ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.39
Committed: Mon Mar 5 00:17:06 2012 UTC (12 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.38: +9 -1 lines
Log Message:
Added recording of product and manufacturer names

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf.c,v 2.38 2012/03/04 23:28:34 greg Exp $";
3 #endif
4 /*
5 * bsdf.c
6 *
7 * Definitions for bidirectional scattering distribution functions.
8 *
9 * Created by Greg Ward on 1/10/11.
10 *
11 */
12
13 #define _USE_MATH_DEFINES
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include <math.h>
18 #include <ctype.h>
19 #include "ezxml.h"
20 #include "hilbert.h"
21 #include "bsdf.h"
22 #include "bsdf_m.h"
23 #include "bsdf_t.h"
24
25 /* English ASCII strings corresponding to ennumerated errors */
26 const char *SDerrorEnglish[] = {
27 "No error",
28 "Memory error",
29 "File input/output error",
30 "File format error",
31 "Illegal argument",
32 "Invalid data",
33 "Unsupported feature",
34 "Internal program error",
35 "Unknown error"
36 };
37
38 /* Additional information on last error (ASCII English) */
39 char SDerrorDetail[256];
40
41 /* Cache of loaded BSDFs */
42 struct SDCache_s *SDcacheList = NULL;
43
44 /* Retain BSDFs in cache list */
45 int SDretainSet = SDretainNone;
46
47 /* Report any error to the indicated stream (in English) */
48 SDError
49 SDreportEnglish(SDError ec, FILE *fp)
50 {
51 if (!ec)
52 return SDEnone;
53 if ((ec < SDEnone) | (ec > SDEunknown)) {
54 SDerrorDetail[0] = '\0';
55 ec = SDEunknown;
56 }
57 if (fp == NULL)
58 return ec;
59 fputs(SDerrorEnglish[ec], fp);
60 if (SDerrorDetail[0]) {
61 fputs(": ", fp);
62 fputs(SDerrorDetail, fp);
63 }
64 fputc('\n', fp);
65 if (fp != stderr)
66 fflush(fp);
67 return ec;
68 }
69
70 static double
71 to_meters( /* return factor to convert given unit to meters */
72 const char *unit
73 )
74 {
75 if (unit == NULL) return(1.); /* safe assumption? */
76 if (!strcasecmp(unit, "Meter")) return(1.);
77 if (!strcasecmp(unit, "Foot")) return(.3048);
78 if (!strcasecmp(unit, "Inch")) return(.0254);
79 if (!strcasecmp(unit, "Centimeter")) return(.01);
80 if (!strcasecmp(unit, "Millimeter")) return(.001);
81 sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
82 return(-1.);
83 }
84
85 /* Load geometric dimensions and description (if any) */
86 static SDError
87 SDloadGeometry(SDData *sd, ezxml_t wdb)
88 {
89 ezxml_t geom;
90 double cfact;
91 const char *fmt, *mgfstr;
92
93 if (wdb == NULL) /* no geometry section? */
94 return SDEnone;
95 if ((geom = ezxml_child(wdb, "Name")) != NULL) {
96 strncpy(sd->matn, ezxml_txt(geom), SDnameLn);
97 sd->matn[SDnameLn-1] = '\0';
98 }
99 if ((geom = ezxml_child(wdb, "Manufacturer")) != NULL) {
100 strncpy(sd->makr, ezxml_txt(geom), SDnameLn);
101 sd->makr[SDnameLn-1] = '\0';
102 }
103 sd->dim[0] = sd->dim[1] = sd->dim[2] = .0;
104 SDerrorDetail[0] = '\0';
105 if ((geom = ezxml_child(wdb, "Width")) != NULL)
106 sd->dim[0] = atof(ezxml_txt(geom)) *
107 to_meters(ezxml_attr(geom, "unit"));
108 if ((geom = ezxml_child(wdb, "Height")) != NULL)
109 sd->dim[1] = atof(ezxml_txt(geom)) *
110 to_meters(ezxml_attr(geom, "unit"));
111 if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
112 sd->dim[2] = atof(ezxml_txt(geom)) *
113 to_meters(ezxml_attr(geom, "unit"));
114 if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) {
115 if (!SDerrorDetail[0])
116 sprintf(SDerrorDetail, "Negative dimension in \"%s\"",
117 sd->name);
118 return SDEdata;
119 }
120 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
121 (mgfstr = ezxml_txt(geom)) == NULL)
122 return SDEnone;
123 while (isspace(*mgfstr))
124 ++mgfstr;
125 if (!*mgfstr)
126 return SDEnone;
127 if ((fmt = ezxml_attr(geom, "format")) != NULL &&
128 strcasecmp(fmt, "MGF")) {
129 sprintf(SDerrorDetail,
130 "Unrecognized geometry format '%s' in \"%s\"",
131 fmt, sd->name);
132 return SDEsupport;
133 }
134 cfact = to_meters(ezxml_attr(geom, "unit"));
135 if (cfact <= 0)
136 return SDEformat;
137 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
138 if (sd->mgf == NULL) {
139 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
140 return SDEmemory;
141 }
142 if (cfact < 0.99 || cfact > 1.01)
143 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
144 else
145 strcpy(sd->mgf, mgfstr);
146 return SDEnone;
147 }
148
149 /* Load a BSDF struct from the given file (free first and keep name) */
150 SDError
151 SDloadFile(SDData *sd, const char *fname)
152 {
153 SDError lastErr;
154 ezxml_t fl, wtl;
155
156 if ((sd == NULL) | (fname == NULL || !*fname))
157 return SDEargument;
158 /* free old data, keeping name */
159 SDfreeBSDF(sd);
160 /* parse XML file */
161 fl = ezxml_parse_file(fname);
162 if (fl == NULL) {
163 sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
164 return SDEfile;
165 }
166 if (ezxml_error(fl)[0]) {
167 sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
168 ezxml_free(fl);
169 return SDEformat;
170 }
171 if (strcmp(ezxml_name(fl), "WindowElement")) {
172 sprintf(SDerrorDetail,
173 "BSDF \"%s\": top level node not 'WindowElement'",
174 sd->name);
175 ezxml_free(fl);
176 return SDEformat;
177 }
178 wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
179 if (wtl == NULL) {
180 sprintf(SDerrorDetail, "BSDF \"%s\": no optical layers'",
