralDF(odf);
|
| 260 |
return NULL;
|
| 261 |
}
|
| 262 |
memset(df->comp+df->ncomp, 0, nadd*sizeof(SDComponent));
|
| 263 |
df->ncomp += nadd;
|
| 264 |
return df;
|
| 265 |
}
|
| 266 |
|
| 267 |
/* Free cached cumulative distributions for BSDF component */
|
| 268 |
void
|
| 269 |
SDfreeCumulativeCache(SDSpectralDF *df)
|
| 270 |
{
|
| 271 |
int n;
|
| 272 |
SDCDst *cdp;
|
| 273 |
|
| 274 |
if (df == NULL)
|
| 275 |
return;
|
| 276 |
for (n = df->ncomp; n-- > 0; )
|
| 277 |
while ((cdp = df->comp[n].cdList) != NULL) {
|
| 278 |
df->comp[n].cdList = cdp->next;
|
| 279 |
free(cdp);
|
| 280 |
}
|
| 281 |
}
|
| 282 |
|
| 283 |
/* Free a spectral distribution function */
|
| 284 |
void
|
| 285 |
SDfreeSpectralDF(SDSpectralDF *df)
|
| 286 |
{
|
| 287 |
int n;
|
| 288 |
|
| 289 |
if (df == NULL)
|
| 290 |
return;
|
| 291 |
SDfreeCumulativeCache(df);
|
| 292 |
for (n = df->ncomp; n-- > 0; )
|
| 293 |
if (df->comp[n].dist != NULL)
|
| 294 |
(*df->comp[n].func->freeSC)(df->comp[n].dist);
|
| 295 |
free(df);
|
| 296 |
}
|
| 297 |
|
| 298 |
/* Shorten file path to useable BSDF name, removing suffix */
|
| 299 |
void
|
| 300 |
SDclipName(char *res, const char *fname)
|
| 301 |
{
|
| 302 |
const char *cp, *dot = NULL;
|
| 303 |
|
| 304 |
for (cp = fname; *cp; cp++)
|
| 305 |
if (*cp == '.')
|
| 306 |
dot = cp;
|
| 307 |
if ((dot == NULL) | (dot < fname+2))
|
| 308 |
dot = cp;
|
| 309 |
if (dot - fname >= SDnameLn)
|
| 310 |
fname = dot - SDnameLn + 1;
|
| 311 |
while (fname < dot)
|
| 312 |
*res++ = *fname++;
|
| 313 |
*res = '\0';
|
| 314 |
}
|
| 315 |
|
| 316 |
/* Initialize an unused BSDF struct (simply clears to zeroes) */
|
| 317 |
void
|
| 318 |
SDclearBSDF(SDData *sd, const char *fname)
|
| 319 |
{
|
| 320 |
if (sd == NULL)
|
| 321 |
return;
|
| 322 |
memset(sd, 0, sizeof(SDData));
|
| 323 |
if (fname == NULL)
|
| 324 |
return;
|
| 325 |
SDclipName(sd->name, fname);
|
| 326 |
}
|
| 327 |
|
| 328 |
/* Free data associated with BSDF struct */
|
| 329 |
void
|
| 330 |
SDfreeBSDF(SDData *sd)
|
| 331 |
{
|
| 332 |
if (sd == NULL)
|
| 333 |
return;
|
| 334 |
if (sd->mgf != NULL) {
|
| 335 |
free(sd->mgf);
|
| 336 |
sd->mgf = NULL;
|
| 337 |
}
|
| 338 |
if (sd->rf != NULL) {
|
| 339 |
SDfreeSpectralDF(sd->rf);
|
| 340 |
sd->rf = NULL;
|
| 341 |
}
|
| 342 |
if (sd->rb != NULL) {
|
| 343 |
SDfreeSpectralDF(sd->rb);
|
| 344 |
sd->rb = NULL;
|
| 345 |
}
|
| 346 |
if (sd->tf != NULL) {
|
| 347 |
SDfreeSpectralDF(sd->tf);
|
| 348 |
sd->tf = NULL;
|
| 349 |
}
|
| 350 |
sd->rLambFront.cieY = .0;
|
| 351 |
sd->rLambFront.spec.flags = 0;
|
| 352 |
sd->rLambBack.cieY = .0;
|
| 353 |
sd->rLambBack.spec.flags = 0;
|
| 354 |
sd->tLamb.cieY = .0;
|
| 355 |
sd->tLamb.spec.flags = 0;
|
| 356 |
}
|
| 357 |
|
| 358 |
/* Find writeable BSDF by name, or allocate new cache entry if absent */
|
| 359 |
SDData *
|
| 360 |
SDgetCache(const char *bname)
|
| 361 |
{
|
| 362 |
struct SDCache_s *sdl;
|
| 363 |
char sdnam[SDnameLn];
|
| 364 |
|
| 365 |
if (bname == NULL)
|
| 366 |
return NULL;
|
| 367 |
|
| 368 |
SDclipName(sdnam, bname);
|
| 369 |
for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
|
| 370 |
if (!strcmp(sdl->bsdf.name, sdnam)) {
|
| 371 |
sdl->refcnt++;
|
| 372 |
return &sdl->bsdf;
|
| 373 |
}
|
| 374 |
|
| 375 |
sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
|
| 376 |
if (sdl == NULL)
|
| 377 |
return NULL;
|
| 378 |
|
| 379 |
strcpy(sdl->bsdf.name, sdnam);
|
| 380 |
sdl->next = SDcacheList;
|
| 381 |
SDcacheList = sdl;
|
| 382 |
|
| 383 |
sdl->refcnt = 1;
|
| 384 |
return &sdl->bsdf;
|
| 385 |
}
|
| 386 |
|
| 387 |
/* Get loaded BSDF from cache (or load and cache it on first call) */
|
| 388 |
/* Report any problem to stderr and return NULL on failure */
|
| 389 |
const SDData *
|
| 390 |
SDcacheFile(const char *fname)
|
| 391 |
{
|
| 392 |
SDData *sd;
|
| 393 |
SDError ec;
|
| 394 |
|
| 395 |
if (fname == NULL || !*fname)
|
| 396 |
return NULL;
|
| 397 |
SDerrorDetail[0] = '\0';
|
| 398 |
if ((sd = SDgetCache(fname)) == NULL) {
|
| 399 |
SDreportEnglish(SDEmemory, stderr);
|
| 400 |
return NULL;
|
| 401 |
}
|
| 402 |
if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
|
| 403 |
SDreportEnglish(ec, stderr);
|
| 404 |
SDfreeCache(sd);
|
| 405 |
return NULL;
|
| 406 |
}
|
| 407 |
return sd;
|
| 408 |
}
|
| 409 |
|
| 410 |
/* Free a BSDF from our cache (clear all if NULL) */
|
| 411 |
void
|
| 412 |
SDfreeCache(const SDData *sd)
|
| 413 |
{
|
| 414 |
struct SDCache_s *sdl, *sdLast = NULL;
|
| 415 |
|
| 416 |
if (sd == NULL) { /* free entire list */
|
| 417 |
while ((sdl = SDcacheList) != NULL) {
|
| 418 |
SDcacheList = sdl->next;
|
| 419 |
SDfreeBSDF(&sdl->bsdf);
|
| 420 |
free(sdl);
|
| 421 |
}
|
| 422 |
return;
|
| 423 |
}
|
| 424 |
for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
|
| 425 |
if (&sdl->bsdf == sd)
|
| 426 |
break;
|
| 427 |
if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
|
| 428 |
return; /* missing or still in use */
|
| 429 |
/* keep unreferenced data? */
|
| 430 |
if (SDisLoaded(sd) && SDretainSet) {
|
| 431 |
if (SDretainSet == SDretainAll)
|
| 432 |
return; /* keep everything */
|
| 433 |
/* else free cumulative data */
|
| 434 |
SDfreeCumulativeCache(sd->rf);
|
| 435 |
SDfreeCumulativeCache(sd->rb);
|
| 436 |
SDfreeCumulativeCache(sd->tf);
|
| 437 |
return;
|
| 438 |
}
|
| 439 |
/* remove from list and free */
|
| 440 |
if (sdLast == NULL)
|
