ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.40
Committed: Mon Mar 5 15:27:08 2012 UTC (12 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.39: +5 -3 lines
Log Message:
Tweak on last change to recording name & manufacturer

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf.c,v 2.39 2012/03/05 00:17:06 greg Exp $";
3 #endif
4 /*
5 * bsdf.c
6 *
7 * Definitions for bidirectional scattering distribution functions.
8 *
9 * Created by Greg Ward on 1/10/11.
10 *
11 */
12
13 #define _USE_MATH_DEFINES
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include <math.h>
18 #include <ctype.h>
19 #include "ezxml.h"
20 #include "hilbert.h"
21 #include "bsdf.h"
22 #include "bsdf_m.h"
23 #include "bsdf_t.h"
24
25 /* English ASCII strings corresponding to ennumerated errors */
26 const char *SDerrorEnglish[] = {
27 "No error",
28 "Memory error",
29 "File input/output error",
30 "File format error",
31 "Illegal argument",
32 "Invalid data",
33 "Unsupported feature",
34 "Internal program error",
35 "Unknown error"
36 };
37
38 /* Additional information on last error (ASCII English) */
39 char SDerrorDetail[256];
40
41 /* Cache of loaded BSDFs */
42 struct SDCache_s *SDcacheList = NULL;
43
44 /* Retain BSDFs in cache list */
45 int SDretainSet = SDretainNone;
46
47 /* Report any error to the indicated stream (in English) */
48 SDError
49 SDreportEnglish(SDError ec, FILE *fp)
50 {
51 if (!ec)
52 return SDEnone;
53 if ((ec < SDEnone) | (ec > SDEunknown)) {
54 SDerrorDetail[0] = '\0';
55 ec = SDEunknown;
56 }
57 if (fp == NULL)
58 return ec;
59 fputs(SDerrorEnglish[ec], fp);
60 if (SDerrorDetail[0]) {
61 fputs(": ", fp);
62 fputs(SDerrorDetail, fp);
63 }
64 fputc('\n', fp);
65 if (fp != stderr)
66 fflush(fp);
67 return ec;
68 }
69
70 static double
71 to_meters( /* return factor to convert given unit to meters */
72 const char *unit
73 )
74 {
75 if (unit == NULL) return(1.); /* safe assumption? */
76 if (!strcasecmp(unit, "Meter")) return(1.);
77 if (!strcasecmp(unit, "Foot")) return(.3048);
78 if (!strcasecmp(unit, "Inch")) return(.0254);
79 if (!strcasecmp(unit, "Centimeter")) return(.01);
80 if (!strcasecmp(unit, "Millimeter")) return(.001);
81 sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
82 return(-1.);
83 }
84
85 /* Load geometric dimensions and description (if any) */
86 static SDError
87 SDloadGeometry(SDData *sd, ezxml_t wdb)
88 {
89 ezxml_t geom;
90 double cfact;
91 const char *fmt, *mgfstr;
92
93 if (wdb == NULL) /* no geometry section? */
94 return SDEnone;
95 if ((geom = ezxml_child(wdb, "Name")) != NULL) {
96 strncpy(sd->matn, ezxml_txt(geom), SDnameLn);
97 if (sd->matn[SDnameLn-1])
98 strcpy(sd->matn+(SDnameLn-4), "...");
99 }
100 if ((geom = ezxml_child(wdb, "Manufacturer")) != NULL) {
101 strncpy(sd->makr, ezxml_txt(geom), SDnameLn);
102 if (sd->makr[SDnameLn-1])
103 strcpy(sd->makr+(SDnameLn-4), "...");
104 }
105 sd->dim[0] = sd->dim[1] = sd->dim[2] = .0;
106 SDerrorDetail[0] = '\0';
107 if ((geom = ezxml_child(wdb, "Width")) != NULL)
108 sd->dim[0] = atof(ezxml_txt(geom)) *
109 to_meters(ezxml_attr(geom, "unit"));
110 if ((geom = ezxml_child(wdb, "Height")) != NULL)
111 sd->dim[1] = atof(ezxml_txt(geom)) *
112 to_meters(ezxml_attr(geom, "unit"));
113 if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
114 sd->dim[2] = atof(ezxml_txt(geom)) *
115 to_meters(ezxml_attr(geom, "unit"));
116 if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) {
117 if (!SDerrorDetail[0])
118 sprintf(SDerrorDetail, "Negative dimension in \"%s\"",
119 sd->name);
120 return SDEdata;
121 }
122 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
123 (mgfstr = ezxml_txt(geom)) == NULL)
124 return SDEnone;
125 while (isspace(*mgfstr))
126 ++mgfstr;
127 if (!*mgfstr)
128 return SDEnone;
129 if ((fmt = ezxml_attr(geom, "format")) != NULL &&
130 strcasecmp(fmt, "MGF")) {
131 sprintf(SDerrorDetail,
132 "Unrecognized geometry format '%s' in \"%s\"",
133 fmt, sd->name);
134 return SDEsupport;
135 }
136 cfact = to_meters(ezxml_attr(geom, "unit"));
137 if (cfact <= 0)
138 return SDEformat;
139 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
140 if (sd->mgf == NULL) {
141 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
142 return SDEmemory;
143 }
144 if (cfact < 0.99 || cfact > 1.01)
145 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
146 else
147 strcpy(sd->mgf, mgfstr);
148 return SDEnone;
149 }
150
151 /* Load a BSDF struct from the given file (free first and keep name) */
152 SDError
153 SDloadFile(SDData *sd, const char *fname)
154 {
155 SDError lastErr;
156 ezxml_t fl, wtl;
157
158 if ((sd == NULL) | (fname == NULL || !*fname))
159 return SDEargument;
160 /* free old data, keeping name */
161 SDfreeBSDF(sd);
162 /* parse XML file */
163 fl = ezxml_parse_file(fname);
164 if (fl == NULL) {
165 sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
166 return SDEfile;
167 }
168 if (ezxml_error(fl)[0]) {
169 sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
170 ezxml_free(fl);
171 return SDEformat;
172 }
173 if (strcmp(ezxml_name(fl), "WindowElement")) {
174 sprintf(SDerrorDetail,
175 "BSDF \"%s\": top level node not 'WindowElement'",
176 sd->name);
177 ezxml_free(fl);
178 return SDEformat;
179 }
180 wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
181 if (wtl == NULL) {