181 sd->name);
182 ezxml_free(fl);
183 return SDEformat;
184 }
185 /* load geometry if present */
186 lastErr = SDloadGeometry(sd, ezxml_child(wtl, "Material"));
187 if (lastErr) {
188 ezxml_free(fl);
189 return lastErr;
190 }
191 /* try loading variable resolution data */
192 lastErr = SDloadTre(sd, wtl);
193 /* check our result */
194 if (lastErr == SDEsupport) /* try matrix BSDF if not tree data */
195 lastErr = SDloadMtx(sd, wtl);
196
197 /* done with XML file */
198 ezxml_free(fl);
199
200 if (lastErr) { /* was there a load error? */
201 SDfreeBSDF(sd);
202 return lastErr;
203 }
204 /* remove any insignificant components */
205 if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
206 SDfreeSpectralDF(sd->rf); sd->rf = NULL;
207 }
208 if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
209 SDfreeSpectralDF(sd->rb); sd->rb = NULL;
210 }
211 if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
212 SDfreeSpectralDF(sd->tf); sd->tf = NULL;
213 }
214 /* return success */
215 return SDEnone;
216 }
217
218 /* Allocate new spectral distribution function */
219 SDSpectralDF *
220 SDnewSpectralDF(int nc)
221 {
222 SDSpectralDF *df;
223
224 if (nc <= 0) {
225 strcpy(SDerrorDetail, "Zero component spectral DF request");
226 return NULL;
227 }
228 df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
229 (nc-1)*sizeof(SDComponent));
230 if (df == NULL) {
231 sprintf(SDerrorDetail,
232 "Cannot allocate %d component spectral DF", nc);
233 return NULL;
234 }
235 df->minProjSA = .0;
236 df->maxHemi = .0;
237 df->ncomp = nc;
238 memset(df->comp, 0, nc*sizeof(SDComponent));
239 return df;
240 }
241
242 /* Add component(s) to spectral distribution function */
243 SDSpectralDF *
244 SDaddComponent(SDSpectralDF *odf, int nadd)
245 {
246 SDSpectralDF *df;
247
248 if (odf == NULL)
249 return SDnewSpectralDF(nadd);
250 if (nadd <= 0)
251 return odf;
252 df = (SDSpectralDF *)realloc(odf, sizeof(SDSpectralDF) +
253 (odf->ncomp+nadd-1)*sizeof(SDComponent));
254 if (df == NULL) {
255 sprintf(SDerrorDetail,
256 "Cannot add %d component(s) to spectral DF", nadd);
257 SDfreeSpectralDF(odf);
258 return NULL;
259 }
260 memset(df->comp+df->ncomp, 0, nadd*sizeof(SDComponent));
261 df->ncomp += nadd;
262 return df;
263 }
264
265 /* Free cached cumulative distributions for BSDF component */
266 void
267 SDfreeCumulativeCache(SDSpectralDF *df)
268 {
269 int n;
270 SDCDst *cdp;
271
272 if (df == NULL)
273 return;
274 for (n = df->ncomp; n-- > 0; )
275 while ((cdp = df->comp[n].cdList) != NULL) {
276 df->comp[n].cdList = cdp->next;
277 free(cdp);
278 }
279 }
280
281 /* Free a spectral distribution function */
282 void
283 SDfreeSpectralDF(SDSpectralDF *df)
284 {
285 int n;
286
287 if (df == NULL)
288 return;
289 SDfreeCumulativeCache(df);
290 for (n = df->ncomp; n-- > 0; )
291 if (df->comp[n].dist != NULL)
292 (*df->comp[n].func->freeSC)(df->comp[n].dist);
293 free(df);
294 }
295
296 /* Shorten file path to useable BSDF name, removing suffix */
297 void
298 SDclipName(char *res, const char *fname)
299 {
300 const char *cp, *dot = NULL;
301
302 for (cp = fname; *cp; cp++)
303 if (*cp == '.')
304 dot = cp;
305 if ((dot == NULL) | (dot < fname+2))
306 dot = cp;
307 if (dot - fname >= SDnameLn)
308 fname = dot - SDnameLn + 1;
309 while (fname < dot)
310 *res++ = *fname++;
311 *res = '\0';
312 }
313
314 /* Initialize an unused BSDF struct (simply clears to zeroes) */
315 void
316 SDclearBSDF(SDData *sd, const char *fname)
317 {
318 if (sd == NULL)
319 return;
320 memset(sd, 0, sizeof(SDData));
321 if (fname == NULL)
322 return;
323 SDclipName(sd->name, fname);
324 }
325
326 /* Free data associated with BSDF struct */
327 void
328 SDfreeBSDF(SDData *sd)
329 {
330 if (sd == NULL)
331 return;
332 if (sd->mgf != NULL) {
333 free(sd->mgf);
334 sd->mgf = NULL;
335 }
336 if (sd->rf != NULL) {
337 SDfreeSpectralDF(sd->rf);
338 sd->rf = NULL;
339 }
340 if (sd->rb != NULL) {
341 SDfreeSpectralDF(sd->rb);
342 sd->rb = NULL;
343 }
344 if (sd->tf != NULL) {
345 SDfreeSpectralDF(sd->tf);
346 sd->tf = NULL;
347 }
348 sd->rLambFront.cieY = .0;
349 sd->rLambFront.spec.flags = 0;
350 sd->rLambBack.cieY = .0;
351 sd->rLambBack.spec.flags = 0;
352 sd->tLamb.cieY = .0;
353 sd->tLamb.spec.flags = 0;
354 }
355
356 /* Find writeable BSDF by name, or allocate new cache entry if absent */
357 SDData *
358 SDgetCache(const char *bname)
359 {
360 struct SDCache_s *sdl;
361 char sdnam[SDnameLn];
362
363 if (bname == NULL)
364 return NULL;
365
366 SDclipName(sdnam, bname);
367 for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
368 if (!strcmp(sdl->bsdf.name, sdnam)) {
369 sdl->refcnt++;
370 return &sdl->bsdf;
371 }
372
373 sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
374 if (sdl == NULL)
375 return NULL;
376
377 strcpy(sdl->bsdf.name, sdnam);
378 sdl->next = SDcacheList;
379 SDcacheList = sdl;
380
381 sdl->refcnt = 1;
382 return &sdl->bsdf;
383 }
384
385 /* Get loaded BSDF from cache (or load and cache it on first call) */
386 /* Report any problem to stderr and return NULL on failure */
387 const SDData *
388 SDcacheFile(const char *fname)
389 {
390 SDData *sd;
391 SDError ec;
392
393 if (fname == NULL || !*fname)
394 return NULL;
395 SDerrorDetail[0] = '\0';
396 if ((sd = SDgetCache(fname)) == NULL) {
397 SDreportEnglish(SDEmemory, stderr);
