ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.37
Committed: Sun Mar 4 20:11:10 2012 UTC (12 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.36: +24 -1 lines
Log Message:
Added routine for adding spectral distribution components

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf.c,v 2.36 2011/09/17 22:09:33 greg Exp $";
3 #endif
4 /*
5 * bsdf.c
6 *
7 * Definitions for bidirectional scattering distribution functions.
8 *
9 * Created by Greg Ward on 1/10/11.
10 *
11 */
12
13 #define _USE_MATH_DEFINES
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include <math.h>
18 #include <ctype.h>
19 #include "ezxml.h"
20 #include "hilbert.h"
21 #include "bsdf.h"
22 #include "bsdf_m.h"
23 #include "bsdf_t.h"
24
25 /* English ASCII strings corresponding to ennumerated errors */
26 const char *SDerrorEnglish[] = {
27 "No error",
28 "Memory error",
29 "File input/output error",
30 "File format error",
31 "Illegal argument",
32 "Invalid data",
33 "Unsupported feature",
34 "Internal program error",
35 "Unknown error"
36 };
37
38 /* Additional information on last error (ASCII English) */
39 char SDerrorDetail[256];
40
41 /* Cache of loaded BSDFs */
42 struct SDCache_s *SDcacheList = NULL;
43
44 /* Retain BSDFs in cache list */
45 int SDretainSet = SDretainNone;
46
47 /* Report any error to the indicated stream (in English) */
48 SDError
49 SDreportEnglish(SDError ec, FILE *fp)
50 {
51 if (!ec)
52 return SDEnone;
53 if ((ec < SDEnone) | (ec > SDEunknown)) {
54 SDerrorDetail[0] = '\0';
55 ec = SDEunknown;
56 }
57 if (fp == NULL)
58 return ec;
59 fputs(SDerrorEnglish[ec], fp);
60 if (SDerrorDetail[0]) {
61 fputs(": ", fp);
62 fputs(SDerrorDetail, fp);
63 }
64 fputc('\n', fp);
65 if (fp != stderr)
66 fflush(fp);
67 return ec;
68 }
69
70 static double
71 to_meters( /* return factor to convert given unit to meters */
72 const char *unit
73 )
74 {
75 if (unit == NULL) return(1.); /* safe assumption? */
76 if (!strcasecmp(unit, "Meter")) return(1.);
77 if (!strcasecmp(unit, "Foot")) return(.3048);
78 if (!strcasecmp(unit, "Inch")) return(.0254);
79 if (!strcasecmp(unit, "Centimeter")) return(.01);
80 if (!strcasecmp(unit, "Millimeter")) return(.001);
81 sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
82 return(-1.);
83 }
84
85 /* Load geometric dimensions and description (if any) */
86 static SDError
87 SDloadGeometry(SDData *sd, ezxml_t wdb)
88 {
89 ezxml_t geom;
90 double cfact;
91 const char *fmt, *mgfstr;
92
93 if (wdb == NULL) /* no geometry section? */
94 return SDEnone;
95 sd->dim[0] = sd->dim[1] = sd->dim[2] = .0;
96 if ((geom = ezxml_child(wdb, "Width")) != NULL)
97 sd->dim[0] = atof(ezxml_txt(geom)) *
98 to_meters(ezxml_attr(geom, "unit"));
99 if ((geom = ezxml_child(wdb, "Height")) != NULL)
100 sd->dim[1] = atof(ezxml_txt(geom)) *
101 to_meters(ezxml_attr(geom, "unit"));
102 if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
103 sd->dim[2] = atof(ezxml_txt(geom)) *
104 to_meters(ezxml_attr(geom, "unit"));
105 if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) {
106 sprintf(SDerrorDetail, "Negative size in \"%s\"", sd->name);
107 return SDEdata;
108 }
109 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
110 (mgfstr = ezxml_txt(geom)) == NULL)
111 return SDEnone;
112 while (isspace(*mgfstr))
113 ++mgfstr;
114 if (!*mgfstr)
115 return SDEnone;
116 if ((fmt = ezxml_attr(geom, "format")) != NULL &&
117 strcasecmp(fmt, "MGF")) {
118 sprintf(SDerrorDetail,
119 "Unrecognized geometry format '%s' in \"%s\"",
120 fmt, sd->name);
121 return SDEsupport;
122 }
123 cfact = to_meters(ezxml_attr(geom, "unit"));
124 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
125 if (sd->mgf == NULL) {
126 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
127 return SDEmemory;
128 }
129 if (cfact < 0.99 || cfact > 1.01)
130 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
131 else
132 strcpy(sd->mgf, mgfstr);
133 return SDEnone;
134 }
135
136 /* Load a BSDF struct from the given file (free first and keep name) */