182 sprintf(SDerrorDetail, "BSDF \"%s\": no optical layers'",
183 sd->name);
184 ezxml_free(fl);
185 return SDEformat;
186 }
187 /* load geometry if present */
188 lastErr = SDloadGeometry(sd, ezxml_child(wtl, "Material"));
189 if (lastErr) {
190 ezxml_free(fl);
191 return lastErr;
192 }
193 /* try loading variable resolution data */
194 lastErr = SDloadTre(sd, wtl);
195 /* check our result */
196 if (lastErr == SDEsupport) /* try matrix BSDF if not tree data */
197 lastErr = SDloadMtx(sd, wtl);
198
199 /* done with XML file */
200 ezxml_free(fl);
201
202 if (lastErr) { /* was there a load error? */
203 SDfreeBSDF(sd);
204 return lastErr;
205 }
206 /* remove any insignificant components */
207 if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
208 SDfreeSpectralDF(sd->rf); sd->rf = NULL;
209 }
210 if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
211 SDfreeSpectralDF(sd->rb); sd->rb = NULL;
212 }
213 if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
214 SDfreeSpectralDF(sd->tf); sd->tf = NULL;
215 }
216 /* return success */
217 return SDEnone;
218 }
219
220 /* Allocate new spectral distribution function */
221 SDSpectralDF *
222 SDnewSpectralDF(int nc)
223 {
224 SDSpectralDF *df;
225
226 if (nc <= 0) {
227 strcpy(SDerrorDetail, "Zero component spectral DF request");
228 return NULL;
229 }
230 df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
231 (nc-1)*sizeof(SDComponent));
232 if (df == NULL) {
233 sprintf(SDerrorDetail,
234 "Cannot allocate %d component spectral DF", nc);
235 return NULL;
236 }
237 df->minProjSA = .0;
238 df->maxHemi = .0;
239 df->ncomp = nc;
240 memset(df->comp, 0, nc*sizeof(SDComponent));
241 return df;
242 }
243
244 /* Add component(s) to spectral distribution function */
245 SDSpectralDF *
246 SDaddComponent(SDSpectralDF *odf, int nadd)
247 {
248 SDSpectralDF *df;
249
250 if (odf == NULL)
251 return SDnewSpectralDF(nadd);
252 if (nadd <= 0)
253 return odf;
254 df = (SDSpectralDF *)realloc(odf, sizeof(SDSpectralDF) +
255 (odf->ncomp+nadd-1)*sizeof(SDComponent));
256 if (df == NULL) {
257 sprintf(SDerrorDetail,
258 "Cannot add %d component(s) to spectral DF", nadd);
259 SDfreeSpectralDF(odf);
260 return NULL;
261 }
262 memset(df->comp+df->ncomp, 0, nadd*sizeof(SDComponent));
263 df->ncomp += nadd;
264 return df;
265 }
266
267 /* Free cached cumulative distributions for BSDF component */
268 void
269 SDfreeCumulativeCache(SDSpectralDF *df)
270 {
271 int n;
272 SDCDst *cdp;
273
274 if (df == NULL)
275 return;
276 for (n = df->ncomp; n-- > 0; )
277 while ((cdp = df->comp[n].cdList) != NULL) {
278 df->comp[n].cdList = cdp->next;
279 free(cdp);
280 }
281 }
282
283 /* Free a spectral distribution function */
284 void
285 SDfreeSpectralDF(SDSpectralDF *df)
286 {
287 int n;
288
289 if (df == NULL)
290 return;
291 SDfreeCumulativeCache(df);
292 for (n = df->ncomp; n-- > 0; )
293 if (df->comp[n].dist != NULL)
294 (*df->comp[n].func->freeSC)(df->comp[n].dist);
295 free(df);
296 }
297
298 /* Shorten file path to useable BSDF name, removing suffix */
299 void
300 SDclipName(char *res, const char *fname)
301 {
302 const char *cp, *dot = NULL;
303
304 for (cp = fname; *cp; cp++)
305 if (*cp == '.')
306 dot = cp;
307 if ((dot == NULL) | (dot < fname+2))
308 dot = cp;
309 if (dot - fname >= SDnameLn)
310 fname = dot - SDnameLn + 1;
311 while (fname < dot)
312 *res++ = *fname++;
313 *res = '\0';
314 }
315
316 /* Initialize an unused BSDF struct (simply clears to zeroes) */
317 void
318 SDclearBSDF(SDData *sd, const char *fname)
319 {
320 if (sd == NULL)
321 return;
322 memset(sd, 0, sizeof(SDData));
323 if (fname == NULL)
324 return;
325 SDclipName(sd->name, fname);
326 }
327
328 /* Free data associated with BSDF struct */
329 void
330 SDfreeBSDF(SDData *sd)
331 {
332 if (sd == NULL)
333 return;
334 if (sd->mgf != NULL) {
335 free(sd->mgf);
336 sd->mgf = NULL;
337 }
338 if (sd->rf != NULL) {
339 SDfreeSpectralDF(sd->rf);
340 sd->rf = NULL;
341 }
342 if (sd->rb != NULL) {
343 SDfreeSpectralDF(sd->rb);
344 sd->rb = NULL;
345 }
346 if (sd->tf != NULL) {
347 SDfreeSpectralDF(sd->tf);
348 sd->tf = NULL;
349 }
350 sd->rLambFront.cieY = .0;
351 sd->rLambFront.spec.flags = 0;
352 sd->rLambBack.cieY = .0;
353 sd->rLambBack.spec.flags = 0;
354 sd->tLamb.cieY = .0;
355 sd->tLamb.spec.flags = 0;
356 }
357
358 /* Find writeable BSDF by name, or allocate new cache entry if absent */
359 SDData *
360 SDgetCache(const char *bname)
361 {
362 struct SDCache_s *sdl;
363 char sdnam[SDnameLn];
364
365 if (bname == NULL)
366 return NULL;
367
368 SDclipName(sdnam, bname);
369 for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
370 if (!strcmp(sdl->bsdf.name, sdnam)) {
371 sdl->refcnt++;
372 return &sdl->bsdf;
373 }
374
375 sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
376 if (sdl == NULL)
377 return NULL;
378
379 strcpy(sdl->bsdf.name, sdnam);
380 sdl->next = SDcacheList;
381 SDcacheList = sdl;
382
383 sdl->refcnt = 1;
384 return &sdl->bsdf;
385 }
386
387 /* Get loaded BSDF from cache (or load and cache it on first call) */
388 /* Report any problem to stderr and return NULL on failure */
389 const SDData *
390 SDcacheFile(const char *fname)
391 {
392 SDData *sd;
393 SDError ec;
394
395 if (fname == NULL || !*fname)
396 return NULL;
397 SDerrorDetail[0] = '\0';