398 return NULL;
399 }
400 if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
401 SDreportEnglish(ec, stderr);
402 SDfreeCache(sd);
403 return NULL;
404 }
405 return sd;
406 }
407
408 /* Free a BSDF from our cache (clear all if NULL) */
409 void
410 SDfreeCache(const SDData *sd)
411 {
412 struct SDCache_s *sdl, *sdLast = NULL;
413
414 if (sd == NULL) { /* free entire list */
415 while ((sdl = SDcacheList) != NULL) {
416 SDcacheList = sdl->next;
417 SDfreeBSDF(&sdl->bsdf);
418 free(sdl);
419 }
420 return;
421 }
422 for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
423 if (&sdl->bsdf == sd)
424 break;
425 if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
426 return; /* missing or still in use */
427 /* keep unreferenced data? */
428 if (SDisLoaded(sd) && SDretainSet) {
429 if (SDretainSet == SDretainAll)
430 return; /* keep everything */
431 /* else free cumulative data */
432 SDfreeCumulativeCache(sd->rf);
433 SDfreeCumulativeCache(sd->rb);
434 SDfreeCumulativeCache(sd->tf);
435 return;
436 }
437 /* remove from list and free */
438 if (sdLast == NULL)
439 SDcacheList = sdl->next;
440 else
441 sdLast->next = sdl->next;
442 SDfreeBSDF(&sdl->bsdf);
443 free(sdl);
444 }
445
446 /* Sample an individual BSDF component */
447 SDError
448 SDsampComponent(SDValue *sv, FVECT ioVec, double randX, SDComponent *sdc)
449 {
450 float coef[SDmaxCh];
451 SDError ec;
452 FVECT inVec;
453 const SDCDst *cd;
454 double d;
455 int n;
456 /* check arguments */
457 if ((sv == NULL) | (ioVec == NULL) | (sdc == NULL))
458 return SDEargument;
459 /* get cumulative distribution */
460 VCOPY(inVec, ioVec);
461 cd = (*sdc->func->getCDist)(inVec, sdc);
462 if (cd == NULL)
463 return SDEmemory;
464 if (cd->cTotal <= 1e-6) { /* anything to sample? */
465 sv->spec = c_dfcolor;
466 sv->cieY = .0;
467 memset(ioVec, 0, 3*sizeof(double));
468 return SDEnone;
469 }
470 sv->cieY = cd->cTotal;
471 /* compute sample direction */
472 ec = (*sdc->func->sampCDist)(ioVec, randX, cd);
473 if (ec)
474 return ec;
475 /* get BSDF color */
476 n = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
477 if (n <= 0) {
478 strcpy(SDerrorDetail, "BSDF sample value error");
479 return SDEinternal;
480 }
481 sv->spec = sdc->cspec[0];
482 d = coef[0];
483 while (--n) {
484 c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
485 d += coef[n];
486 }
487 /* make sure everything is set */
488 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
489 return SDEnone;
490 }
491
492 #define MS_MAXDIM 15
493
494 /* Convert 1-dimensional random variable to N-dimensional */
495 void
496 SDmultiSamp(double t[], int n, double randX)
497 {
498 unsigned nBits;
499 double scale;
500 bitmask_t ndx, coord[MS_MAXDIM];
501
502 while (n > MS_MAXDIM) /* punt for higher dimensions */
503 t[--n] = rand()*(1./(RAND_MAX+.5));
504 nBits = (8*sizeof(bitmask_t) - 1) / n;
505 ndx = randX * (double)((bitmask_t)1 << (nBits*n));
506 /* get coordinate on Hilbert curve */
507 hilbert_i2c(n, nBits, ndx, coord);
508 /* convert back to [0,1) range */
509 scale = 1. / (double)((bitmask_t)1 << nBits);
510 while (n--)
511 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
512 }
513
514 #undef MS_MAXDIM
515
516 /* Generate diffuse hemispherical sample */
517 static void
518 SDdiffuseSamp(FVECT outVec, int outFront, double randX)
519 {
520 /* convert to position on hemisphere */
521 SDmultiSamp(outVec, 2, randX);
522 SDsquare2disk(outVec, outVec[0], outVec[1]);
523 outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
524 if (outVec[2] > 0) /* a bit of paranoia */
525 outVec[2] = sqrt(outVec[2]);
526 if (!outFront) /* going out back? */
527 outVec[2] = -outVec[2];
528 }
529
530 /* Query projected solid angle coverage for non-diffuse BSDF direction */
531 SDError
532 SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2,
533 int qflags, const SDData *sd)
534 {
535 SDSpectralDF *rdf, *tdf;
536 SDError ec;
537 int i;
538 /* check arguments */
539 if ((projSA == NULL) | (v1 == NULL) | (sd == NULL))
540 return SDEargument;
541 /* initialize extrema */
542 switch (qflags) {
543 case SDqueryMax:
544 projSA[0] = .0;
545 break;
546 case SDqueryMin+SDqueryMax:
547 projSA[1] = .0;
548 /* fall through */
549 case SDqueryMin:
550 projSA[0] = 10.;
551 break;
552 case 0:
553 return SDEargument;
554 }
555 if (v1[2] > 0) /* front surface query? */
556 rdf = sd->rf;
557 else
558 rdf = sd->rb;
559 tdf = sd->tf;
560 if (v2 != NULL) /* bidirectional? */
561 if (v1[2] > 0 ^ v2[2] > 0)
562 rdf = NULL;
563 else
564 tdf = NULL;
565 ec = SDEdata; /* run through components */
566 for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
567 ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2,
568 qflags, &rdf->comp[i]);
569 if (ec)
570 return ec;
571 }
572 for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) {
573 ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2,
574 qflags, &tdf->comp[i]);
575 if (ec)
576 return ec;
577 }
578 if (ec) { /* all diffuse? */
579 projSA[0] = M_PI;
580 if (qflags == SDqueryMin+SDqueryMax)
581 projSA[1] = M_PI;
582 }
583 return SDEnone;
584 }
585
586 /* Return BSDF for the given incident and scattered ray vectors */
587 SDError
588 SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
589 {
590 int inFront, outFront;