| 441 |
SDcacheList = sdl->next;
|
| 442 |
else
|
| 443 |
sdLast->next = sdl->next;
|
| 444 |
SDfreeBSDF(&sdl->bsdf);
|
| 445 |
free(sdl);
|
| 446 |
}
|
| 447 |
|
| 448 |
/* Sample an individual BSDF component */
|
| 449 |
SDError
|
| 450 |
SDsampComponent(SDValue *sv, FVECT ioVec, double randX, SDComponent *sdc)
|
| 451 |
{
|
| 452 |
float coef[SDmaxCh];
|
| 453 |
SDError ec;
|
| 454 |
FVECT inVec;
|
| 455 |
const SDCDst *cd;
|
| 456 |
double d;
|
| 457 |
int n;
|
| 458 |
/* check arguments */
|
| 459 |
if ((sv == NULL) | (ioVec == NULL) | (sdc == NULL))
|
| 460 |
return SDEargument;
|
| 461 |
/* get cumulative distribution */
|
| 462 |
VCOPY(inVec, ioVec);
|
| 463 |
cd = (*sdc->func->getCDist)(inVec, sdc);
|
| 464 |
if (cd == NULL)
|
| 465 |
return SDEmemory;
|
| 466 |
if (cd->cTotal <= 1e-6) { /* anything to sample? */
|
| 467 |
sv->spec = c_dfcolor;
|
| 468 |
sv->cieY = .0;
|
| 469 |
memset(ioVec, 0, 3*sizeof(double));
|
| 470 |
return SDEnone;
|
| 471 |
}
|
| 472 |
sv->cieY = cd->cTotal;
|
| 473 |
/* compute sample direction */
|
| 474 |
ec = (*sdc->func->sampCDist)(ioVec, randX, cd);
|
| 475 |
if (ec)
|
| 476 |
return ec;
|
| 477 |
/* get BSDF color */
|
| 478 |
n = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
|
| 479 |
if (n <= 0) {
|
| 480 |
strcpy(SDerrorDetail, "BSDF sample value error");
|
| 481 |
return SDEinternal;
|
| 482 |
}
|
| 483 |
sv->spec = sdc->cspec[0];
|
| 484 |
d = coef[0];
|
| 485 |
while (--n) {
|
| 486 |
c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
|
| 487 |
d += coef[n];
|
| 488 |
}
|
| 489 |
/* make sure everything is set */
|
| 490 |
c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
|
| 491 |
return SDEnone;
|
| 492 |
}
|
| 493 |
|
| 494 |
#define MS_MAXDIM 15
|
| 495 |
|
| 496 |
/* Convert 1-dimensional random variable to N-dimensional */
|
| 497 |
void
|
| 498 |
SDmultiSamp(double t[], int n, double randX)
|
| 499 |
{
|
| 500 |
unsigned nBits;
|
| 501 |
double scale;
|
| 502 |
bitmask_t ndx, coord[MS_MAXDIM];
|
| 503 |
|
| 504 |
if (n <= 0) /* check corner cases */
|
| 505 |
return;
|
| 506 |
if (randX < 0) randX = 0;
|
| 507 |
else if (randX >= 1.) randX = 0.999999999999999;
|
| 508 |
if (n == 1) {
|
| 509 |
t[0] = randX;
|
| 510 |
return;
|
| 511 |
}
|
| 512 |
while (n > MS_MAXDIM) /* punt for higher dimensions */
|
| 513 |
t[--n] = rand()*(1./(RAND_MAX+.5));
|
| 514 |
nBits = (8*sizeof(bitmask_t) - 1) / n;
|
| 515 |
ndx = randX * (double)((bitmask_t)1 << (nBits*n));
|
| 516 |
/* get coordinate on Hilbert curve */
|
| 517 |
hilbert_i2c(n, nBits, ndx, coord);
|
| 518 |
/* convert back to [0,1) range */
|
| 519 |
scale = 1. / (double)((bitmask_t)1 << nBits);
|
| 520 |
while (n--)
|
| 521 |
t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
|
| 522 |
}
|
| 523 |
|
| 524 |
#undef MS_MAXDIM
|
| 525 |
|
| 526 |
/* Generate diffuse hemispherical sample */
|
| 527 |
static void
|
| 528 |
SDdiffuseSamp(FVECT outVec, int outFront, double randX)
|
| 529 |
{
|
| 530 |
/* convert to position on hemisphere */
|
| 531 |
SDmultiSamp(outVec, 2, randX);
|
| 532 |
SDsquare2disk(outVec, outVec[0], outVec[1]);
|
| 533 |
outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
|
| 534 |
if (outVec[2] > 0) /* a bit of paranoia */
|
| 535 |
outVec[2] = sqrt(outVec[2]);
|
| 536 |
if (!outFront) /* going out back? */
|
| 537 |
outVec[2] = -outVec[2];
|
| 538 |
}
|
| 539 |
|
| 540 |
/* Query projected solid angle coverage for non-diffuse BSDF direction */
|
| 541 |
SDError
|
| 542 |
SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2,
|
| 543 |
int qflags, const SDData *sd)
|
| 544 |
{
|
| 545 |
SDSpectralDF *rdf, *tdf;
|
| 546 |
SDError ec;
|
| 547 |
int i;
|
| 548 |
/* check arguments */
|
| 549 |
if ((projSA == NULL) | (v1 == NULL) | (sd == NULL))
|
| 550 |
return SDEargument;
|
| 551 |
/* initialize extrema */
|
| 552 |
switch (qflags) {
|
| 553 |
case SDqueryMax:
|
| 554 |
projSA[0] = .0;
|
| 555 |
break;
|
| 556 |
case SDqueryMin+SDqueryMax:
|
| 557 |
projSA[1] = .0;
|
| 558 |
/* fall through */
|
| 559 |
case SDqueryMin:
|
| 560 |
projSA[0] = 10.;
|
| 561 |
break;
|
| 562 |
case 0:
|
| 563 |
return SDEargument;
|
| 564 |
}
|
| 565 |
if (v1[2] > 0) /* front surface query? */
|
| 566 |
rdf = sd->rf;
|
| 567 |
else
|
| 568 |
rdf = sd->rb;
|
| 569 |
tdf = sd->tf;
|
| 570 |
if (v2 != NULL) /* bidirectional? */
|
| 571 |
if (v1[2] > 0 ^ v2[2] > 0)
|
| 572 |
rdf = NULL;
|
| 573 |
else
|
| 574 |
tdf = NULL;
|
| 575 |
ec = SDEdata; /* run through components */
|
| 576 |
for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
|
| 577 |
ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2,
|
| 578 |
qflags, &rdf->comp[i]);
|
| 579 |
if (ec)
|
| 580 |
return ec;
|
| 581 |
}
|
| 582 |
for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) {
|
| 583 |
ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2,
|
| 584 |
qflags, &tdf->comp[i]);
|
| 585 |
if (ec)
|
| 586 |
return ec;
|
| 587 |
}
|
| 588 |
if (ec) { /* all diffuse? */
|
| 589 |
projSA[0] = M_PI;
|
| 590 |
if (qflags == SDqueryMin+SDqueryMax)
|
| 591 |
projSA[1] = M_PI;
|
| 592 |
}
|
| 593 |
return SDEnone;
|
| 594 |
}
|
| 595 |
|
| 596 |
/* Return BSDF for the given incident and scattered ray vectors */
|
| 597 |
SDError
|
| 598 |
SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
|
| 599 |
{
|
| 600 |
int inFront, outFront;
|
| 601 |
SDSpectralDF *sdf;
|
| 602 |
float coef[SDmaxCh];