398 if ((sd = SDgetCache(fname)) == NULL) {
399 SDreportEnglish(SDEmemory, stderr);
400 return NULL;
401 }
402 if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
403 SDreportEnglish(ec, stderr);
404 SDfreeCache(sd);
405 return NULL;
406 }
407 return sd;
408 }
409
410 /* Free a BSDF from our cache (clear all if NULL) */
411 void
412 SDfreeCache(const SDData *sd)
413 {
414 struct SDCache_s *sdl, *sdLast = NULL;
415
416 if (sd == NULL) { /* free entire list */
417 while ((sdl = SDcacheList) != NULL) {
418 SDcacheList = sdl->next;
419 SDfreeBSDF(&sdl->bsdf);
420 free(sdl);
421 }
422 return;
423 }
424 for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
425 if (&sdl->bsdf == sd)
426 break;
427 if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
428 return; /* missing or still in use */
429 /* keep unreferenced data? */
430 if (SDisLoaded(sd) && SDretainSet) {
431 if (SDretainSet == SDretainAll)
432 return; /* keep everything */
433 /* else free cumulative data */
434 SDfreeCumulativeCache(sd->rf);
435 SDfreeCumulativeCache(sd->rb);
436 SDfreeCumulativeCache(sd->tf);
437 return;
438 }
439 /* remove from list and free */
440 if (sdLast == NULL)
441 SDcacheList = sdl->next;
442 else
443 sdLast->next = sdl->next;
444 SDfreeBSDF(&sdl->bsdf);
445 free(sdl);
446 }
447
448 /* Sample an individual BSDF component */
449 SDError
450 SDsampComponent(SDValue *sv, FVECT ioVec, double randX, SDComponent *sdc)
451 {
452 float coef[SDmaxCh];
453 SDError ec;
454 FVECT inVec;
455 const SDCDst *cd;
456 double d;
457 int n;
458 /* check arguments */
459 if ((sv == NULL) | (ioVec == NULL) | (sdc == NULL))
460 return SDEargument;
461 /* get cumulative distribution */
462 VCOPY(inVec, ioVec);
463 cd = (*sdc->func->getCDist)(inVec, sdc);
464 if (cd == NULL)
465 return SDEmemory;
466 if (cd->cTotal <= 1e-6) { /* anything to sample? */
467 sv->spec = c_dfcolor;
468 sv->cieY = .0;
469 memset(ioVec, 0, 3*sizeof(double));
470 return SDEnone;
471 }
472 sv->cieY = cd->cTotal;
473 /* compute sample direction */
474 ec = (*sdc->func->sampCDist)(ioVec, randX, cd);
475 if (ec)
476 return ec;
477 /* get BSDF color */
478 n = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
479 if (n <= 0) {
480 strcpy(SDerrorDetail, "BSDF sample value error");
481 return SDEinternal;
482 }
483 sv->spec = sdc->cspec[0];
484 d = coef[0];
485 while (--n) {
486 c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
487 d += coef[n];
488 }
489 /* make sure everything is set */
490 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
491 return SDEnone;
492 }
493
494 #define MS_MAXDIM 15
495
496 /* Convert 1-dimensional random variable to N-dimensional */
497 void
498 SDmultiSamp(double t[], int n, double randX)
499 {
500 unsigned nBits;
501 double scale;
502 bitmask_t ndx, coord[MS_MAXDIM];
503
504 while (n > MS_MAXDIM) /* punt for higher dimensions */
505 t[--n] = rand()*(1./(RAND_MAX+.5));
506 nBits = (8*sizeof(bitmask_t) - 1) / n;
507 ndx = randX * (double)((bitmask_t)1 << (nBits*n));
508 /* get coordinate on Hilbert curve */
509 hilbert_i2c(n, nBits, ndx, coord);
510 /* convert back to [0,1) range */
511 scale = 1. / (double)((bitmask_t)1 << nBits);
512 while (n--)
513 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
514 }
515
516 #undef MS_MAXDIM
517
518 /* Generate diffuse hemispherical sample */
519 static void
520 SDdiffuseSamp(FVECT outVec, int outFront, double randX)
521 {
522 /* convert to position on hemisphere */
523 SDmultiSamp(outVec, 2, randX);
524 SDsquare2disk(outVec, outVec[0], outVec[1]);
525 outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
526 if (outVec[2] > 0) /* a bit of paranoia */
527 outVec[2] = sqrt(outVec[2]);
528 if (!outFront) /* going out back? */
529 outVec[2] = -outVec[2];
530 }
531
532 /* Query projected solid angle coverage for non-diffuse BSDF direction */
533 SDError
534 SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2,
535 int qflags, const SDData *sd)
536 {
537 SDSpectralDF *rdf, *tdf;
538 SDError ec;
539 int i;
540 /* check arguments */
541 if ((projSA == NULL) | (v1 == NULL) | (sd == NULL))
542 return SDEargument;
543 /* initialize extrema */
544 switch (qflags) {
545 case SDqueryMax:
546 projSA[0] = .0;
547 break;
548 case SDqueryMin+SDqueryMax:
549 projSA[1] = .0;
550 /* fall through */
551 case SDqueryMin:
552 projSA[0] = 10.;
553 break;
554 case 0:
555 return SDEargument;
556 }
557 if (v1[2] > 0) /* front surface query? */
558 rdf = sd->rf;
559 else
560 rdf = sd->rb;
561 tdf = sd->tf;
562 if (v2 != NULL) /* bidirectional? */
563 if (v1[2] > 0 ^ v2[2] > 0)
564 rdf = NULL;
565 else
566 tdf = NULL;
567 ec = SDEdata; /* run through components */
568 for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
569 ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2,
570 qflags, &rdf->comp[i]);
571 if (ec)
572 return ec;
573 }
574 for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) {
575 ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2,
576 qflags, &tdf->comp[i]);
577 if (ec)
578 return ec;
579 }
580 if (ec) { /* all diffuse? */
581 projSA[0] = M_PI;
582 if (qflags == SDqueryMin+SDqueryMax)
583 projSA[1] = M_PI;
584 }
585 return SDEnone;
586 }
587
588 /* Return BSDF for the given incident and scattered ray vectors */
589 SDError
590 SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