137 SDError
138 SDloadFile(SDData *sd, const char *fname)
139 {
140 SDError lastErr;
141 ezxml_t fl, wtl;
142
143 if ((sd == NULL) | (fname == NULL || !*fname))
144 return SDEargument;
145 /* free old data, keeping name */
146 SDfreeBSDF(sd);
147 /* parse XML file */
148 fl = ezxml_parse_file(fname);
149 if (fl == NULL) {
150 sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
151 return SDEfile;
152 }
153 if (ezxml_error(fl)[0]) {
154 sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
155 ezxml_free(fl);
156 return SDEformat;
157 }
158 if (strcmp(ezxml_name(fl), "WindowElement")) {
159 sprintf(SDerrorDetail,
160 "BSDF \"%s\": top level node not 'WindowElement'",
161 sd->name);
162 ezxml_free(fl);
163 return SDEformat;
164 }
165 wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
166 if (wtl == NULL) {
167 sprintf(SDerrorDetail, "BSDF \"%s\": no optical layer'",
168 sd->name);
169 ezxml_free(fl);
170 return SDEformat;
171 }
172 /* load geometry if present */
173 lastErr = SDloadGeometry(sd, ezxml_child(wtl, "Material"));
174 if (lastErr) {
175 ezxml_free(fl);
176 return lastErr;
177 }
178 /* try loading variable resolution data */
179 lastErr = SDloadTre(sd, wtl);
180 /* check our result */
181 if (lastErr == SDEsupport) /* try matrix BSDF if not tree data */
182 lastErr = SDloadMtx(sd, wtl);
183
184 /* done with XML file */
185 ezxml_free(fl);
186
187 if (lastErr) { /* was there a load error? */
188 SDfreeBSDF(sd);
189 return lastErr;
190 }
191 /* remove any insignificant components */
192 if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
193 SDfreeSpectralDF(sd->rf); sd->rf = NULL;
194 }
195 if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
196 SDfreeSpectralDF(sd->rb); sd->rb = NULL;
197 }
198 if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
199 SDfreeSpectralDF(sd->tf); sd->tf = NULL;
200 }
201 /* return success */
202 return SDEnone;
203 }
204
205 /* Allocate new spectral distribution function */
206 SDSpectralDF *
207 SDnewSpectralDF(int nc)
208 {
209 SDSpectralDF *df;
210
211 if (nc <= 0) {
212 strcpy(SDerrorDetail, "Zero component spectral DF request");
213 return NULL;
214 }
215 df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
216 (nc-1)*sizeof(SDComponent));
217 if (df == NULL) {
218 sprintf(SDerrorDetail,
219 "Cannot allocate %d component spectral DF", nc);
220 return NULL;
221 }
222 df->minProjSA = .0;
223 df->maxHemi = .0;
224 df->ncomp = nc;
225 memset(df->comp, 0, nc*sizeof(SDComponent));
226 return df;
227 }
228
229 /* Add component(s) to spectral distribution function */
230 SDSpectralDF *
231 SDaddComponent(SDSpectralDF *odf, int nadd)
232 {
233 SDSpectralDF *df;
234
235 if (odf == NULL)
236 return SDnewSpectralDF(nadd);
237 if (nadd <= 0)
238 return odf;
239 df = (SDSpectralDF *)realloc(odf, sizeof(SDSpectralDF) +
240 (odf->ncomp+nadd-1)*sizeof(SDComponent));
241 if (df == NULL) {
242 sprintf(SDerrorDetail,
243 "Cannot add %d component(s) to spectral DF", nadd);
244 SDfreeSpectralDF(odf);
245 return NULL;
246 }
247 memset(df->comp+df->ncomp, 0, nadd*sizeof(SDComponent));
248 df->ncomp += nadd;
249 return df;
250 }
251
252 /* Free cached cumulative distributions for BSDF component */
253 void
254 SDfreeCumulativeCache(SDSpectralDF *df)
255 {
256 int n;
257 SDCDst *cdp;
258
259 if (df == NULL)
260 return;
261 for (n = df->ncomp; n-- > 0; )
262 while ((cdp = df->comp[n].cdList) != NULL) {
263 df->comp[n].cdList = cdp->next;
264 free(cdp);
265 }
266 }
267
268 /* Free a spectral distribution function */
269 void
270 SDfreeSpectralDF(SDSpectralDF *df)
271 {
272 int n;
273
274 if (df == NULL)
275 return;
276 SDfreeCumulativeCache(df);
277 for (n = df->ncomp; n-- > 0; )
278 if (df->comp[n].dist != NULL)
279 (*df->comp[n].func->freeSC)(df->comp[n].dist);
280 free(df);
281 }
282
283 /* Shorten file path to useable BSDF name, removing suffix */
284 void
285 SDclipName(char *res, const char *fname)
286 {
287 const char *cp, *dot = NULL;
288
289 for (cp = fname; *cp; cp++)
290 if (*cp == '.')