|
| 603 |
int nch, i;
|
| 604 |
/* check arguments */
|
| 605 |
if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
|
| 606 |
return SDEargument;
|
| 607 |
/* whose side are we on? */
|
| 608 |
inFront = (inVec[2] > 0);
|
| 609 |
outFront = (outVec[2] > 0);
|
| 610 |
/* start with diffuse portion */
|
| 611 |
if (inFront & outFront) {
|
| 612 |
*sv = sd->rLambFront;
|
| 613 |
sdf = sd->rf;
|
| 614 |
} else if (!(inFront | outFront)) {
|
| 615 |
*sv = sd->rLambBack;
|
| 616 |
sdf = sd->rb;
|
| 617 |
} else /* inFront ^ outFront */ {
|
| 618 |
*sv = sd->tLamb;
|
| 619 |
sdf = sd->tf;
|
| 620 |
}
|
| 621 |
sv->cieY *= 1./M_PI;
|
| 622 |
/* add non-diffuse components */
|
| 623 |
i = (sdf != NULL) ? sdf->ncomp : 0;
|
| 624 |
while (i-- > 0) {
|
| 625 |
nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
|
| 626 |
&sdf->comp[i]);
|
| 627 |
while (nch-- > 0) {
|
| 628 |
c_cmix(&sv->spec, sv->cieY, &sv->spec,
|
| 629 |
coef[nch], &sdf->comp[i].cspec[nch]);
|
| 630 |
sv->cieY += coef[nch];
|
| 631 |
}
|
| 632 |
}
|
| 633 |
/* make sure everything is set */
|
| 634 |
c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
|
| 635 |
return SDEnone;
|
| 636 |
}
|
| 637 |
|
| 638 |
/* Compute directional hemispherical scattering at this incident angle */
|
| 639 |
double
|
| 640 |
SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
|
| 641 |
{
|
| 642 |
double hsum;
|
| 643 |
SDSpectralDF *rdf;
|
| 644 |
const SDCDst *cd;
|
| 645 |
int i;
|
| 646 |
/* check arguments */
|
| 647 |
if ((inVec == NULL) | (sd == NULL))
|
| 648 |
return .0;
|
| 649 |
/* gather diffuse components */
|
| 650 |
if (inVec[2] > 0) {
|
| 651 |
hsum = sd->rLambFront.cieY;
|
| 652 |
rdf = sd->rf;
|
| 653 |
} else /* !inFront */ {
|
| 654 |
hsum = sd->rLambBack.cieY;
|
| 655 |
rdf = sd->rb;
|
| 656 |
}
|
| 657 |
if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
|
| 658 |
hsum = .0;
|
| 659 |
if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
|
| 660 |
hsum += sd->tLamb.cieY;
|
| 661 |
/* gather non-diffuse components */
|
| 662 |
i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
|
| 663 |
rdf != NULL) ? rdf->ncomp : 0;
|
| 664 |
while (i-- > 0) { /* non-diffuse reflection */
|
| 665 |
cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
|
| 666 |
if (cd != NULL)
|
| 667 |
hsum += cd->cTotal;
|
| 668 |
}
|
| 669 |
i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
|
| 670 |
sd->tf != NULL) ? sd->tf->ncomp : 0;
|
| 671 |
while (i-- > 0) { /* non-diffuse transmission */
|
| 672 |
cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]);
|
| 673 |
if (cd != NULL)
|
| 674 |
hsum += cd->cTotal;
|
| 675 |
}
|
| 676 |
return hsum;
|
| 677 |
}
|
| 678 |
|
| 679 |
/* Sample BSDF direction based on the given random variable */
|
| 680 |
SDError
|
| 681 |
SDsampBSDF(SDValue *sv, FVECT ioVec, double randX, int sflags, const SDData *sd)
|
| 682 |
{
|
| 683 |
SDError ec;
|
| 684 |
FVECT inVec;
|
| 685 |
int inFront;
|
| 686 |
SDSpectralDF *rdf;
|
| 687 |
double rdiff;
|
| 688 |
float coef[SDmaxCh];
|
| 689 |
int i, j, n, nr;
|
| 690 |
SDComponent *sdc;
|
| 691 |
const SDCDst **cdarr = NULL;
|
| 692 |
/* check arguments */
|
| 693 |
if ((sv == NULL) | (ioVec == NULL) | (sd == NULL) |
|
| 694 |
(randX < 0) | (randX >= 1.))
|
| 695 |
return SDEargument;
|
| 696 |
/* whose side are we on? */
|
| 697 |
VCOPY(inVec, ioVec);
|
| 698 |
inFront = (inVec[2] > 0);
|
| 699 |
/* remember diffuse portions */
|
| 700 |
if (inFront) {
|
| 701 |
*sv = sd->rLambFront;
|
| 702 |
rdf = sd->rf;
|
| 703 |
} else /* !inFront */ {
|
| 704 |
*sv = sd->rLambBack;
|
| 705 |
rdf = sd->rb;
|
| 706 |
}
|
| 707 |
if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
|
| 708 |
sv->cieY = .0;
|
| 709 |
rdiff = sv->cieY;
|
| 710 |
if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
|
| 711 |
sv->cieY += sd->tLamb.cieY;
|
| 712 |
/* gather non-diffuse components */
|
| 713 |
i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
|
| 714 |
rdf != NULL) ? rdf->ncomp : 0;
|
| 715 |
j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
|
| 716 |
sd->tf != NULL) ? sd->tf->ncomp : 0;
|
| 717 |
n = i + j;
|
| 718 |
if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
|
| 719 |
return SDEmemory;
|
| 720 |
while (j-- > 0) { /* non-diffuse transmission */
|
| 721 |
cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]);
|
| 722 |
if (cdarr[i+j] == NULL) {
|
| 723 |
free(cdarr);
|
| 724 |
return SDEmemory;
|
| 725 |
}
|
| 726 |
sv->cieY += cdarr[i+j]->cTotal;
|
| 727 |
}
|
| 728 |
while (i-- > 0) { /* non-diffuse reflection */
|
| 729 |
cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
|
| 730 |
if (cdarr[i] == NULL) {
|
| 731 |
free(cdarr);
|
| 732 |
return SDEmemory;
|
| 733 |
}
|
| 734 |
sv->cieY += cdarr[i]->cTotal;
|
| 735 |
}
|
| 736 |
if (sv->cieY <= 1e-6) { /* anything to sample? */
|
| 737 |
sv->cieY = .0;
|
| 738 |
memset(ioVec, 0, 3*sizeof(double));
|
| 739 |
return SDEnone;
|
| 740 |
}
|
| 741 |
/* scale random variable */
|
| 742 |
randX *= sv->cieY;
|
| 743 |
/* diffuse reflection? */
|
| 744 |
if (randX < rdiff) {
|
| 745 |
SDdiffuseSamp(ioVec, inFront, randX/rdiff);
|
| 746 |
goto done;
|
| 747 |
}
|
| 748 |
randX -= rdiff;
|
| 749 |
/* diffuse transmission? */
|
| 750 |
if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
|
| 751 |
if (randX < sd->tLamb.cieY) {
|
| 752 |
sv->spec = sd->tLamb.spec;