591 {
592 int inFront, outFront;
593 SDSpectralDF *sdf;
594 float coef[SDmaxCh];
595 int nch, i;
596 /* check arguments */
597 if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
598 return SDEargument;
599 /* whose side are we on? */
600 inFront = (inVec[2] > 0);
601 outFront = (outVec[2] > 0);
602 /* start with diffuse portion */
603 if (inFront & outFront) {
604 *sv = sd->rLambFront;
605 sdf = sd->rf;
606 } else if (!(inFront | outFront)) {
607 *sv = sd->rLambBack;
608 sdf = sd->rb;
609 } else /* inFront ^ outFront */ {
610 *sv = sd->tLamb;
611 sdf = sd->tf;
612 }
613 sv->cieY *= 1./M_PI;
614 /* add non-diffuse components */
615 i = (sdf != NULL) ? sdf->ncomp : 0;
616 while (i-- > 0) {
617 nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
618 &sdf->comp[i]);
619 while (nch-- > 0) {
620 c_cmix(&sv->spec, sv->cieY, &sv->spec,
621 coef[nch], &sdf->comp[i].cspec[nch]);
622 sv->cieY += coef[nch];
623 }
624 }
625 /* make sure everything is set */
626 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
627 return SDEnone;
628 }
629
630 /* Compute directional hemispherical scattering at this incident angle */
631 double
632 SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
633 {
634 double hsum;
635 SDSpectralDF *rdf;
636 const SDCDst *cd;
637 int i;
638 /* check arguments */
639 if ((inVec == NULL) | (sd == NULL))
640 return .0;
641 /* gather diffuse components */
642 if (inVec[2] > 0) {
643 hsum = sd->rLambFront.cieY;
644 rdf = sd->rf;
645 } else /* !inFront */ {
646 hsum = sd->rLambBack.cieY;
647 rdf = sd->rb;
648 }
649 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
650 hsum = .0;
651 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
652 hsum += sd->tLamb.cieY;
653 /* gather non-diffuse components */
654 i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
655 rdf != NULL) ? rdf->ncomp : 0;
656 while (i-- > 0) { /* non-diffuse reflection */
657 cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
658 if (cd != NULL)
659 hsum += cd->cTotal;
660 }
661 i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
662 sd->tf != NULL) ? sd->tf->ncomp : 0;
663 while (i-- > 0) { /* non-diffuse transmission */
664 cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]);
665 if (cd != NULL)
666 hsum += cd->cTotal;
667 }
668 return hsum;
669 }
670
671 /* Sample BSDF direction based on the given random variable */
672 SDError
673 SDsampBSDF(SDValue *sv, FVECT ioVec, double randX, int sflags, const SDData *sd)
674 {
675 SDError ec;
676 FVECT inVec;
677 int inFront;
678 SDSpectralDF *rdf;
679 double rdiff;
680 float coef[SDmaxCh];
681 int i, j, n, nr;
682 SDComponent *sdc;
683 const SDCDst **cdarr = NULL;
684 /* check arguments */
685 if ((sv == NULL) | (ioVec == NULL) | (sd == NULL) |
686 (randX < 0) | (randX >= 1.))
687 return SDEargument;
688 /* whose side are we on? */
689 VCOPY(inVec, ioVec);
690 inFront = (inVec[2] > 0);
691 /* remember diffuse portions */
692 if (inFront) {
693 *sv = sd->rLambFront;
694 rdf = sd->rf;
695 } else /* !inFront */ {
696 *sv = sd->rLambBack;
697 rdf = sd->rb;
698 }
699 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
700 sv->cieY = .0;
701 rdiff = sv->cieY;
702 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
703 sv->cieY += sd->tLamb.cieY;
704 /* gather non-diffuse components */
705 i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
706 rdf != NULL) ? rdf->ncomp : 0;
707 j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
708 sd->tf != NULL) ? sd->tf->ncomp : 0;
709 n = i + j;
710 if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
711 return SDEmemory;
712 while (j-- > 0) { /* non-diffuse transmission */
713 cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]);
714 if (cdarr[i+j] == NULL) {
715 free(cdarr);
716 return SDEmemory;
717 }
718 sv->cieY += cdarr[i+j]->cTotal;
719 }
720 while (i-- > 0) { /* non-diffuse reflection */
721 cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
722 if (cdarr[i] == NULL) {
723 free(cdarr);
724 return SDEmemory;
725 }
726 sv->cieY += cdarr[i]->cTotal;
727 }
728 if (sv->cieY <= 1e-6) { /* anything to sample? */
729 sv->cieY = .0;
730 memset(ioVec, 0, 3*sizeof(double));
731 return SDEnone;
732 }
733 /* scale random variable */
734 randX *= sv->cieY;
735 /* diffuse reflection? */
736 if (randX < rdiff) {
737 SDdiffuseSamp(ioVec, inFront, randX/rdiff);
738 goto done;
739 }
740 randX -= rdiff;
741 /* diffuse transmission? */
742 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
743 if (randX < sd->tLamb.cieY) {
744 sv->spec = sd->tLamb.spec;
745 SDdiffuseSamp(ioVec, !inFront, randX/sd->tLamb.cieY);
746 goto done;
747 }
748 randX -= sd->tLamb.cieY;
749 }
750 /* else one of cumulative dist. */
751 for (i = 0; i < n && randX < cdarr[i]->cTotal; i++)
752 randX -= cdarr[i]->cTotal;
753 if (i >= n)
754 return SDEinternal;
755 /* compute sample direction */
756 sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr];
757 ec = (*sdc->func->sampCDist)(ioVec, randX/cdarr[i]->cTotal, cdarr[i]);
758 if (ec)
759 return ec;
760 /* compute color */
761 j = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
762 if (j <= 0) {
763 sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
764 sd->name);
765 return SDEinternal;
766 }
767 sv->spec = sdc->cspec[0];
768 rdiff = coef[0];
769 while (--j) {