591 SDSpectralDF *sdf;
592 float coef[SDmaxCh];
593 int nch, i;
594 /* check arguments */
595 if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
596 return SDEargument;
597 /* whose side are we on? */
598 inFront = (inVec[2] > 0);
599 outFront = (outVec[2] > 0);
600 /* start with diffuse portion */
601 if (inFront & outFront) {
602 *sv = sd->rLambFront;
603 sdf = sd->rf;
604 } else if (!(inFront | outFront)) {
605 *sv = sd->rLambBack;
606 sdf = sd->rb;
607 } else /* inFront ^ outFront */ {
608 *sv = sd->tLamb;
609 sdf = sd->tf;
610 }
611 sv->cieY *= 1./M_PI;
612 /* add non-diffuse components */
613 i = (sdf != NULL) ? sdf->ncomp : 0;
614 while (i-- > 0) {
615 nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
616 &sdf->comp[i]);
617 while (nch-- > 0) {
618 c_cmix(&sv->spec, sv->cieY, &sv->spec,
619 coef[nch], &sdf->comp[i].cspec[nch]);
620 sv->cieY += coef[nch];
621 }
622 }
623 /* make sure everything is set */
624 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
625 return SDEnone;
626 }
627
628 /* Compute directional hemispherical scattering at this incident angle */
629 double
630 SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
631 {
632 double hsum;
633 SDSpectralDF *rdf;
634 const SDCDst *cd;
635 int i;
636 /* check arguments */
637 if ((inVec == NULL) | (sd == NULL))
638 return .0;
639 /* gather diffuse components */
640 if (inVec[2] > 0) {
641 hsum = sd->rLambFront.cieY;
642 rdf = sd->rf;
643 } else /* !inFront */ {
644 hsum = sd->rLambBack.cieY;
645 rdf = sd->rb;
646 }
647 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
648 hsum = .0;
649 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
650 hsum += sd->tLamb.cieY;
651 /* gather non-diffuse components */
652 i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
653 rdf != NULL) ? rdf->ncomp : 0;
654 while (i-- > 0) { /* non-diffuse reflection */
655 cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
656 if (cd != NULL)
657 hsum += cd->cTotal;
658 }
659 i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
660 sd->tf != NULL) ? sd->tf->ncomp : 0;
661 while (i-- > 0) { /* non-diffuse transmission */
662 cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]);
663 if (cd != NULL)
664 hsum += cd->cTotal;
665 }
666 return hsum;
667 }
668
669 /* Sample BSDF direction based on the given random variable */
670 SDError
671 SDsampBSDF(SDValue *sv, FVECT ioVec, double randX, int sflags, const SDData *sd)
672 {
673 SDError ec;
674 FVECT inVec;
675 int inFront;
676 SDSpectralDF *rdf;
677 double rdiff;
678 float coef[SDmaxCh];
679 int i, j, n, nr;
680 SDComponent *sdc;
681 const SDCDst **cdarr = NULL;
682 /* check arguments */
683 if ((sv == NULL) | (ioVec == NULL) | (sd == NULL) |
684 (randX < 0) | (randX >= 1.))
685 return SDEargument;
686 /* whose side are we on? */
687 VCOPY(inVec, ioVec);
688 inFront = (inVec[2] > 0);
689 /* remember diffuse portions */
690 if (inFront) {
691 *sv = sd->rLambFront;
692 rdf = sd->rf;
693 } else /* !inFront */ {
694 *sv = sd->rLambBack;
695 rdf = sd->rb;
696 }
697 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
698 sv->cieY = .0;
699 rdiff = sv->cieY;
700 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
701 sv->cieY += sd->tLamb.cieY;
702 /* gather non-diffuse components */
703 i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
704 rdf != NULL) ? rdf->ncomp : 0;
705 j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
706 sd->tf != NULL) ? sd->tf->ncomp : 0;
707 n = i + j;
708 if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
709 return SDEmemory;
710 while (j-- > 0) { /* non-diffuse transmission */
711 cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]);
712 if (cdarr[i+j] == NULL) {
713 free(cdarr);
714 return SDEmemory;
715 }
716 sv->cieY += cdarr[i+j]->cTotal;
717 }
718 while (i-- > 0) { /* non-diffuse reflection */
719 cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
720 if (cdarr[i] == NULL) {
721 free(cdarr);
722 return SDEmemory;
723 }
724 sv->cieY += cdarr[i]->cTotal;
725 }
726 if (sv->cieY <= 1e-6) { /* anything to sample? */
727 sv->cieY = .0;
728 memset(ioVec, 0, 3*sizeof(double));
729 return SDEnone;
730 }
731 /* scale random variable */
732 randX *= sv->cieY;
733 /* diffuse reflection? */
734 if (randX < rdiff) {
735 SDdiffuseSamp(ioVec, inFront, randX/rdiff);
736 goto done;
737 }
738 randX -= rdiff;
739 /* diffuse transmission? */
740 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
741 if (randX < sd->tLamb.cieY) {
742 sv->spec = sd->tLamb.spec;
743 SDdiffuseSamp(ioVec, !inFront, randX/sd->tLamb.cieY);
744 goto done;
745 }
746 randX -= sd->tLamb.cieY;
747 }
748 /* else one of cumulative dist. */
749 for (i = 0; i < n && randX < cdarr[i]->cTotal; i++)
750 randX -= cdarr[i]->cTotal;
751 if (i >= n)
752 return SDEinternal;
753 /* compute sample direction */
754 sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr];
755 ec = (*sdc->func->sampCDist)(ioVec, randX/cdarr[i]->cTotal, cdarr[i]);
756 if (ec)
757 return ec;
758 /* compute color */
759 j = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
760 if (j <= 0) {
761 sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
762 sd->name);
763 return SDEinternal;
764 }
765 sv->spec = sdc->cspec[0];
766 rdiff = coef[0];
767 while (--j) {
768 c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