|
| 753 |
SDdiffuseSamp(ioVec, !inFront, randX/sd->tLamb.cieY);
|
| 754 |
goto done;
|
| 755 |
}
|
| 756 |
randX -= sd->tLamb.cieY;
|
| 757 |
}
|
| 758 |
/* else one of cumulative dist. */
|
| 759 |
for (i = 0; i < n && randX < cdarr[i]->cTotal; i++)
|
| 760 |
randX -= cdarr[i]->cTotal;
|
| 761 |
if (i >= n)
|
| 762 |
return SDEinternal;
|
| 763 |
/* compute sample direction */
|
| 764 |
sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr];
|
| 765 |
ec = (*sdc->func->sampCDist)(ioVec, randX/cdarr[i]->cTotal, cdarr[i]);
|
| 766 |
if (ec)
|
| 767 |
return ec;
|
| 768 |
/* compute color */
|
| 769 |
j = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
|
| 770 |
if (j <= 0) {
|
| 771 |
sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
|
| 772 |
sd->name);
|
| 773 |
return SDEinternal;
|
| 774 |
}
|
| 775 |
sv->spec = sdc->cspec[0];
|
| 776 |
rdiff = coef[0];
|
| 777 |
while (--j) {
|
| 778 |
c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
|
| 779 |
rdiff += coef[j];
|
| 780 |
}
|
| 781 |
done:
|
| 782 |
if (cdarr != NULL)
|
| 783 |
free(cdarr);
|
| 784 |
/* make sure everything is set */
|
| 785 |
c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
|
| 786 |
return SDEnone;
|
| 787 |
}
|
| 788 |
|
| 789 |
/* Compute World->BSDF transform from surface normal and up (Y) vector */
|
| 790 |
SDError
|
| 791 |
SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
|
| 792 |
{
|
| 793 |
if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
|
| 794 |
return SDEargument;
|
| 795 |
VCOPY(vMtx[2], sNrm);
|
| 796 |
if (normalize(vMtx[2]) == 0)
|
| 797 |
return SDEargument;
|
| 798 |
fcross(vMtx[0], uVec, vMtx[2]);
|
| 799 |
if (normalize(vMtx[0]) == 0)
|
| 800 |
return SDEargument;
|
| 801 |
fcross(vMtx[1], vMtx[2], vMtx[0]);
|
| 802 |
return SDEnone;
|
| 803 |
}
|
| 804 |
|
| 805 |
/* Compute inverse transform */
|
| 806 |
SDError
|
| 807 |
SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
|
| 808 |
{
|
| 809 |
RREAL mTmp[3][3];
|
| 810 |
double d;
|
| 811 |
|
| 812 |
if ((iMtx == NULL) | (vMtx == NULL))
|
| 813 |
return SDEargument;
|
| 814 |
/* compute determinant */
|
| 815 |
mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
|
| 816 |
mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
|
| 817 |
mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
|
| 818 |
d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
|
| 819 |
if (d == 0) {
|
| 820 |
strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
|
| 821 |
return SDEargument;
|
| 822 |
}
|
| 823 |
d = 1./d; /* invert matrix */
|
| 824 |
mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
|
| 825 |
mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
|
| 826 |
mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
|
| 827 |
mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
|
| 828 |
mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
|
| 829 |
mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
|
| 830 |
mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
|
| 831 |
memcpy(iMtx, mTmp, sizeof(mTmp));
|
| 832 |
return SDEnone;
|
| 833 |
}
|
| 834 |
|
| 835 |
/* Transform and normalize direction (column) vector */
|
| 836 |
SDError
|
| 837 |
SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
|
| 838 |
{
|
| 839 |
FVECT vTmp;
|
| 840 |
|
| 841 |
if ((resVec == NULL) | (inpVec == NULL))
|
| 842 |
return SDEargument;
|
| 843 |
if (vMtx == NULL) { /* assume they just want to normalize */
|
| 844 |
if (resVec != inpVec)
|
| 845 |
VCOPY(resVec, inpVec);
|
| 846 |
return (normalize(resVec) > 0) ? SDEnone : SDEargument;
|
| 847 |
}
|
| 848 |
vTmp[0] = DOT(vMtx[0], inpVec);
|
| 849 |
vTmp[1] = DOT(vMtx[1], inpVec);
|
| 850 |
vTmp[2] = DOT(vMtx[2], inpVec);
|
| 851 |
if (normalize(vTmp) == 0)
|
| 852 |
return SDEargument;
|
| 853 |
VCOPY(resVec, vTmp);
|
| 854 |
return SDEnone;
|
| 855 |
}
|
| 856 |
|
| 857 |
/*################################################################*/
|
| 858 |
/*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/
|
| 859 |
|
| 860 |
/*
|
| 861 |
* Routines for handling BSDF data
|
| 862 |
*/
|
| 863 |
|
| 864 |
#include "standard.h"
|
| 865 |
#include "paths.h"
|
| 866 |
|
| 867 |
#define MAXLATS 46 /* maximum number of latitudes */
|
| 868 |
|
| 869 |
/* BSDF angle specification */
|
| 870 |
typedef struct {
|
| 871 |
char name[64]; /* basis name */
|
| 872 |
int nangles; /* total number of directions */
|
| 873 |
struct {
|
| 874 |
float tmin; /* starting theta */
|
| 875 |
short nphis; /* number of phis (0 term) */
|
| 876 |
} lat[MAXLATS+1]; /* latitudes */
|
| 877 |
} ANGLE_BASIS;
|
| 878 |
|
| 879 |
#define MAXABASES 7 /* limit on defined bases */
|
| 880 |
|
| 881 |
static ANGLE_BASIS abase_list[MAXABASES] = {
|
| 882 |
{
|
| 883 |
"LBNL/Klems Full", 145,
|
| 884 |
{ {-5., 1},
|
| 885 |
{5., 8},
|
| 886 |
{15., 16},
|
| 887 |
{25., 20},
|
| 888 |
{35., 24},
|
| 889 |
{45., 24},
|
| 890 |
{55., 24},
|
| 891 |
{65., 16},
|
| 892 |
{75., 12},
|
| 893 |
{90., 0} }
|
| 894 |
}, {
|
| 895 |
"LBNL/Klems Half", 73,
|
| 896 |
{ {-6.5, 1},
|
| 897 |
{6.5, 8},
|
| 898 |
{19.5, 12},
|
| 899 |
{32.5, 16},
|
| 900 |
{46.5, 20},
|
| 901 |
{61.5, 12},
|
| 902 |
{76.5, 4},
|
| 903 |
{90., 0} }
|
| 904 |
}, {
|
| 905 |
"LBNL/Klems Quarter", 41,
|
| 906 |
{ {-9., 1},
|
| 907 |
{9., 8},
|
| 908 |
{27., 12},
|
| 909 |
{46., 12},
|
| 910 |
{66., 8},
|
| 911 |
{90., 0} }