770 c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
771 rdiff += coef[j];
772 }
773 done:
774 if (cdarr != NULL)
775 free(cdarr);
776 /* make sure everything is set */
777 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
778 return SDEnone;
779 }
780
781 /* Compute World->BSDF transform from surface normal and up (Y) vector */
782 SDError
783 SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
784 {
785 if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
786 return SDEargument;
787 VCOPY(vMtx[2], sNrm);
788 if (normalize(vMtx[2]) == 0)
789 return SDEargument;
790 fcross(vMtx[0], uVec, vMtx[2]);
791 if (normalize(vMtx[0]) == 0)
792 return SDEargument;
793 fcross(vMtx[1], vMtx[2], vMtx[0]);
794 return SDEnone;
795 }
796
797 /* Compute inverse transform */
798 SDError
799 SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
800 {
801 RREAL mTmp[3][3];
802 double d;
803
804 if ((iMtx == NULL) | (vMtx == NULL))
805 return SDEargument;
806 /* compute determinant */
807 mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
808 mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
809 mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
810 d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
811 if (d == 0) {
812 strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
813 return SDEargument;
814 }
815 d = 1./d; /* invert matrix */
816 mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
817 mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
818 mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
819 mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
820 mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
821 mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
822 mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
823 memcpy(iMtx, mTmp, sizeof(mTmp));
824 return SDEnone;
825 }
826
827 /* Transform and normalize direction (column) vector */
828 SDError
829 SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
830 {
831 FVECT vTmp;
832
833 if ((resVec == NULL) | (inpVec == NULL))
834 return SDEargument;
835 if (vMtx == NULL) { /* assume they just want to normalize */
836 if (resVec != inpVec)
837 VCOPY(resVec, inpVec);
838 return (normalize(resVec) > 0) ? SDEnone : SDEargument;
839 }
840 vTmp[0] = DOT(vMtx[0], inpVec);
841 vTmp[1] = DOT(vMtx[1], inpVec);
842 vTmp[2] = DOT(vMtx[2], inpVec);
843 if (normalize(vTmp) == 0)
844 return SDEargument;
845 VCOPY(resVec, vTmp);
846 return SDEnone;
847 }
848
849 /*################################################################*/
850 /*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/
851
852 /*
853 * Routines for handling BSDF data
854 */
855
856 #include "standard.h"
857 #include "paths.h"
858
859 #define MAXLATS 46 /* maximum number of latitudes */
860
861 /* BSDF angle specification */
862 typedef struct {
863 char name[64]; /* basis name */
864 int nangles; /* total number of directions */
865 struct {
866 float tmin; /* starting theta */
867 short nphis; /* number of phis (0 term) */
868 } lat[MAXLATS+1]; /* latitudes */
869 } ANGLE_BASIS;
870
871 #define MAXABASES 7 /* limit on defined bases */
872
873 static ANGLE_BASIS abase_list[MAXABASES] = {
874 {
875 "LBNL/Klems Full", 145,
876 { {-5., 1},
877 {5., 8},
878 {15., 16},
879 {25., 20},
880 {35., 24},
881 {45., 24},
882 {55., 24},
883 {65., 16},
884 {75., 12},
885 {90., 0} }
886 }, {
887 "LBNL/Klems Half", 73,
888 { {-6.5, 1},
889 {6.5, 8},
890 {19.5, 12},
891 {32.5, 16},
892 {46.5, 20},
893 {61.5, 12},
894 {76.5, 4},
895 {90., 0} }
896 }, {
897 "LBNL/Klems Quarter", 41,
898 { {-9., 1},
899 {9., 8},
900 {27., 12},
901 {46., 12},
902 {66., 8},
903 {90., 0} }
904 }
905 };
906
907 static int nabases = 3; /* current number of defined bases */
908
909 #define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6)
910
911 static int
912 fequal(double a, double b)
913 {
914 if (b != 0)
915 a = a/b - 1.;
916 return((a <= 1e-6) & (a >= -1e-6));
917 }
918
919 /* Returns the name of the given tag */
920 #ifdef ezxml_name
921 #undef ezxml_name
922 static char *
923 ezxml_name(ezxml_t xml)
924 {
925 if (xml == NULL)
926 return(NULL);
927 return(xml->name);
928 }
929 #endif
930
931 /* Returns the given tag's character content or empty string if none */
932 #ifdef ezxml_txt
933 #undef ezxml_txt
934 static char *
935 ezxml_txt(ezxml_t xml)
936 {
937 if (xml == NULL)
938 return("");
939 return(xml->txt);
940 }
941 #endif
942
943
944 static int
945 ab_getvec( /* get vector for this angle basis index */
946 FVECT v,
947 int ndx,
948 void *p
949 )
950 {
951 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
952 int li;
953 double pol, azi, d;
954
955 if ((ndx < 0) | (ndx >= ab->nangles))
956 return(0);
957 for (li = 0; ndx >= ab->lat[li].nphis; li++)
958 ndx -= ab->lat[li].nphis;
959 pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin);
960 azi = 2.*PI*ndx/ab->lat[li].nphis;
961 v[2] = d = cos(pol);
962 d = sqrt(1. - d*d); /* sin(pol) */
963 v[0] = cos(azi)*d;
964 v[1] = sin(azi)*d;
965 return(1);
966 }
967
968
969 static int
970 ab_getndx( /* get index corresponding to the given vector */
971 FVECT v,
972 void *p
973 )
974 {
975 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
976 int li, ndx;
977 double pol, azi;
978
979 if ((v[2] < -1.0) | (v[2] > 1.0))