769 rdiff += coef[j];
770 }
771 done:
772 if (cdarr != NULL)
773 free(cdarr);
774 /* make sure everything is set */
775 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
776 return SDEnone;
777 }
778
779 /* Compute World->BSDF transform from surface normal and up (Y) vector */
780 SDError
781 SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
782 {
783 if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
784 return SDEargument;
785 VCOPY(vMtx[2], sNrm);
786 if (normalize(vMtx[2]) == 0)
787 return SDEargument;
788 fcross(vMtx[0], uVec, vMtx[2]);
789 if (normalize(vMtx[0]) == 0)
790 return SDEargument;
791 fcross(vMtx[1], vMtx[2], vMtx[0]);
792 return SDEnone;
793 }
794
795 /* Compute inverse transform */
796 SDError
797 SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
798 {
799 RREAL mTmp[3][3];
800 double d;
801
802 if ((iMtx == NULL) | (vMtx == NULL))
803 return SDEargument;
804 /* compute determinant */
805 mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
806 mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
807 mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
808 d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
809 if (d == 0) {
810 strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
811 return SDEargument;
812 }
813 d = 1./d; /* invert matrix */
814 mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
815 mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
816 mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
817 mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
818 mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
819 mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
820 mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
821 memcpy(iMtx, mTmp, sizeof(mTmp));
822 return SDEnone;
823 }
824
825 /* Transform and normalize direction (column) vector */
826 SDError
827 SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
828 {
829 FVECT vTmp;
830
831 if ((resVec == NULL) | (inpVec == NULL))
832 return SDEargument;
833 if (vMtx == NULL) { /* assume they just want to normalize */
834 if (resVec != inpVec)
835 VCOPY(resVec, inpVec);
836 return (normalize(resVec) > 0) ? SDEnone : SDEargument;
837 }
838 vTmp[0] = DOT(vMtx[0], inpVec);
839 vTmp[1] = DOT(vMtx[1], inpVec);
840 vTmp[2] = DOT(vMtx[2], inpVec);
841 if (normalize(vTmp) == 0)
842 return SDEargument;
843 VCOPY(resVec, vTmp);
844 return SDEnone;
845 }
846
847 /*################################################################*/
848 /*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/
849
850 /*
851 * Routines for handling BSDF data
852 */
853
854 #include "standard.h"
855 #include "paths.h"
856
857 #define MAXLATS 46 /* maximum number of latitudes */
858
859 /* BSDF angle specification */
860 typedef struct {
861 char name[64]; /* basis name */
862 int nangles; /* total number of directions */
863 struct {
864 float tmin; /* starting theta */
865 short nphis; /* number of phis (0 term) */
866 } lat[MAXLATS+1]; /* latitudes */
867 } ANGLE_BASIS;
868
869 #define MAXABASES 7 /* limit on defined bases */
870
871 static ANGLE_BASIS abase_list[MAXABASES] = {
872 {
873 "LBNL/Klems Full", 145,
874 { {-5., 1},
875 {5., 8},
876 {15., 16},
877 {25., 20},
878 {35., 24},
879 {45., 24},
880 {55., 24},
881 {65., 16},
882 {75., 12},
883 {90., 0} }
884 }, {
885 "LBNL/Klems Half", 73,
886 { {-6.5, 1},
887 {6.5, 8},
888 {19.5, 12},
889 {32.5, 16},
890 {46.5, 20},
891 {61.5, 12},
892 {76.5, 4},
893 {90., 0} }
894 }, {
895 "LBNL/Klems Quarter", 41,
896 { {-9., 1},
897 {9., 8},
898 {27., 12},
899 {46., 12},
900 {66., 8},
901 {90., 0} }
902 }
903 };
904
905 static int nabases = 3; /* current number of defined bases */
906
907 #define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6)
908
909 static int
910 fequal(double a, double b)
911 {
912 if (b != 0)
913 a = a/b - 1.;
914 return((a <= 1e-6) & (a >= -1e-6));
915 }
916
917 /* Returns the name of the given tag */
918 #ifdef ezxml_name
919 #undef ezxml_name
920 static char *
921 ezxml_name(ezxml_t xml)
922 {
923 if (xml == NULL)
924 return(NULL);
925 return(xml->name);
926 }
927 #endif
928
929 /* Returns the given tag's character content or empty string if none */
930 #ifdef ezxml_txt
931 #undef ezxml_txt
932 static char *
933 ezxml_txt(ezxml_t xml)
934 {
935 if (xml == NULL)
936 return("");
937 return(xml->txt);
938 }
939 #endif
940
941
942 static int
943 ab_getvec( /* get vector for this angle basis index */
944 FVECT v,
945 int ndx,
946 void *p
947 )
948 {
949 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
950 int li;
951 double pol, azi, d;
952
953 if ((ndx < 0) | (ndx >= ab->nangles))
954 return(0);
955 for (li = 0; ndx >= ab->lat[li].nphis; li++)
956 ndx -= ab->lat[li].nphis;
957 pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin);
958 azi = 2.*PI*ndx/ab->lat[li].nphis;
959 v[2] = d = cos(pol);
960 d = sqrt(1. - d*d); /* sin(pol) */
961 v[0] = cos(azi)*d;
962 v[1] = sin(azi)*d;
963 return(1);
964 }
965
966
967 static int
968 ab_getndx( /* get index corresponding to the given vector */
969 FVECT v,
970 void *p
971 )
972 {
973 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
974 int li, ndx;
975 double pol, azi;
976
977 if ((v[2] < -1.0) | (v[2] > 1.0))
978 return(-1);