291 dot = cp;
292 if ((dot == NULL) | (dot < fname+2))
293 dot = cp;
294 if (dot - fname >= SDnameLn)
295 fname = dot - SDnameLn + 1;
296 while (fname < dot)
297 *res++ = *fname++;
298 *res = '\0';
299 }
300
301 /* Initialize an unused BSDF struct (simply clears to zeroes) */
302 void
303 SDclearBSDF(SDData *sd, const char *fname)
304 {
305 if (sd == NULL)
306 return;
307 memset(sd, 0, sizeof(SDData));
308 if (fname == NULL)
309 return;
310 SDclipName(sd->name, fname);
311 }
312
313 /* Free data associated with BSDF struct */
314 void
315 SDfreeBSDF(SDData *sd)
316 {
317 if (sd == NULL)
318 return;
319 if (sd->mgf != NULL) {
320 free(sd->mgf);
321 sd->mgf = NULL;
322 }
323 if (sd->rf != NULL) {
324 SDfreeSpectralDF(sd->rf);
325 sd->rf = NULL;
326 }
327 if (sd->rb != NULL) {
328 SDfreeSpectralDF(sd->rb);
329 sd->rb = NULL;
330 }
331 if (sd->tf != NULL) {
332 SDfreeSpectralDF(sd->tf);
333 sd->tf = NULL;
334 }
335 sd->rLambFront.cieY = .0;
336 sd->rLambFront.spec.flags = 0;
337 sd->rLambBack.cieY = .0;
338 sd->rLambBack.spec.flags = 0;
339 sd->tLamb.cieY = .0;
340 sd->tLamb.spec.flags = 0;
341 }
342
343 /* Find writeable BSDF by name, or allocate new cache entry if absent */
344 SDData *
345 SDgetCache(const char *bname)
346 {
347 struct SDCache_s *sdl;
348 char sdnam[SDnameLn];
349
350 if (bname == NULL)
351 return NULL;
352
353 SDclipName(sdnam, bname);
354 for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
355 if (!strcmp(sdl->bsdf.name, sdnam)) {
356 sdl->refcnt++;
357 return &sdl->bsdf;
358 }
359
360 sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
361 if (sdl == NULL)
362 return NULL;
363
364 strcpy(sdl->bsdf.name, sdnam);
365 sdl->next = SDcacheList;
366 SDcacheList = sdl;
367
368 sdl->refcnt = 1;
369 return &sdl->bsdf;
370 }
371
372 /* Get loaded BSDF from cache (or load and cache it on first call) */
373 /* Report any problem to stderr and return NULL on failure */
374 const SDData *
375 SDcacheFile(const char *fname)
376 {
377 SDData *sd;
378 SDError ec;
379
380 if (fname == NULL || !*fname)
381 return NULL;
382 SDerrorDetail[0] = '\0';
383 if ((sd = SDgetCache(fname)) == NULL) {
384 SDreportEnglish(SDEmemory, stderr);
385 return NULL;
386 }
387 if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
388 SDreportEnglish(ec, stderr);
389 SDfreeCache(sd);
390 return NULL;
391 }
392 return sd;
393 }
394
395 /* Free a BSDF from our cache (clear all if NULL) */
396 void
397 SDfreeCache(const SDData *sd)
398 {
399 struct SDCache_s *sdl, *sdLast = NULL;
400
401 if (sd == NULL) { /* free entire list */
402 while ((sdl = SDcacheList) != NULL) {
403 SDcacheList = sdl->next;
404 SDfreeBSDF(&sdl->bsdf);
405 free(sdl);
406 }
407 return;
408 }
409 for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
410 if (&sdl->bsdf == sd)
411 break;
412 if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
413 return; /* missing or still in use */
414 /* keep unreferenced data? */
415 if (SDisLoaded(sd) && SDretainSet) {
416 if (SDretainSet == SDretainAll)
417 return; /* keep everything */
418 /* else free cumulative data */
419 SDfreeCumulativeCache(sd->rf);
420 SDfreeCumulativeCache(sd->rb);
421 SDfreeCumulativeCache(sd->tf);
422 return;
423 }
424 /* remove from list and free */
425 if (sdLast == NULL)
426 SDcacheList = sdl->next;
427 else
428 sdLast->next = sdl->next;
429 SDfreeBSDF(&sdl->bsdf);
430 free(sdl);
431 }
432