|
| 912 |
}
|
| 913 |
};
|
| 914 |
|
| 915 |
static int nabases = 3; /* current number of defined bases */
|
| 916 |
|
| 917 |
#define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6)
|
| 918 |
|
| 919 |
static int
|
| 920 |
fequal(double a, double b)
|
| 921 |
{
|
| 922 |
if (b != 0)
|
| 923 |
a = a/b - 1.;
|
| 924 |
return((a <= 1e-6) & (a >= -1e-6));
|
| 925 |
}
|
| 926 |
|
| 927 |
/* Returns the name of the given tag */
|
| 928 |
#ifdef ezxml_name
|
| 929 |
#undef ezxml_name
|
| 930 |
static char *
|
| 931 |
ezxml_name(ezxml_t xml)
|
| 932 |
{
|
| 933 |
if (xml == NULL)
|
| 934 |
return(NULL);
|
| 935 |
return(xml->name);
|
| 936 |
}
|
| 937 |
#endif
|
| 938 |
|
| 939 |
/* Returns the given tag's character content or empty string if none */
|
| 940 |
#ifdef ezxml_txt
|
| 941 |
#undef ezxml_txt
|
| 942 |
static char *
|
| 943 |
ezxml_txt(ezxml_t xml)
|
| 944 |
{
|
| 945 |
if (xml == NULL)
|
| 946 |
return("");
|
| 947 |
return(xml->txt);
|
| 948 |
}
|
| 949 |
#endif
|
| 950 |
|
| 951 |
|
| 952 |
static int
|
| 953 |
ab_getvec( /* get vector for this angle basis index */
|
| 954 |
FVECT v,
|
| 955 |
int ndx,
|
| 956 |
void *p
|
| 957 |
)
|
| 958 |
{
|
| 959 |
ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
|
| 960 |
int li;
|
| 961 |
double pol, azi, d;
|
| 962 |
|
| 963 |
if ((ndx < 0) | (ndx >= ab->nangles))
|
| 964 |
return(0);
|
| 965 |
for (li = 0; ndx >= ab->lat[li].nphis; li++)
|
| 966 |
ndx -= ab->lat[li].nphis;
|
| 967 |
pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin);
|
| 968 |
azi = 2.*PI*ndx/ab->lat[li].nphis;
|
| 969 |
v[2] = d = cos(pol);
|
| 970 |
d = sqrt(1. - d*d); /* sin(pol) */
|
| 971 |
v[0] = cos(azi)*d;
|
| 972 |
v[1] = sin(azi)*d;
|
| 973 |
return(1);
|
| 974 |
}
|
| 975 |
|
| 976 |
|
| 977 |
static int
|
| 978 |
ab_getndx( /* get index corresponding to the given vector */
|
| 979 |
FVECT v,
|
| 980 |
void *p
|
| 981 |
)
|
| 982 |
{
|
| 983 |
ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
|
| 984 |
int li, ndx;
|
| 985 |
double pol, azi;
|
| 986 |
|
| 987 |
if ((v[2] < -1.0) | (v[2] > 1.0))
|
| 988 |
return(-1);
|
| 989 |
pol = 180.0/PI*acos(v[2]);
|
| 990 |
azi = 180.0/PI*atan2(v[1], v[0]);
|
| 991 |
if (azi < 0.0) azi += 360.0;
|
| 992 |
for (li = 1; ab->lat[li].tmin <= pol; li++)
|
| 993 |
if (!ab->lat[li].nphis)
|
| 994 |
return(-1);
|
| 995 |
--li;
|
| 996 |
ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
|
| 997 |
if (ndx >= ab->lat[li].nphis) ndx = 0;
|
| 998 |
while (li--)
|
| 999 |
ndx += ab->lat[li].nphis;
|
| 1000 |
return(ndx);
|
| 1001 |
}
|
| 1002 |
|
| 1003 |
|
| 1004 |
static double
|
| 1005 |
ab_getohm( /* get solid angle for this angle basis index */
|
| 1006 |
int ndx,
|
| 1007 |
void *p
|
| 1008 |
)
|
| 1009 |
{
|
| 1010 |
ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
|
| 1011 |
int li;
|
| 1012 |
double theta, theta1;
|
| 1013 |
|
| 1014 |
if ((ndx < 0) | (ndx >= ab->nangles))
|
| 1015 |
return(0);
|
| 1016 |
for (li = 0; ndx >= ab->lat[li].nphis; li++)
|
| 1017 |
ndx -= ab->lat[li].nphis;
|
| 1018 |
theta1 = PI/180. * ab->lat[li+1].tmin;
|
| 1019 |
if (ab->lat[li].nphis == 1) { /* special case */
|
| 1020 |
if (ab->lat[li].tmin > FTINY)
|
| 1021 |
error(USER, "unsupported BSDF coordinate system");
|
| 1022 |
return(2.*PI*(1. - cos(theta1)));
|
| 1023 |
}
|
| 1024 |
theta = PI/180. * ab->lat[li].tmin;
|
| 1025 |
return(2.*PI*(cos(theta) - cos(theta1))/(double)ab->lat[li].nphis);
|
| 1026 |
}
|
| 1027 |
|
| 1028 |
|
| 1029 |
static int
|
| 1030 |
ab_getvecR( /* get reverse vector for this angle basis index */
|
| 1031 |
FVECT v,
|
| 1032 |
int ndx,
|
| 1033 |
void *p
|
| 1034 |
)
|
| 1035 |
{
|
| 1036 |
if (!ab_getvec(v, ndx, p))
|
| 1037 |
return(0);
|
| 1038 |
|
| 1039 |
v[0] = -v[0];
|
| 1040 |
v[1] = -v[1];
|
| 1041 |
v[2] = -v[2];
|
| 1042 |
|
| 1043 |
return(1);
|
| 1044 |
}
|
| 1045 |
|
| 1046 |
|
| 1047 |
static int
|
| 1048 |
ab_getndxR( /* get index corresponding to the reverse vector */
|
| 1049 |
FVECT v,
|
| 1050 |
void *p
|
| 1051 |
)
|
| 1052 |
{
|
| 1053 |
FVECT v2;
|
| 1054 |
|
| 1055 |
v2[0] = -v[0];
|
| 1056 |
v2[1] = -v[1];
|
| 1057 |
v2[2] = -v[2];
|
| 1058 |
|
| 1059 |
return ab_getndx(v2, p);
|
| 1060 |
}
|
| 1061 |
|
| 1062 |
|
| 1063 |
static void
|
| 1064 |
load_angle_basis( /* load custom BSDF angle basis */
|
| 1065 |
ezxml_t wab
|
| 1066 |
)
|
| 1067 |
{
|
| 1068 |
char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
|
| 1069 |
ezxml_t wbb;
|
| 1070 |
int i;
|
| 1071 |
|
| 1072 |
if (!abname || !*abname)
|
| 1073 |
return;
|
| 1074 |
for (i = nabases; i--; )
|
| 1075 |
if (!strcasecmp(abname, abase_list[i].name))
|
| 1076 |
return; /* assume it's the same */
|
| 1077 |
if (nabases >= MAXABASES)
|
| 1078 |
error(INTERNAL, "too many angle bases");
|
| 1079 |
strcpy(abase_list[nabases].name, abname);
|
| 1080 |
abase_list[nabases].nangles = 0;
|
| 1081 |
for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
|
| 1082 |
wbb != NULL; i++, wbb = wbb->next) {
|
| 1083 |
if (i >= MAXLATS)
|
| 1084 |
error(INTERNAL, "too many latitudes in custom basis");
|
| 1085 |
abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
|
| 1086 |
ezxml_child(ezxml_child(wbb,
|
| 1087 |
"ThetaBounds"), "UpperTheta")));
|
| 1088 |
if (!i)
|
| 1089 |
abase_list[nabases].lat[i].tmin =
|
| 1090 |
-abase_list[nabases].lat[i+1].tmin;
|
| 1091 |
else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