979 pol = 180.0/PI*acos(v[2]);
980 azi = 180.0/PI*atan2(v[1], v[0]);
981 if (azi < 0.0) azi += 360.0;
982 for (li = 1; ab->lat[li].tmin <= pol; li++)
983 if (!ab->lat[li].nphis)
984 return(-1);
985 --li;
986 ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
987 if (ndx >= ab->lat[li].nphis) ndx = 0;
988 while (li--)
989 ndx += ab->lat[li].nphis;
990 return(ndx);
991 }
992
993
994 static double
995 ab_getohm( /* get solid angle for this angle basis index */
996 int ndx,
997 void *p
998 )
999 {
1000 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
1001 int li;
1002 double theta, theta1;
1003
1004 if ((ndx < 0) | (ndx >= ab->nangles))
1005 return(0);
1006 for (li = 0; ndx >= ab->lat[li].nphis; li++)
1007 ndx -= ab->lat[li].nphis;
1008 theta1 = PI/180. * ab->lat[li+1].tmin;
1009 if (ab->lat[li].nphis == 1) { /* special case */
1010 if (ab->lat[li].tmin > FTINY)
1011 error(USER, "unsupported BSDF coordinate system");
1012 return(2.*PI*(1. - cos(theta1)));
1013 }
1014 theta = PI/180. * ab->lat[li].tmin;
1015 return(2.*PI*(cos(theta) - cos(theta1))/(double)ab->lat[li].nphis);
1016 }
1017
1018
1019 static int
1020 ab_getvecR( /* get reverse vector for this angle basis index */
1021 FVECT v,
1022 int ndx,
1023 void *p
1024 )
1025 {
1026 if (!ab_getvec(v, ndx, p))
1027 return(0);
1028
1029 v[0] = -v[0];
1030 v[1] = -v[1];
1031 v[2] = -v[2];
1032
1033 return(1);
1034 }
1035
1036
1037 static int
1038 ab_getndxR( /* get index corresponding to the reverse vector */
1039 FVECT v,
1040 void *p
1041 )
1042 {
1043 FVECT v2;
1044
1045 v2[0] = -v[0];
1046 v2[1] = -v[1];
1047 v2[2] = -v[2];
1048
1049 return ab_getndx(v2, p);
1050 }
1051
1052
1053 static void
1054 load_angle_basis( /* load custom BSDF angle basis */
1055 ezxml_t wab
1056 )
1057 {
1058 char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
1059 ezxml_t wbb;
1060 int i;
1061
1062 if (!abname || !*abname)
1063 return;
1064 for (i = nabases; i--; )
1065 if (!strcasecmp(abname, abase_list[i].name))
1066 return; /* assume it's the same */
1067 if (nabases >= MAXABASES)
1068 error(INTERNAL, "too many angle bases");
1069 strcpy(abase_list[nabases].name, abname);
1070 abase_list[nabases].nangles = 0;
1071 for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
1072 wbb != NULL; i++, wbb = wbb->next) {
1073 if (i >= MAXLATS)
1074 error(INTERNAL, "too many latitudes in custom basis");
1075 abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
1076 ezxml_child(ezxml_child(wbb,
1077 "ThetaBounds"), "UpperTheta")));
1078 if (!i)
1079 abase_list[nabases].lat[i].tmin =
1080 -abase_list[nabases].lat[i+1].tmin;
1081 else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
1082 "ThetaBounds"), "LowerTheta"))),
1083 abase_list[nabases].lat[i].tmin))
1084 error(WARNING, "theta values disagree in custom basis");
1085 abase_list[nabases].nangles +=
1086 abase_list[nabases].lat[i].nphis =
1087 atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
1088 }
1089 abase_list[nabases++].lat[i].nphis = 0;
1090 }
1091
1092
1093 static void
1094 load_geometry( /* load geometric dimensions and description (if any) */
1095 struct BSDF_data *dp,
1096 ezxml_t wdb
1097 )
1098 {
1099 ezxml_t geom;
1100 double cfact;
1101 const char *fmt, *mgfstr;
1102
1103 dp->dim[0] = dp->dim[1] = dp->dim[2] = 0;
1104 dp->mgf = NULL;
1105 if ((geom = ezxml_child(wdb, "Width")) != NULL)
1106 dp->dim[0] = atof(ezxml_txt(geom)) *
1107 to_meters(ezxml_attr(geom, "unit"));
1108 if ((geom = ezxml_child(wdb, "Height")) != NULL)
1109 dp->dim[1] = atof(ezxml_txt(geom)) *
1110 to_meters(ezxml_attr(geom, "unit"));
1111 if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
1112 dp->dim[2] = atof(ezxml_txt(geom)) *
1113 to_meters(ezxml_attr(geom, "unit"));
1114 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
1115 (mgfstr = ezxml_txt(geom)) == NULL)
1116 return;
1117 if ((fmt = ezxml_attr(geom, "format")) != NULL &&
1118 strcasecmp(fmt, "MGF")) {
1119 sprintf(errmsg, "unrecognized geometry format '%s'", fmt);
1120 error(WARNING, errmsg);
1121 return;
1122 }
1123 cfact = to_meters(ezxml_attr(geom, "unit"));
1124 dp->mgf = (char *)malloc(strlen(mgfstr)+32);
1125 if (dp->mgf == NULL)
1126 error(SYSTEM, "out of memory in load_geometry");
1127 if (cfact < 0.99 || cfact > 1.01)
1128 sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
1129 else
1130 strcpy(dp->mgf, mgfstr);
1131 }
1132
1133
1134 static void
1135 load_bsdf_data( /* load BSDF distribution for this wavelength */
1136 struct BSDF_data *dp,
1137 ezxml_t wdb
1138 )
1139 {
1140 char *cbasis = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
1141 char *rbasis = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
1142 char *sdata;
1143 int i;
1144
1145 if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) {
1146 error(WARNING, "missing column/row basis for BSDF");
1147 return;
1148 }
1149 for (i = nabases; i--; )
1150 if (!strcasecmp(cbasis, abase_list[i].name)) {
1151 dp->ninc = abase_list[i].nangles;
1152 dp->ib_priv = (void *)&abase_list[i];
1153 dp->ib_vec = ab_getvecR;
1154 dp->ib_ndx = ab_getndxR;
1155 dp->ib_ohm = ab_getohm;
1156 break;
1157 }
1158 if (i < 0) {
1159 sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis);
1160 error(WARNING, errmsg);
1161 return;
1162 }
1163 for (i = nabases; i--; )