433 /* Sample an individual BSDF component */
434 SDError
435 SDsampComponent(SDValue *sv, FVECT ioVec, double randX, SDComponent *sdc)
436 {
437 float coef[SDmaxCh];
438 SDError ec;
439 FVECT inVec;
440 const SDCDst *cd;
441 double d;
442 int n;
443 /* check arguments */
444 if ((sv == NULL) | (ioVec == NULL) | (sdc == NULL))
445 return SDEargument;
446 /* get cumulative distribution */
447 VCOPY(inVec, ioVec);
448 cd = (*sdc->func->getCDist)(inVec, sdc);
449 if (cd == NULL)
450 return SDEmemory;
451 if (cd->cTotal <= 1e-6) { /* anything to sample? */
452 sv->spec = c_dfcolor;
453 sv->cieY = .0;
454 memset(ioVec, 0, 3*sizeof(double));
455 return SDEnone;
456 }
457 sv->cieY = cd->cTotal;
458 /* compute sample direction */
459 ec = (*sdc->func->sampCDist)(ioVec, randX, cd);
460 if (ec)
461 return ec;
462 /* get BSDF color */
463 n = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
464 if (n <= 0) {
465 strcpy(SDerrorDetail, "BSDF sample value error");
466 return SDEinternal;
467 }
468 sv->spec = sdc->cspec[0];
469 d = coef[0];
470 while (--n) {
471 c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
472 d += coef[n];
473 }
474 /* make sure everything is set */
475 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
476 return SDEnone;
477 }
478
479 #define MS_MAXDIM 15
480
481 /* Convert 1-dimensional random variable to N-dimensional */
482 void
483 SDmultiSamp(double t[], int n, double randX)
484 {
485 unsigned nBits;
486 double scale;
487 bitmask_t ndx, coord[MS_MAXDIM];
488
489 while (n > MS_MAXDIM) /* punt for higher dimensions */
490 t[--n] = rand()*(1./(RAND_MAX+.5));
491 nBits = (8*sizeof(bitmask_t) - 1) / n;
492 ndx = randX * (double)((bitmask_t)1 << (nBits*n));
493 /* get coordinate on Hilbert curve */
494 hilbert_i2c(n, nBits, ndx, coord);
495 /* convert back to [0,1) range */
496 scale = 1. / (double)((bitmask_t)1 << nBits);
497 while (n--)
498 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
499 }
500
501 #undef MS_MAXDIM
502
503 /* Generate diffuse hemispherical sample */
504 static void
505 SDdiffuseSamp(FVECT outVec, int outFront, double randX)
506 {
507 /* convert to position on hemisphere */
508 SDmultiSamp(outVec, 2, randX);
509 SDsquare2disk(outVec, outVec[0], outVec[1]);
510 outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
511 if (outVec[2] > 0) /* a bit of paranoia */
512 outVec[2] = sqrt(outVec[2]);
513 if (!outFront) /* going out back? */
514 outVec[2] = -outVec[2];
515 }
516
517 /* Query projected solid angle coverage for non-diffuse BSDF direction */
518 SDError
519 SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2,
520 int qflags, const SDData *sd)
521 {
522 SDSpectralDF *rdf, *tdf;
523 SDError ec;
524 int i;
525 /* check arguments */
526 if ((projSA == NULL) | (v1 == NULL) | (sd == NULL))
527 return SDEargument;
528 /* initialize extrema */
529 switch (qflags) {
530 case SDqueryMax:
531 projSA[0] = .0;
532 break;
533 case SDqueryMin+SDqueryMax:
534 projSA[1] = .0;
535 /* fall through */
536 case SDqueryMin:
537 projSA[0] = 10.;
538 break;
539 case 0:
540 return SDEargument;
541 }
542 if (v1[2] > 0) /* front surface query? */
543 rdf = sd->rf;
544 else
545 rdf = sd->rb;
546 tdf = sd->tf;
547 if (v2 != NULL) /* bidirectional? */
548 if (v1[2] > 0 ^ v2[2] > 0)
549 rdf = NULL;
550 else
551 tdf = NULL;
552 ec = SDEdata; /* run through components */
553 for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