|
| 1092 |
"ThetaBounds"), "LowerTheta"))),
|
| 1093 |
abase_list[nabases].lat[i].tmin))
|
| 1094 |
error(WARNING, "theta values disagree in custom basis");
|
| 1095 |
abase_list[nabases].nangles +=
|
| 1096 |
abase_list[nabases].lat[i].nphis =
|
| 1097 |
atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
|
| 1098 |
}
|
| 1099 |
abase_list[nabases++].lat[i].nphis = 0;
|
| 1100 |
}
|
| 1101 |
|
| 1102 |
|
| 1103 |
static void
|
| 1104 |
load_geometry( /* load geometric dimensions and description (if any) */
|
| 1105 |
struct BSDF_data *dp,
|
| 1106 |
ezxml_t wdb
|
| 1107 |
)
|
| 1108 |
{
|
| 1109 |
ezxml_t geom;
|
| 1110 |
double cfact;
|
| 1111 |
const char *fmt, *mgfstr;
|
| 1112 |
|
| 1113 |
dp->dim[0] = dp->dim[1] = dp->dim[2] = 0;
|
| 1114 |
dp->mgf = NULL;
|
| 1115 |
if ((geom = ezxml_child(wdb, "Width")) != NULL)
|
| 1116 |
dp->dim[0] = atof(ezxml_txt(geom)) *
|
| 1117 |
to_meters(ezxml_attr(geom, "unit"));
|
| 1118 |
if ((geom = ezxml_child(wdb, "Height")) != NULL)
|
| 1119 |
dp->dim[1] = atof(ezxml_txt(geom)) *
|
| 1120 |
to_meters(ezxml_attr(geom, "unit"));
|
| 1121 |
if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
|
| 1122 |
dp->dim[2] = atof(ezxml_txt(geom)) *
|
| 1123 |
to_meters(ezxml_attr(geom, "unit"));
|
| 1124 |
if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
|
| 1125 |
(mgfstr = ezxml_txt(geom)) == NULL)
|
| 1126 |
return;
|
| 1127 |
if ((fmt = ezxml_attr(geom, "format")) != NULL &&
|
| 1128 |
strcasecmp(fmt, "MGF")) {
|
| 1129 |
sprintf(errmsg, "unrecognized geometry format '%s'", fmt);
|
| 1130 |
error(WARNING, errmsg);
|
| 1131 |
return;
|
| 1132 |
}
|
| 1133 |
cfact = to_meters(ezxml_attr(geom, "unit"));
|
| 1134 |
dp->mgf = (char *)malloc(strlen(mgfstr)+32);
|
| 1135 |
if (dp->mgf == NULL)
|
| 1136 |
error(SYSTEM, "out of memory in load_geometry");
|
| 1137 |
if (cfact < 0.99 || cfact > 1.01)
|
| 1138 |
sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
|
| 1139 |
else
|
| 1140 |
strcpy(dp->mgf, mgfstr);
|
| 1141 |
}
|
| 1142 |
|
| 1143 |
|
| 1144 |
static void
|
| 1145 |
load_bsdf_data( /* load BSDF distribution for this wavelength */
|
| 1146 |
struct BSDF_data *dp,
|
| 1147 |
ezxml_t wdb
|
| 1148 |
)
|
| 1149 |
{
|
| 1150 |
char *cbasis = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
|
| 1151 |
char *rbasis = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
|
| 1152 |
char *sdata;
|
| 1153 |
int i;
|
| 1154 |
|
| 1155 |
if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) {
|
| 1156 |
error(WARNING, "missing column/row basis for BSDF");
|
| 1157 |
return;
|
| 1158 |
}
|
| 1159 |
for (i = nabases; i--; )
|
| 1160 |
if (!strcasecmp(cbasis, abase_list[i].name)) {
|
| 1161 |
dp->ninc = abase_list[i].nangles;
|
| 1162 |
dp->ib_priv = (void *)&abase_list[i];
|
| 1163 |
dp->ib_vec = ab_getvecR;
|
| 1164 |
dp->ib_ndx = ab_getndxR;
|
| 1165 |
dp->ib_ohm = ab_getohm;
|
| 1166 |
break;
|
| 1167 |
}
|
| 1168 |
if (i < 0) {
|
| 1169 |
sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis);
|
| 1170 |
error(WARNING, errmsg);
|
| 1171 |
return;
|
| 1172 |
}
|
| 1173 |
for (i = nabases; i--; )
|
| 1174 |
if (!strcasecmp(rbasis, abase_list[i].name)) {
|
| 1175 |
dp->nout = abase_list[i].nangles;
|
| 1176 |
dp->ob_priv = (void *)&abase_list[i];
|
| 1177 |
dp->ob_vec = ab_getvec;
|
| 1178 |
dp->ob_ndx = ab_getndx;
|
| 1179 |
dp->ob_ohm = ab_getohm;
|
| 1180 |
break;
|
| 1181 |
}
|
| 1182 |
if (i < 0) {
|
| 1183 |
sprintf(errmsg, "undefined RowAngleBasis '%s'", rbasis);
|
| 1184 |
error(WARNING, errmsg);
|
| 1185 |
return;
|
| 1186 |
}
|
| 1187 |
/* read BSDF data */
|
| 1188 |
sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
|
| 1189 |
if (!sdata || !*sdata) {
|
| 1190 |
error(WARNING, "missing BSDF ScatteringData");
|
| 1191 |
return;
|
| 1192 |
}
|
| 1193 |
dp->bsdf = (float *)malloc(sizeof(float)*dp->ninc*dp->nout);
|
| 1194 |
if (dp->bsdf == NULL)
|
| 1195 |
error(SYSTEM, "out of memory in load_bsdf_data");
|
| 1196 |
for (i = 0; i < dp->ninc*dp->nout; i++) {
|
| 1197 |
char *sdnext = fskip(sdata);
|
| 1198 |
if (sdnext == NULL) {
|
| 1199 |
error(WARNING, "bad/missing BSDF ScatteringData");
|
| 1200 |
free(dp->bsdf); dp->bsdf = NULL;
|
| 1201 |
return;
|
| 1202 |
}
|
| 1203 |
while (*sdnext && isspace(*sdnext))
|
| 1204 |
sdnext++;
|
| 1205 |
if (*sdnext == ',') sdnext++;
|
| 1206 |
dp->bsdf[i] = atof(sdata);
|
| 1207 |
sdata = sdnext;
|
| 1208 |
}
|
| 1209 |
while (isspace(*sdata))
|
| 1210 |
sdata++;
|
| 1211 |
if (*sdata) {
|
| 1212 |
sprintf(errmsg, "%d extra characters after BSDF ScatteringData",
|
| 1213 |
(int)strlen(sdata));
|
| 1214 |
error(WARNING, errmsg);
|
| 1215 |
}
|
| 1216 |
}
|
| 1217 |
|
| 1218 |
|
| 1219 |
static int
|
| 1220 |
check_bsdf_data( /* check that BSDF data is sane */
|
| 1221 |
struct BSDF_data *dp
|
| 1222 |
)
|
| 1223 |
{
|
| 1224 |
double *omega_iarr, *omega_oarr;
|
| 1225 |
double dom, hemi_total, full_total;
|
| 1226 |
int nneg;
|
| 1227 |
FVECT v;
|
| 1228 |
int i, o;
|
| 1229 |
|
| 1230 |
if (dp == NULL || dp->bsdf == NULL)
|
| 1231 |
return(0);
|
| 1232 |
omega_iarr = (double *)calloc(dp->ninc, sizeof(double));
|
| 1233 |
omega_oarr = (double *)calloc(dp->nout, sizeof(double));
|
| 1234 |
if ((omega_iarr == NULL) | (omega_oarr == NULL))
|
| 1235 |
error(SYSTEM, "out of memory in check_bsdf_data");
|
| 1236 |
/* incoming projected solid angles */
|
| 1237 |