1164 if (!strcasecmp(rbasis, abase_list[i].name)) {
1165 dp->nout = abase_list[i].nangles;
1166 dp->ob_priv = (void *)&abase_list[i];
1167 dp->ob_vec = ab_getvec;
1168 dp->ob_ndx = ab_getndx;
1169 dp->ob_ohm = ab_getohm;
1170 break;
1171 }
1172 if (i < 0) {
1173 sprintf(errmsg, "undefined RowAngleBasis '%s'", rbasis);
1174 error(WARNING, errmsg);
1175 return;
1176 }
1177 /* read BSDF data */
1178 sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
1179 if (!sdata || !*sdata) {
1180 error(WARNING, "missing BSDF ScatteringData");
1181 return;
1182 }
1183 dp->bsdf = (float *)malloc(sizeof(float)*dp->ninc*dp->nout);
1184 if (dp->bsdf == NULL)
1185 error(SYSTEM, "out of memory in load_bsdf_data");
1186 for (i = 0; i < dp->ninc*dp->nout; i++) {
1187 char *sdnext = fskip(sdata);
1188 if (sdnext == NULL) {
1189 error(WARNING, "bad/missing BSDF ScatteringData");
1190 free(dp->bsdf); dp->bsdf = NULL;
1191 return;
1192 }
1193 while (*sdnext && isspace(*sdnext))
1194 sdnext++;
1195 if (*sdnext == ',') sdnext++;
1196 dp->bsdf[i] = atof(sdata);
1197 sdata = sdnext;
1198 }
1199 while (isspace(*sdata))
1200 sdata++;
1201 if (*sdata) {
1202 sprintf(errmsg, "%d extra characters after BSDF ScatteringData",
1203 (int)strlen(sdata));
1204 error(WARNING, errmsg);
1205 }
1206 }
1207
1208
1209 static int
1210 check_bsdf_data( /* check that BSDF data is sane */
1211 struct BSDF_data *dp
1212 )
1213 {
1214 double *omega_iarr, *omega_oarr;
1215 double dom, hemi_total, full_total;
1216 int nneg;
1217 FVECT v;
1218 int i, o;
1219
1220 if (dp == NULL || dp->bsdf == NULL)
1221 return(0);
1222 omega_iarr = (double *)calloc(dp->ninc, sizeof(double));
1223 omega_oarr = (double *)calloc(dp->nout, sizeof(double));
1224 if ((omega_iarr == NULL) | (omega_oarr == NULL))
1225 error(SYSTEM, "out of memory in check_bsdf_data");
1226 /* incoming projected solid angles */
1227 hemi_total = .0;
1228 for (i = dp->ninc; i--; ) {
1229 dom = getBSDF_incohm(dp,i);
1230 if (dom <= 0) {
1231 error(WARNING, "zero/negative incoming solid angle");
1232 continue;
1233 }
1234 if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) {
1235 error(WARNING, "illegal incoming BSDF direction");
1236 free(omega_iarr); free(omega_oarr);
1237 return(0);
1238 }
1239 hemi_total += omega_iarr[i] = dom * -v[2];
1240 }
1241 if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1242 sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%",
1243 100.*(hemi_total/PI - 1.));
1244 error(WARNING, errmsg);
1245 }
1246 dom = PI / hemi_total; /* fix normalization */
1247 for (i = dp->ninc; i--; )
1248 omega_iarr[i] *= dom;
1249 /* outgoing projected solid angles */
1250 hemi_total = .0;
1251 for (o = dp->nout; o--; ) {
1252 dom = getBSDF_outohm(dp,o);
1253 if (dom <= 0) {
1254 error(WARNING, "zero/negative outgoing solid angle");
1255 continue;
1256 }
1257 if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) {
1258 error(WARNING, "illegal outgoing BSDF direction");
1259 free(omega_iarr); free(omega_oarr);
1260 return(0);
1261 }
1262 hemi_total += omega_oarr[o] = dom * v[2];
1263 }
1264 if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1265 sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%",
1266 100.*(hemi_total/PI - 1.));
1267 error(WARNING, errmsg);
1268 }
1269 dom = PI / hemi_total; /* fix normalization */
1270 for (o = dp->nout; o--; )
1271 omega_oarr[o] *= dom;
1272 nneg = 0; /* check outgoing totals */
1273 for (i = 0; i < dp->ninc; i++) {
1274 hemi_total = .0;
1275 for (o = dp->nout; o--; ) {
1276 double f = BSDF_value(dp,i,o);
1277 if (f >= 0)
1278 hemi_total += f*omega_oarr[o];
1279 else {
1280 nneg += (f < -FTINY);
1281 BSDF_value(dp,i,o) = .0f;
1282 }
1283 }
1284 if (hemi_total > 1.01) {
1285 sprintf(errmsg,
1286 "incoming BSDF direction %d passes %.1f%% of light",
1287 i, 100.*hemi_total);
1288 error(WARNING, errmsg);
1289 }
1290 }
1291 if (nneg) {
1292 sprintf(errmsg, "%d negative BSDF values (ignored)", nneg);
1293 error(WARNING, errmsg);
1294 }
1295 full_total = .0; /* reverse roles and check again */
1296 for (o = 0; o < dp->nout; o++) {
1297 hemi_total = .0;
1298 for (i = dp->ninc; i--; )
1299 hemi_total += BSDF_value(dp,i,o) * omega_iarr[i];
1300
1301 if (hemi_total > 1.01) {
1302 sprintf(errmsg,
1303 "outgoing BSDF direction %d collects %.1f%% of light",
1304 o, 100.*hemi_total);
1305 error(WARNING, errmsg);
1306 }
1307 full_total += hemi_total*omega_oarr[o];
1308 }
1309 full_total /= PI;
1310 if (full_total > 1.00001) {
1311 sprintf(errmsg, "BSDF transfers %.4f%% of light",
1312 100.*full_total);
1313 error(WARNING, errmsg);
1314 }
1315 free(omega_iarr); free(omega_oarr);
1316 return(1);
1317 }
1318
1319
1320 struct BSDF_data *
1321 load_BSDF( /* load BSDF data from file */
1322 char *fname
1323 )
1324 {
1325 char *path;
1326 ezxml_t fl, wtl, wld, wdb;
1327 struct BSDF_data *dp;
1328
1329 path = getpath(fname, getrlibpath(), R_OK);
1330 if (path == NULL) {
1331 sprintf(errmsg, "cannot find BSDF file \"%s\"", fname);
1332 error(WARNING, errmsg);
1333 return(NULL);
1334 }
1335 fl = ezxml_parse_file(path);
1336 if (fl == NULL) {
1337 sprintf(errmsg, "cannot open BSDF \"%s\"", path);
1338 error(WARNING, errmsg);
1339 return(NULL);
1340 }
1341 if (ezxml_error(fl)[0]) {
1342 sprintf(errmsg, "BSDF \"%s\" %s", path, ezxml_error(fl));