554 ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2,
555 qflags, &rdf->comp[i]);
556 if (ec)
557 return ec;
558 }
559 for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) {
560 ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2,
561 qflags, &tdf->comp[i]);
562 if (ec)
563 return ec;
564 }
565 if (ec) { /* all diffuse? */
566 projSA[0] = M_PI;
567 if (qflags == SDqueryMin+SDqueryMax)
568 projSA[1] = M_PI;
569 }
570 return SDEnone;
571 }
572
573 /* Return BSDF for the given incident and scattered ray vectors */
574 SDError
575 SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
576 {
577 int inFront, outFront;
578 SDSpectralDF *sdf;
579 float coef[SDmaxCh];
580 int nch, i;
581 /* check arguments */
582 if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
583 return SDEargument;
584 /* whose side are we on? */
585 inFront = (inVec[2] > 0);
586 outFront = (outVec[2] > 0);
587 /* start with diffuse portion */
588 if (inFront & outFront) {
589 *sv = sd->rLambFront;
590 sdf = sd->rf;
591 } else if (!(inFront | outFront)) {
592 *sv = sd->rLambBack;
593 sdf = sd->rb;
594 } else /* inFront ^ outFront */ {
595 *sv = sd->tLamb;
596 sdf = sd->tf;
597 }
598 sv->cieY *= 1./M_PI;
599 /* add non-diffuse components */
600 i = (sdf != NULL) ? sdf->ncomp : 0;
601 while (i-- > 0) {
602 nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
603 &sdf->comp[i]);
604 while (nch-- > 0) {
605 c_cmix(&sv->spec, sv->cieY, &sv->spec,
606 coef[nch], &sdf->comp[i].cspec[nch]);
607 sv->cieY += coef[nch];
608 }
609 }
610 /* make sure everything is set */
611 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
612 return SDEnone;
613 }
614
615 /* Compute directional hemispherical scattering at this incident angle */
616 double
617 SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
618 {
619 double hsum;
620 SDSpectralDF *rdf;
621 const SDCDst *cd;
622 int i;
623 /* check arguments */
624 if ((inVec == NULL) | (sd == NULL))
625 return .0;
626 /* gather diffuse components */
627 if (inVec[2] > 0) {
628 hsum = sd->rLambFront.cieY;
629 rdf = sd->rf;
630 } else /* !inFront */ {
631 hsum = sd->rLambBack.cieY;
632 rdf = sd->rb;
633 }
634 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
635 hsum = .0;
636 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
637 hsum += sd->tLamb.cieY;
638 /* gather non-diffuse components */
639 i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
640 rdf != NULL) ? rdf->ncomp : 0;
641 while (i-- > 0) { /* non-diffuse reflection */
642 cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
643 if (cd != NULL)
644 hsum += cd->cTotal;
645 }
646 i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
647 sd->tf != NULL) ? sd->tf->ncomp : 0;
648 while (i-- > 0) { /* non-diffuse transmission */
649 cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]);
650 if (cd != NULL)
651 hsum += cd->cTotal;
652 }
653 return hsum;
654 }
655
656 /* Sample BSDF direction based on the given random variable */
657 SDError
658 SDsampBSDF(SDValue *sv, FVECT ioVec, double randX, int sflags, const SDData *sd)
659 {
660 SDError ec;
661 FVECT inVec;
662 int inFront;
663 SDSpectralDF *rdf;
664 double rdiff;
665 float coef[SDmaxCh];
666 int i, j, n, nr;
667 SDComponent *sdc;
668 const SDCDst **cdarr = NULL;
669 /* check arguments */
670 if ((sv == NULL) | (ioVec == NULL) | (sd == NULL) |
671 (randX < 0) | (randX >= 1.))