hemi_total = .0;
|
| 1238 |
for (i = dp->ninc; i--; ) {
|
| 1239 |
dom = getBSDF_incohm(dp,i);
|
| 1240 |
if (dom <= 0) {
|
| 1241 |
error(WARNING, "zero/negative incoming solid angle");
|
| 1242 |
continue;
|
| 1243 |
}
|
| 1244 |
if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) {
|
| 1245 |
error(WARNING, "illegal incoming BSDF direction");
|
| 1246 |
free(omega_iarr); free(omega_oarr);
|
| 1247 |
return(0);
|
| 1248 |
}
|
| 1249 |
hemi_total += omega_iarr[i] = dom * -v[2];
|
| 1250 |
}
|
| 1251 |
if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
|
| 1252 |
sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%",
|
| 1253 |
100.*(hemi_total/PI - 1.));
|
| 1254 |
error(WARNING, errmsg);
|
| 1255 |
}
|
| 1256 |
dom = PI / hemi_total; /* fix normalization */
|
| 1257 |
for (i = dp->ninc; i--; )
|
| 1258 |
omega_iarr[i] *= dom;
|
| 1259 |
/* outgoing projected solid angles */
|
| 1260 |
hemi_total = .0;
|
| 1261 |
for (o = dp->nout; o--; ) {
|
| 1262 |
dom = getBSDF_outohm(dp,o);
|
| 1263 |
if (dom <= 0) {
|
| 1264 |
error(WARNING, "zero/negative outgoing solid angle");
|
| 1265 |
continue;
|
| 1266 |
}
|
| 1267 |
if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) {
|
| 1268 |
error(WARNING, "illegal outgoing BSDF direction");
|
| 1269 |
free(omega_iarr); free(omega_oarr);
|
| 1270 |
return(0);
|
| 1271 |
}
|
| 1272 |
hemi_total += omega_oarr[o] = dom * v[2];
|
| 1273 |
}
|
| 1274 |
if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
|
| 1275 |
sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%",
|
| 1276 |
100.*(hemi_total/PI - 1.));
|
| 1277 |
error(WARNING, errmsg);
|
| 1278 |
}
|
| 1279 |
dom = PI / hemi_total; /* fix normalization */
|
| 1280 |
for (o = dp->nout; o--; )
|
| 1281 |
omega_oarr[o] *= dom;
|
| 1282 |
nneg = 0; /* check outgoing totals */
|
| 1283 |
for (i = 0; i < dp->ninc; i++) {
|
| 1284 |
hemi_total = .0;
|
| 1285 |
for (o = dp->nout; o--; ) {
|
| 1286 |
double f = BSDF_value(dp,i,o);
|
| 1287 |
if (f >= 0)
|
| 1288 |
hemi_total += f*omega_oarr[o];
|
| 1289 |
else {
|
| 1290 |
nneg += (f < -FTINY);
|
| 1291 |
BSDF_value(dp,i,o) = .0f;
|
| 1292 |
}
|
| 1293 |
}
|
| 1294 |
if (hemi_total > 1.01) {
|
| 1295 |
sprintf(errmsg,
|
| 1296 |
"incoming BSDF direction %d passes %.1f%% of light",
|
| 1297 |
i, 100.*hemi_total);
|
| 1298 |
error(WARNING, errmsg);
|
| 1299 |
}
|
| 1300 |
}
|
| 1301 |
if (nneg) {
|
| 1302 |
sprintf(errmsg, "%d negative BSDF values (ignored)", nneg);
|
| 1303 |
error(WARNING, errmsg);
|
| 1304 |
}
|
| 1305 |
full_total = .0; /* reverse roles and check again */
|
| 1306 |
for (o = 0; o < dp->nout; o++) {
|
| 1307 |
hemi_total = .0;
|
| 1308 |
for (i = dp->ninc; i--; )
|
| 1309 |
hemi_total += BSDF_value(dp,i,o) * omega_iarr[i];
|
| 1310 |
|
| 1311 |
if (hemi_total > 1.01) {
|
| 1312 |
sprintf(errmsg,
|
| 1313 |
"outgoing BSDF direction %d collects %.1f%% of light",
|
| 1314 |
o, 100.*hemi_total);
|
| 1315 |
error(WARNING, errmsg);
|
| 1316 |
}
|
| 1317 |
full_total += hemi_total*omega_oarr[o];
|
| 1318 |
}
|
| 1319 |
full_total /= PI;
|
| 1320 |
if (full_total > 1.00001) {
|
| 1321 |
sprintf(errmsg, "BSDF transfers %.4f%% of light",
|
| 1322 |
100.*full_total);
|
| 1323 |
error(WARNING, errmsg);
|
| 1324 |
}
|
| 1325 |
free(omega_iarr); free(omega_oarr);
|
| 1326 |
return(1);
|
| 1327 |
}
|
| 1328 |
|
| 1329 |
|
| 1330 |
struct BSDF_data *
|
| 1331 |
load_BSDF( /* load BSDF data from file */
|
| 1332 |
char *fname
|
| 1333 |
)
|
| 1334 |
{
|
| 1335 |
char *path;
|
| 1336 |
ezxml_t fl, wtl, wld, wdb;
|
| 1337 |
struct BSDF_data *dp;
|
| 1338 |
|
| 1339 |
path = getpath(fname, getrlibpath(), R_OK);
|
| 1340 |
if (path == NULL) {
|
| 1341 |
sprintf(errmsg, "cannot find BSDF file \"%s\"", fname);
|
| 1342 |
error(WARNING, errmsg);
|
| 1343 |
return(NULL);
|
| 1344 |
}
|
| 1345 |
fl = ezxml_parse_file(path);
|
| 1346 |
if (fl == NULL) {
|
| 1347 |
sprintf(errmsg, "cannot open BSDF \"%s\"", path);
|
| 1348 |
error(WARNING, errmsg);
|
| 1349 |
return(NULL);
|
| 1350 |
}
|
| 1351 |
if (ezxml_error(fl)[0]) {
|
| 1352 |
sprintf(errmsg, "BSDF \"%s\" %s", path, ezxml_error(fl));
|
| 1353 |
error(WARNING, errmsg);
|
| 1354 |
ezxml_free(fl);
|
| 1355 |
return(NULL);
|
| 1356 |
}
|
| 1357 |
if (strcmp(ezxml_name(fl), "WindowElement")) {
|
| 1358 |
sprintf(errmsg,
|
| 1359 |
"BSDF \"%s\": top level node not 'WindowElement'",
|
| 1360 |
path);
|
| 1361 |
error(WARNING, errmsg);
|
| 1362 |
ezxml_free(fl);
|
| 1363 |
return(NULL);
|
| 1364 |
}
|
| 1365 |
wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
|
| 1366 |
if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl,
|
| 1367 |
"DataDefinition"), "IncidentDataStructure")),
|
| 1368 |
"Columns")) {
|
| 1369 |
sprintf(errmsg,
|
| 1370 |
"BSDF \"%s\": unsupported IncidentDataStructure",
|
| 1371 |
path);
|
| 1372 |
error(WARNING, errmsg);
|
| 1373 |
ezxml_free(fl);
|
| 1374 |
return(NULL);
|
| 1375 |
}
|
| 1376 |
for (wld = ezxml_child(ezxml_child(wtl,
|
| 1377 |
"DataDefinition"), "AngleBasis");
|
| 1378 |
wld != NULL; wld = wld->next)
|
| 1379 |
load_angle_basis(wld);
|
| 1380 |
dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data));
|
| 1381 |
load_geometry(dp, ezxml_child(wtl, "Material"));
|
| 1382 |
for (wld = ezxml_child(wtl, "WavelengthData");
|
| 1383 |
wld != NULL; wld = wld->next) {
|
| 1384 |
if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
|