980 return(-1);
981 pol = 180.0/PI*acos(v[2]);
982 azi = 180.0/PI*atan2(v[1], v[0]);
983 if (azi < 0.0) azi += 360.0;
984 for (li = 1; ab->lat[li].tmin <= pol; li++)
985 if (!ab->lat[li].nphis)
986 return(-1);
987 --li;
988 ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
989 if (ndx >= ab->lat[li].nphis) ndx = 0;
990 while (li--)
991 ndx += ab->lat[li].nphis;
992 return(ndx);
993 }
994
995
996 static double
997 ab_getohm( /* get solid angle for this angle basis index */
998 int ndx,
999 void *p
1000 )
1001 {
1002 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
1003 int li;
1004 double theta, theta1;
1005
1006 if ((ndx < 0) | (ndx >= ab->nangles))
1007 return(0);
1008 for (li = 0; ndx >= ab->lat[li].nphis; li++)
1009 ndx -= ab->lat[li].nphis;
1010 theta1 = PI/180. * ab->lat[li+1].tmin;
1011 if (ab->lat[li].nphis == 1) { /* special case */
1012 if (ab->lat[li].tmin > FTINY)
1013 error(USER, "unsupported BSDF coordinate system");
1014 return(2.*PI*(1. - cos(theta1)));
1015 }
1016 theta = PI/180. * ab->lat[li].tmin;
1017 return(2.*PI*(cos(theta) - cos(theta1))/(double)ab->lat[li].nphis);
1018 }
1019
1020
1021 static int
1022 ab_getvecR( /* get reverse vector for this angle basis index */
1023 FVECT v,
1024 int ndx,
1025 void *p
1026 )
1027 {
1028 if (!ab_getvec(v, ndx, p))
1029 return(0);
1030
1031 v[0] = -v[0];
1032 v[1] = -v[1];
1033 v[2] = -v[2];
1034
1035 return(1);
1036 }
1037
1038
1039 static int
1040 ab_getndxR( /* get index corresponding to the reverse vector */
1041 FVECT v,
1042 void *p
1043 )
1044 {
1045 FVECT v2;
1046
1047 v2[0] = -v[0];
1048 v2[1] = -v[1];
1049 v2[2] = -v[2];
1050
1051 return ab_getndx(v2, p);
1052 }
1053
1054
1055 static void
1056 load_angle_basis( /* load custom BSDF angle basis */
1057 ezxml_t wab
1058 )
1059 {
1060 char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
1061 ezxml_t wbb;
1062 int i;
1063
1064 if (!abname || !*abname)
1065 return;
1066 for (i = nabases; i--; )
1067 if (!strcasecmp(abname, abase_list[i].name))
1068 return; /* assume it's the same */
1069 if (nabases >= MAXABASES)
1070 error(INTERNAL, "too many angle bases");
1071 strcpy(abase_list[nabases].name, abname);
1072 abase_list[nabases].nangles = 0;
1073 for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
1074 wbb != NULL; i++, wbb = wbb->next) {
1075 if (i >= MAXLATS)
1076 error(INTERNAL, "too many latitudes in custom basis");
1077 abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
1078 ezxml_child(ezxml_child(wbb,
1079 "ThetaBounds"), "UpperTheta")));
1080 if (!i)
1081 abase_list[nabases].lat[i].tmin =
1082 -abase_list[nabases].lat[i+1].tmin;
1083 else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
1084 "ThetaBounds"), "LowerTheta"))),
1085 abase_list[nabases].lat[i].tmin))
1086 error(WARNING, "theta values disagree in custom basis");
1087 abase_list[nabases].nangles +=
1088 abase_list[nabases].lat[i].nphis =
1089 atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
1090 }
1091 abase_list[nabases++].lat[i].nphis = 0;
1092 }
1093
1094
1095 static void
1096 load_geometry( /* load geometric dimensions and description (if any) */
1097 struct BSDF_data *dp,
1098 ezxml_t wdb
1099 )
1100 {
1101 ezxml_t geom;
1102 double cfact;
1103 const char *fmt, *mgfstr;
1104
1105 dp->dim[0] = dp->dim[1] = dp->dim[2] = 0;
1106 dp->mgf = NULL;
1107 if ((geom = ezxml_child(wdb, "Width")) != NULL)
1108 dp->dim[0] = atof(ezxml_txt(geom)) *
1109 to_meters(ezxml_attr(geom, "unit"));
1110 if ((geom = ezxml_child(wdb, "Height")) != NULL)
1111 dp->dim[1] = atof(ezxml_txt(geom)) *
1112 to_meters(ezxml_attr(geom, "unit"));
1113 if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
1114 dp->dim[2] = atof(ezxml_txt(geom)) *
1115 to_meters(ezxml_attr(geom, "unit"));
1116 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
1117 (mgfstr = ezxml_txt(geom)) == NULL)
1118 return;
1119 if ((fmt = ezxml_attr(geom, "format")) != NULL &&
1120 strcasecmp(fmt, "MGF")) {
1121 sprintf(errmsg, "unrecognized geometry format '%s'", fmt);
1122 error(WARNING, errmsg);
1123 return;
1124 }
1125 cfact = to_meters(ezxml_attr(geom, "unit"));
1126 dp->mgf = (char *)malloc(strlen(mgfstr)+32);
1127 if (dp->mgf == NULL)
1128 error(SYSTEM, "out of memory in load_geometry");
1129 if (cfact < 0.99 || cfact > 1.01)
1130 sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
1131 else
1132 strcpy(dp->mgf, mgfstr);
1133 }
1134
1135
1136 static void
1137 load_bsdf_data( /* load BSDF distribution for this wavelength */
1138 struct BSDF_data *dp,
1139 ezxml_t wdb
1140 )
1141 {
1142 char *cbasis = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
1143 char *rbasis = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
1144 char *sdata;
1145 int i;
1146
1147 if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) {
1148 error(WARNING, "missing column/row basis for BSDF");
1149 return;
1150 }
1151 for (i = nabases; i--; )
1152 if (!strcasecmp(cbasis, abase_list[i].name)) {
1153 dp->ninc = abase_list[i].nangles;
1154 dp->ib_priv = (void *)&abase_list[i];
1155 dp->ib_vec = ab_getvecR;
1156 dp->ib_ndx = ab_getndxR;
1157 dp->ib_ohm = ab_getohm;
1158 break;
1159 }
1160 if (i < 0) {
1161 sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis);
1162 error(WARNING, errmsg);
1163 return;
1164 }
1165 for (i = nabases; i--; )