1343 error(WARNING, errmsg);
1344 ezxml_free(fl);
1345 return(NULL);
1346 }
1347 if (strcmp(ezxml_name(fl), "WindowElement")) {
1348 sprintf(errmsg,
1349 "BSDF \"%s\": top level node not 'WindowElement'",
1350 path);
1351 error(WARNING, errmsg);
1352 ezxml_free(fl);
1353 return(NULL);
1354 }
1355 wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
1356 if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl,
1357 "DataDefinition"), "IncidentDataStructure")),
1358 "Columns")) {
1359 sprintf(errmsg,
1360 "BSDF \"%s\": unsupported IncidentDataStructure",
1361 path);
1362 error(WARNING, errmsg);
1363 ezxml_free(fl);
1364 return(NULL);
1365 }
1366 for (wld = ezxml_child(ezxml_child(wtl,
1367 "DataDefinition"), "AngleBasis");
1368 wld != NULL; wld = wld->next)
1369 load_angle_basis(wld);
1370 dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data));
1371 load_geometry(dp, ezxml_child(wtl, "Material"));
1372 for (wld = ezxml_child(wtl, "WavelengthData");
1373 wld != NULL; wld = wld->next) {
1374 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1375 "Visible"))
1376 continue;
1377 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1378 wdb != NULL; wdb = wdb->next)
1379 if (!strcasecmp(ezxml_txt(ezxml_child(wdb,
1380 "WavelengthDataDirection")),
1381 "Transmission Front"))
1382 break;
1383 if (wdb != NULL) { /* load front BTDF */
1384 load_bsdf_data(dp, wdb);
1385 break; /* ignore the rest */
1386 }
1387 }
1388 ezxml_free(fl); /* done with XML file */
1389 if (!check_bsdf_data(dp)) {
1390 sprintf(errmsg, "bad/missing BTDF data in \"%s\"", path);
1391 error(WARNING, errmsg);
1392 free_BSDF(dp);
1393 dp = NULL;
1394 }
1395 return(dp);
1396 }
1397
1398
1399 void
1400 free_BSDF( /* free BSDF data structure */
1401 struct BSDF_data *b
1402 )
1403 {
1404 if (b == NULL)
1405 return;
1406 if (b->mgf != NULL)
1407 free(b->mgf);
1408 if (b->bsdf != NULL)
1409 free(b->bsdf);
1410 free(b);
1411 }
1412
1413
1414 int
1415 r_BSDF_incvec( /* compute random input vector at given location */
1416 FVECT v,
1417 struct BSDF_data *b,
1418 int i,
1419 double rv,
1420 MAT4 xm
1421 )
1422 {
1423 FVECT pert;
1424 double rad;
1425 int j;
1426
1427 if (!getBSDF_incvec(v, b, i))
1428 return(0);
1429 rad = sqrt(getBSDF_incohm(b, i) / PI);
1430 multisamp(pert, 3, rv);
1431 for (j = 0; j < 3; j++)
1432 v[j] += rad*(2.*pert[j] - 1.);
1433 if (xm != NULL)
1434 multv3(v, v, xm);
1435 return(normalize(v) != 0.0);
1436 }
1437
1438
1439 int
1440 r_BSDF_outvec( /* compute random output vector at given location */
1441 FVECT v,
1442 struct BSDF_data *b,
1443 int o,
1444 double rv,
1445 MAT4 xm
1446 )
1447 {
1448 FVECT pert;
1449 double rad;
1450 int j;
1451
1452 if (!getBSDF_outvec(v, b, o))
1453 return(0);
1454 rad = sqrt(getBSDF_outohm(b, o) / PI);
1455 multisamp(pert, 3, rv);
1456 for (j = 0; j < 3; j++)
1457 v[j] += rad*(2.*pert[j] - 1.);
1458 if (xm != NULL)
1459 multv3(v, v, xm);
1460 return(normalize(v) != 0.0);
1461 }
1462
1463
1464 static int
1465 addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */
1466 char *xfarg[],
1467 FVECT xp,
1468 FVECT yp,
1469 FVECT zp
1470 )
1471 {
1472 static char bufs[3][16];
1473 int bn = 0;
1474 char **xfp = xfarg;
1475 double theta;
1476
1477 if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
1478 /* Special case for X' along Z-axis */
1479 theta = -atan2(yp[0], yp[1]);
1480 *xfp++ = "-ry";
1481 *xfp++ = xp[2] < 0.0 ? "90" : "-90";
1482 *xfp++ = "-rz";
1483 sprintf(bufs[bn], "%f", theta*(180./PI));
1484 *xfp++ = bufs[bn++];
1485 return(xfp - xfarg);
1486 }
1487 theta = atan2(yp[2], zp[2]);
1488 if (!FEQ(theta,0.0)) {
1489 *xfp++ = "-rx";
1490 sprintf(bufs[bn], "%f", theta*(180./PI));
1491 *xfp++ = bufs[bn++];
1492 }
1493 theta = asin(-xp[2]);
1494 if (!FEQ(theta,0.0)) {
1495 *xfp++ = "-ry";
1496 sprintf(bufs[bn], " %f", theta*(180./PI));
1497 *xfp++ = bufs[bn++];
1498 }
1499 theta = atan2(xp[1], xp[0]);
1500 if (!FEQ(theta,0.0)) {
1501 *xfp++ = "-rz";
1502 sprintf(bufs[bn], "%f", theta*(180./PI));
1503 *xfp++ = bufs[bn++];
1504 }
1505 *xfp = NULL;
1506 return(xfp - xfarg);
1507 }
1508
1509
1510 int
1511 getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */
1512 MAT4 xm,
1513 FVECT nrm,
1514 UpDir ud,
1515 char *xfbuf
1516 )
1517 {
1518 char *xfargs[7];
1519 XF myxf;
1520 FVECT updir, xdest, ydest;
1521 int i;
1522
1523 updir[0] = updir[1] = updir[2] = 0.;
1524 switch (ud) {
1525 case UDzneg:
1526 updir[2] = -1.;
1527 break;
1528 case UDyneg:
1529 updir[1] = -1.;
1530 break;
1531 case UDxneg:
1532 updir[0] = -1.;
1533 break;
1534 case UDxpos:
1535 updir[0] = 1.;
1536 break;
1537 case UDypos:
1538 updir[1] = 1.;
1539 break;
1540 case UDzpos:
1541 updir[2] = 1.;
1542 break;
1543 case UDunknown:
1544 return(0);
1545 }
1546 fcross(xdest, updir, nrm);
1547 if (normalize(xdest) == 0.0)
1548 return(0);
1549 fcross(ydest, nrm, xdest);
1550 xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs);
1551 copymat4(xm, myxf.xfm);
1552 if (xfbuf == NULL)
1553 return(1);
1554 /* return xf arguments as well */
1555 for (i = 0; xfargs[i] != NULL; i++) {
1556 *xfbuf++ = ' ';
1557 strcpy(xfbuf, xfargs[i]);
1558 while (*xfbuf) ++xfbuf;
1559 }
1560 return(1);
1561 }
1562
1563 /*######### END DEPRECATED ROUTINES #######*/
1564 /*################################################################*/