| 1385 |
"Visible"))
|
| 1386 |
continue;
|
| 1387 |
for (wdb = ezxml_child(wld, "WavelengthDataBlock");
|
| 1388 |
wdb != NULL; wdb = wdb->next)
|
| 1389 |
if (!strcasecmp(ezxml_txt(ezxml_child(wdb,
|
| 1390 |
"WavelengthDataDirection")),
|
| 1391 |
"Transmission Front"))
|
| 1392 |
break;
|
| 1393 |
if (wdb != NULL) { /* load front BTDF */
|
| 1394 |
load_bsdf_data(dp, wdb);
|
| 1395 |
break; /* ignore the rest */
|
| 1396 |
}
|
| 1397 |
}
|
| 1398 |
ezxml_free(fl); /* done with XML file */
|
| 1399 |
if (!check_bsdf_data(dp)) {
|
| 1400 |
sprintf(errmsg, "bad/missing BTDF data in \"%s\"", path);
|
| 1401 |
error(WARNING, errmsg);
|
| 1402 |
free_BSDF(dp);
|
| 1403 |
dp = NULL;
|
| 1404 |
}
|
| 1405 |
return(dp);
|
| 1406 |
}
|
| 1407 |
|
| 1408 |
|
| 1409 |
void
|
| 1410 |
free_BSDF( /* free BSDF data structure */
|
| 1411 |
struct BSDF_data *b
|
| 1412 |
)
|
| 1413 |
{
|
| 1414 |
if (b == NULL)
|
| 1415 |
return;
|
| 1416 |
if (b->mgf != NULL)
|
| 1417 |
free(b->mgf);
|
| 1418 |
if (b->bsdf != NULL)
|
| 1419 |
free(b->bsdf);
|
| 1420 |
free(b);
|
| 1421 |
}
|
| 1422 |
|
| 1423 |
|
| 1424 |
int
|
| 1425 |
r_BSDF_incvec( /* compute random input vector at given location */
|
| 1426 |
FVECT v,
|
| 1427 |
struct BSDF_data *b,
|
| 1428 |
int i,
|
| 1429 |
double rv,
|
| 1430 |
MAT4 xm
|
| 1431 |
)
|
| 1432 |
{
|
| 1433 |
FVECT pert;
|
| 1434 |
double rad;
|
| 1435 |
int j;
|
| 1436 |
|
| 1437 |
if (!getBSDF_incvec(v, b, i))
|
| 1438 |
return(0);
|
| 1439 |
rad = sqrt(getBSDF_incohm(b, i) / PI);
|
| 1440 |
SDmultiSamp(pert, 3, rv);
|
| 1441 |
for (j = 0; j < 3; j++)
|
| 1442 |
v[j] += rad*(2.*pert[j] - 1.);
|
| 1443 |
if (xm != NULL)
|
| 1444 |
multv3(v, v, xm);
|
| 1445 |
return(normalize(v) != 0.0);
|
| 1446 |
}
|
| 1447 |
|
| 1448 |
|
| 1449 |
int
|
| 1450 |
r_BSDF_outvec( /* compute random output vector at given location */
|
| 1451 |
FVECT v,
|
| 1452 |
struct BSDF_data *b,
|
| 1453 |
int o,
|
| 1454 |
double rv,
|
| 1455 |
MAT4 xm
|
| 1456 |
)
|
| 1457 |
{
|
| 1458 |
FVECT pert;
|
| 1459 |
double rad;
|
| 1460 |
int j;
|
| 1461 |
|
| 1462 |
if (!getBSDF_outvec(v, b, o))
|
| 1463 |
return(0);
|
| 1464 |
rad = sqrt(getBSDF_outohm(b, o) / PI);
|
| 1465 |
SDmultiSamp(pert, 3, rv);
|
| 1466 |
for (j = 0; j < 3; j++)
|
| 1467 |
v[j] += rad*(2.*pert[j] - 1.);
|
| 1468 |
if (xm != NULL)
|
| 1469 |
multv3(v, v, xm);
|
| 1470 |
return(normalize(v) != 0.0);
|
| 1471 |
}
|
| 1472 |
|
| 1473 |
|
| 1474 |
static int
|
| 1475 |
addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */
|
| 1476 |
char *xfarg[],
|
| 1477 |
FVECT xp,
|
| 1478 |
FVECT yp,
|
| 1479 |
FVECT zp
|
| 1480 |
)
|
| 1481 |
{
|
| 1482 |
static char bufs[3][16];
|
| 1483 |
int bn = 0;
|
| 1484 |
char **xfp = xfarg;
|
| 1485 |
double theta;
|
| 1486 |
|
| 1487 |
if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
|
| 1488 |
/* Special case for X' along Z-axis */
|
| 1489 |
theta = -atan2(yp[0], yp[1]);
|
| 1490 |
*xfp++ = "-ry";
|
| 1491 |
*xfp++ = xp[2] < 0.0 ? "90" : "-90";
|
| 1492 |
*xfp++ = "-rz";
|
| 1493 |
sprintf(bufs[bn], "%f", theta*(180./PI));
|
| 1494 |
*xfp++ = bufs[bn++];
|
| 1495 |
return(xfp - xfarg);
|
| 1496 |
}
|
| 1497 |
theta = atan2(yp[2], zp[2]);
|
| 1498 |
if (!FEQ(theta,0.0)) {
|
| 1499 |
*xfp++ = "-rx";
|
| 1500 |
sprintf(bufs[bn], "%f", theta*(180./PI));
|
| 1501 |
*xfp++ = bufs[bn++];
|
| 1502 |
}
|
| 1503 |
theta = asin(-xp[2]);
|
| 1504 |
if (!FEQ(theta,0.0)) {
|
| 1505 |
*xfp++ = "-ry";
|
| 1506 |
sprintf(bufs[bn], " %f", theta*(180./PI));
|
| 1507 |
*xfp++ = bufs[bn++];
|
| 1508 |
}
|
| 1509 |
theta = atan2(xp[1], xp[0]);
|
| 1510 |
if (!FEQ(theta,0.0)) {
|
| 1511 |
*xfp++ = "-rz";
|
| 1512 |
sprintf(bufs[bn], "%f", theta*(180./PI));
|
| 1513 |
*xfp++ = bufs[bn++];
|
| 1514 |
}
|
| 1515 |
*xfp = NULL;
|
| 1516 |
return(xfp - xfarg);
|
| 1517 |
}
|
| 1518 |
|
| 1519 |
|
| 1520 |
int
|
| 1521 |
getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */
|
| 1522 |
MAT4 xm,
|
| 1523 |
FVECT nrm,
|
| 1524 |
UpDir ud,
|
| 1525 |
char *xfbuf
|
| 1526 |
)
|
| 1527 |
{
|
| 1528 |
char *xfargs[7];
|
| 1529 |
XF myxf;
|
| 1530 |
FVECT updir, xdest, ydest;
|
| 1531 |
int i;
|
| 1532 |
|
| 1533 |
updir[0] = updir[1] = updir[2] = 0.;
|
| 1534 |
switch (ud) {
|
| 1535 |
case UDzneg:
|
| 1536 |
updir[2] = -1.;
|
| 1537 |
break;
|
| 1538 |
case UDyneg:
|
| 1539 |
updir[1] = -1.;
|
| 1540 |
break;
|
| 1541 |
case UDxneg:
|
| 1542 |
updir[0] = -1.;
|
| 1543 |
break;
|
| 1544 |
case UDxpos:
|
| 1545 |
updir[0] = 1.;
|
| 1546 |
break;
|
| 1547 |
case UDypos:
|
| 1548 |
updir[1] = 1.;
|
| 1549 |
break;
|
| 1550 |
case UDzpos:
|
| 1551 |
updir[2] = 1.;
|
| 1552 |
break;
|
| 1553 |
case UDunknown:
|
| 1554 |
return(0);
|
| 1555 |
}
|
| 1556 |
fcross(xdest, updir, nrm);
|
| 1557 |
if (normalize(xdest) == 0.0)
|
| 1558 |
return(0);
|
| 1559 |
fcross(ydest, nrm, xdest);
|
| 1560 |
xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs);
|
| 1561 |
copymat4(xm, myxf.xfm);
|
| 1562 |
if (xfbuf == NULL)
|
| 1563 |
return(1);
|
| 1564 |
/* return xf arguments as well */
|
| 1565 |
for (i = 0; xfargs[i] != NULL; i++) {
|
| 1566 |
*xfbuf++ = ' ';
|
| 1567 |
strcpy(xfbuf, xfargs[i]);
|
| 1568 |
while (*xfbuf) ++xfbuf;
|
| 1569 |
}
|
| 1570 |
return(1);
|
| 1571 |
}
|
| 1572 |
|
| 1573 |
/*######### END DEPRECATED ROUTINES #######*/
|
| 1574 |
/*################################################################*/
|