1166 if (!strcasecmp(rbasis, abase_list[i].name)) {
1167 dp->nout = abase_list[i].nangles;
1168 dp->ob_priv = (void *)&abase_list[i];
1169 dp->ob_vec = ab_getvec;
1170 dp->ob_ndx = ab_getndx;
1171 dp->ob_ohm = ab_getohm;
1172 break;
1173 }
1174 if (i < 0) {
1175 sprintf(errmsg, "undefined RowAngleBasis '%s'", rbasis);
1176 error(WARNING, errmsg);
1177 return;
1178 }
1179 /* read BSDF data */
1180 sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
1181 if (!sdata || !*sdata) {
1182 error(WARNING, "missing BSDF ScatteringData");
1183 return;
1184 }
1185 dp->bsdf = (float *)malloc(sizeof(float)*dp->ninc*dp->nout);
1186 if (dp->bsdf == NULL)
1187 error(SYSTEM, "out of memory in load_bsdf_data");
1188 for (i = 0; i < dp->ninc*dp->nout; i++) {
1189 char *sdnext = fskip(sdata);
1190 if (sdnext == NULL) {
1191 error(WARNING, "bad/missing BSDF ScatteringData");
1192 free(dp->bsdf); dp->bsdf = NULL;
1193 return;
1194 }
1195 while (*sdnext && isspace(*sdnext))
1196 sdnext++;
1197 if (*sdnext == ',') sdnext++;
1198 dp->bsdf[i] = atof(sdata);
1199 sdata = sdnext;
1200 }
1201 while (isspace(*sdata))
1202 sdata++;
1203 if (*sdata) {
1204 sprintf(errmsg, "%d extra characters after BSDF ScatteringData",
1205 (int)strlen(sdata));
1206 error(WARNING, errmsg);
1207 }
1208 }
1209
1210
1211 static int
1212 check_bsdf_data( /* check that BSDF data is sane */
1213 struct BSDF_data *dp
1214 )
1215 {
1216 double *omega_iarr, *omega_oarr;
1217 double dom, hemi_total, full_total;
1218 int nneg;
1219 FVECT v;
1220 int i, o;
1221
1222 if (dp == NULL || dp->bsdf == NULL)
1223 return(0);
1224 omega_iarr = (double *)calloc(dp->ninc, sizeof(double));
1225 omega_oarr = (double *)calloc(dp->nout, sizeof(double));
1226 if ((omega_iarr == NULL) | (omega_oarr == NULL))
1227 error(SYSTEM, "out of memory in check_bsdf_data");
1228 /* incoming projected solid angles */
1229 hemi_total = .0;
1230 for (i = dp->ninc; i--; ) {
1231 dom = getBSDF_incohm(dp,i);
1232 if (dom <= 0) {
1233 error(WARNING, "zero/negative incoming solid angle");
1234 continue;
1235 }
1236 if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) {
1237 error(WARNING, "illegal incoming BSDF direction");
1238 free(omega_iarr); free(omega_oarr);
1239 return(0);
1240 }
1241 hemi_total += omega_iarr[i] = dom * -v[2];
1242 }
1243 if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1244 sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%",
1245 100.*(hemi_total/PI - 1.));
1246 error(WARNING, errmsg);
1247 }
1248 dom = PI / hemi_total; /* fix normalization */
1249 for (i = dp->ninc; i--; )
1250 omega_iarr[i] *= dom;
1251 /* outgoing projected solid angles */
1252 hemi_total = .0;
1253 for (o = dp->nout; o--; ) {
1254 dom = getBSDF_outohm(dp,o);
1255 if (dom <= 0) {
1256 error(WARNING, "zero/negative outgoing solid angle");
1257 continue;
1258 }
1259 if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) {
1260 error(WARNING, "illegal outgoing BSDF direction");
1261 free(omega_iarr); free(omega_oarr);
1262 return(0);
1263 }
1264 hemi_total += omega_oarr[o] = dom * v[2];
1265 }
1266 if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1267 sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%",
1268 100.*(hemi_total/PI - 1.));
1269 error(WARNING, errmsg);
1270 }
1271 dom = PI / hemi_total; /* fix normalization */
1272 for (o = dp->nout; o--; )
1273 omega_oarr[o] *= dom;
1274 nneg = 0; /* check outgoing totals */
1275 for (i = 0; i < dp->ninc; i++) {
1276 hemi_total = .0;
1277 for (o = dp->nout; o--; ) {
1278 double f = BSDF_value(dp,i,o);
1279 if (f >= 0)
1280 hemi_total += f*omega_oarr[o];
1281 else {
1282 nneg += (f < -FTINY);
1283 BSDF_value(dp,i,o) = .0f;
1284 }
1285 }
1286 if (hemi_total > 1.01) {
1287 sprintf(errmsg,
1288 "incoming BSDF direction %d passes %.1f%% of light",
1289 i, 100.*hemi_total);
1290 error(WARNING, errmsg);
1291 }
1292 }
1293 if (nneg) {
1294 sprintf(errmsg, "%d negative BSDF values (ignored)", nneg);
1295 error(WARNING, errmsg);
1296 }
1297 full_total = .0; /* reverse roles and check again */
1298 for (o = 0; o < dp->nout; o++) {
1299 hemi_total = .0;
1300 for (i = dp->ninc; i--; )
1301 hemi_total += BSDF_value(dp,i,o) * omega_iarr[i];
1302
1303 if (hemi_total > 1.01) {
1304 sprintf(errmsg,
1305 "outgoing BSDF direction %d collects %.1f%% of light",
1306 o, 100.*hemi_total);
1307 error(WARNING, errmsg);
1308 }
1309 full_total += hemi_total*omega_oarr[o];
1310 }
1311 full_total /= PI;
1312 if (full_total > 1.00001) {
1313 sprintf(errmsg, "BSDF transfers %.4f%% of light",
1314 100.*full_total);
1315 error(WARNING, errmsg);
1316 }
1317 free(omega_iarr); free(omega_oarr);
1318 return(1);
1319 }
1320
1321
1322 struct BSDF_data *
1323 load_BSDF( /* load BSDF data from file */
1324 char *fname
1325 )
1326 {
1327 char *path;
1328 ezxml_t fl, wtl, wld, wdb;
1329 struct BSDF_data *dp;
1330
1331 path = getpath(fname, getrlibpath(), R_OK);
1332 if (path == NULL) {
1333 sprintf(errmsg, "cannot find BSDF file \"%s\"", fname);
1334 error(WARNING, errmsg);
1335 return(NULL);
1336 }
1337 fl = ezxml_parse_file(path);
1338 if (fl == NULL) {
1339 sprintf(errmsg, "cannot open BSDF \"%s\"", path);
1340 error(WARNING, errmsg);
1341 return(NULL);
1342 }
1343 if (ezxml_error(fl)[0]) {
1344 sprintf(errmsg, "BSDF \"%s\" %s", path, ezxml_error(fl));
1345 error(WARNING, errmsg);
1346 ezxml_free(fl);
1347 return(NULL);
1348 }
1349 if (strcmp(ezxml_name(fl), "WindowElement")) {
1350 sprintf(errmsg,
1351 "BSDF \"%s\": top level node not 'WindowElement'",
1352 path);
1353 error(WARNING, errmsg);
1354 ezxml_free(fl);
1355 return(NULL);
1356 }
1357 wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
1358 if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl,
1359 "DataDefinition"), "IncidentDataStructure")),
1360 "Columns")) {
1361 sprintf(errmsg,
1362 "BSDF \"%s\": unsupported IncidentDataStructure",
1363 path);
1364 error(WARNING, errmsg);
1365 ezxml_free(fl);
1366 return(NULL);
1367 }
1368 for (wld = ezxml_child(ezxml_child(wtl,
1369 "DataDefinition"), "AngleBasis");
1370 wld != NULL; wld = wld->next)
1371 load_angle_basis(wld);
1372 dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data));
1373 load_geometry(dp, ezxml_child(wtl, "Material"));
1374 for (wld = ezxml_child(wtl, "WavelengthData");
1375 wld != NULL; wld = wld->next) {
1376 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1377 "Visible"))
1378 continue;
1379 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1380 wdb != NULL; wdb = wdb->next)
1381 if (!strcasecmp(ezxml_txt(ezxml_child(wdb,
1382 "WavelengthDataDirection")),
1383 "Transmission Front"))
1384 break;
1385 if (wdb != NULL) { /* load front BTDF */
1386 load_bsdf_data(dp, wdb);
1387 break; /* ignore the rest */
1388 }
1389 }
1390 ezxml_free(fl); /* done with XML file */
1391 if (!check_bsdf_data(dp)) {
1392 sprintf(errmsg, "bad/missing BTDF data in \"%s\"", path);
1393 error(WARNING, errmsg);
1394 free_BSDF(dp);
1395 dp = NULL;
1396 }
1397 return(dp);
1398 }
1399
1400
1401 void
1402 free_BSDF( /* free BSDF data structure */
1403 struct BSDF_data *b
1404 )
1405 {
1406 if (b == NULL)
1407 return;
1408 if (b->mgf != NULL)
1409 free(b->mgf);
1410 if (b->bsdf != NULL)
1411 free(b->bsdf);
1412 free(b);
1413 }
1414
1415
1416 int
1417 r_BSDF_incvec( /* compute random input vector at given location */
1418 FVECT v,
1419 struct BSDF_data *b,
1420 int i,
1421 double rv,
1422 MAT4 xm
1423 )
1424 {
1425 FVECT pert;
1426 double rad;
1427 int j;
1428
1429 if (!getBSDF_incvec(v, b, i))
1430 return(0);
1431 rad = sqrt(getBSDF_incohm(b, i) / PI);
1432 multisamp(pert, 3, rv);
1433 for (j = 0; j < 3; j++)
1434 v[j] += rad*(2.*pert[j] - 1.);
1435 if (xm != NULL)
1436 multv3(v, v, xm);
1437 return(normalize(v) != 0.0);
1438 }
1439
1440
1441 int
1442 r_BSDF_outvec( /* compute random output vector at given location */
1443 FVECT v,
1444 struct BSDF_data *b,
1445 int o,
1446 double rv,
1447 MAT4 xm
1448 )
1449 {
1450 FVECT pert;
1451 double rad;
1452 int j;
1453
1454 if (!getBSDF_outvec(v, b, o))
1455 return(0);
1456 rad = sqrt(getBSDF_outohm(b, o) / PI);
1457 multisamp(pert, 3, rv);
1458 for (j = 0; j < 3; j++)
1459 v[j] += rad*(2.*pert[j] - 1.);
1460 if (xm != NULL)
1461 multv3(v, v, xm);
1462 return(normalize(v) != 0.0);
1463 }
1464
1465
1466 static int
1467 addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */
1468 char *xfarg[],
1469 FVECT xp,
1470 FVECT yp,
1471 FVECT zp
1472 )
1473 {
1474 static char bufs[3][16];
1475 int bn = 0;
1476 char **xfp = xfarg;
1477 double theta;
1478
1479 if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
1480 /* Special case for X' along Z-axis */
1481 theta = -atan2(yp[0], yp[1]);
1482 *xfp++ = "-ry";
1483 *xfp++ = xp[2] < 0.0 ? "90" : "-90";
1484 *xfp++ = "-rz";
1485 sprintf(bufs[bn], "%f", theta*(180./PI));
1486 *xfp++ = bufs[bn++];
1487 return(xfp - xfarg);
1488 }
1489 theta = atan2(yp[2], zp[2]);
1490 if (!FEQ(theta,0.0)) {
1491 *xfp++ = "-rx";
1492 sprintf(bufs[bn], "%f", theta*(180./PI));
1493 *xfp++ = bufs[bn++];
1494 }
1495 theta = asin(-xp[2]);
1496 if (!FEQ(theta,0.0)) {
1497 *xfp++ = "-ry";
1498 sprintf(bufs[bn], " %f", theta*(180./PI));
1499 *xfp++ = bufs[bn++];
1500 }
1501 theta = atan2(xp[1], xp[0]);
1502 if (!FEQ(theta,0.0)) {
1503 *xfp++ = "-rz";
1504 sprintf(bufs[bn], "%f", theta*(180./PI));
1505 *xfp++ = bufs[bn++];
1506 }
1507 *xfp = NULL;
1508 return(xfp - xfarg);
1509 }
1510
1511
1512 int
1513 getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */
1514 MAT4 xm,
1515 FVECT nrm,
1516 UpDir ud,
1517 char *xfbuf
1518 )
1519 {
1520 char *xfargs[7];
1521 XF myxf;
1522 FVECT updir, xdest, ydest;
1523 int i;
1524
1525 updir[0] = updir[1] = updir[2] = 0.;
1526 switch (ud) {
1527 case UDzneg:
1528 updir[2] = -1.;
1529 break;
1530 case UDyneg:
1531 updir[1] = -1.;
1532 break;
1533 case UDxneg:
1534 updir[0] = -1.;
1535 break;
1536 case UDxpos:
1537 updir[0] = 1.;
1538 break;
1539 case UDypos:
1540 updir[1] = 1.;
1541 break;
1542 case UDzpos:
1543 updir[2] = 1.;
1544 break;
1545 case UDunknown:
1546 return(0);
1547 }
1548 fcross(xdest, updir, nrm);
1549 if (normalize(xdest) == 0.0)
1550 return(0);
1551 fcross(ydest, nrm, xdest);
1552 xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs);
1553 copymat4(xm, myxf.xfm);
1554 if (xfbuf == NULL)
1555 return(1);
1556 /* return xf arguments as well */
1557 for (i = 0; xfargs[i] != NULL; i++) {
1558 *xfbuf++ = ' ';
1559 strcpy(xfbuf, xfargs[i]);
1560 while (*xfbuf) ++xfbuf;
1561 }
1562 return(1);
1563 }
1564
1565 /*######### END DEPRECATED ROUTINES #######*/
1566 /*################################################################*/