672 return SDEargument;
673 /* whose side are we on? */
674 VCOPY(inVec, ioVec);
675 inFront = (inVec[2] > 0);
676 /* remember diffuse portions */
677 if (inFront) {
678 *sv = sd->rLambFront;
679 rdf = sd->rf;
680 } else /* !inFront */ {
681 *sv = sd->rLambBack;
682 rdf = sd->rb;
683 }
684 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
685 sv->cieY = .0;
686 rdiff = sv->cieY;
687 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
688 sv->cieY += sd->tLamb.cieY;
689 /* gather non-diffuse components */
690 i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
691 rdf != NULL) ? rdf->ncomp : 0;
692 j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
693 sd->tf != NULL) ? sd->tf->ncomp : 0;
694 n = i + j;
695 if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
696 return SDEmemory;
697 while (j-- > 0) { /* non-diffuse transmission */
698 cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]);
699 if (cdarr[i+j] == NULL) {
700 free(cdarr);
701 return SDEmemory;
702 }
703 sv->cieY += cdarr[i+j]->cTotal;
704 }
705 while (i-- > 0) { /* non-diffuse reflection */
706 cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
707 if (cdarr[i] == NULL) {
708 free(cdarr);
709 return SDEmemory;
710 }
711 sv->cieY += cdarr[i]->cTotal;
712 }
713 if (sv->cieY <= 1e-6) { /* anything to sample? */
714 sv->cieY = .0;
715 memset(ioVec, 0, 3*sizeof(double));
716 return SDEnone;
717 }
718 /* scale random variable */
719 randX *= sv->cieY;
720 /* diffuse reflection? */
721 if (randX < rdiff) {
722 SDdiffuseSamp(ioVec, inFront, randX/rdiff);
723 goto done;
724 }
725 randX -= rdiff;
726 /* diffuse transmission? */
727 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
728 if (randX < sd->tLamb.cieY) {
729 sv->spec = sd->tLamb.spec;
730 SDdiffuseSamp(ioVec, !inFront, randX/sd->tLamb.cieY);
731 goto done;
732 }
733 randX -= sd->tLamb.cieY;
734 }
735 /* else one of cumulative dist. */
736 for (i = 0; i < n && randX < cdarr[i]->cTotal; i++)
737 randX -= cdarr[i]->cTotal;
738 if (i >= n)
739 return SDEinternal;
740 /* compute sample direction */
741 sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr];
742 ec = (*sdc->func->sampCDist)(ioVec, randX/cdarr[i]->cTotal, cdarr[i]);
743 if (ec)
744 return ec;
745 /* compute color */
746 j = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
747 if (j <= 0) {
748 sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
749 sd->name);
750 return SDEinternal;
751 }
752 sv->spec = sdc->cspec[0];
753 rdiff = coef[0];
754 while (--j) {
755 c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
756 rdiff += coef[j];
757 }
758 done:
759 if (cdarr != NULL)
760 free(cdarr);
761 /* make sure everything is set */
762 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
763 return SDEnone;
764 }
765
766 /* Compute World->BSDF transform from surface normal and up (Y) vector */
767 SDError
768 SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
769 {
770 if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
771 return SDEargument;
772 VCOPY(vMtx[2], sNrm);
773 if (normalize(vMtx[2]) == 0)
774 return SDEargument;
775 fcross(vMtx[0], uVec, vMtx[2]);
776 if (normalize(vMtx[0]) == 0)
777 return SDEargument;
778 fcross(vMtx[1], vMtx[2], vMtx[0]);
779 return SDEnone;
780 }
781
782 /* Compute inverse transform */
783 SDError
784 SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
785 {
786 RREAL mTmp[3][3];
787 double d;
788
789 if ((iMtx == NULL) | (vMtx == NULL))
790 return SDEargument;
791 /* compute determinant */
792 mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
793 mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
794 mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
795 d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
796 if (d == 0) {
797 strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
798 return SDEargument;
799 }
800 d = 1./d; /* invert matrix */
801 mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
802 mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
803 mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
804 mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
805 mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
806 mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
807 mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
808 memcpy(iMtx, mTmp, sizeof(mTmp));
809 return SDEnone;
810 }
811
812 /* Transform and normalize direction (column) vector */
813 SDError
814 SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
815 {
816 FVECT vTmp;
817
818 if ((resVec == NULL) | (inpVec == NULL))
819 return SDEargument;
820 if (vMtx == NULL) { /* assume they just want to normalize */
821 if (resVec != inpVec)
822 VCOPY(resVec, inpVec);
823 return (normalize(resVec) > 0) ? SDEnone : SDEargument;
824 }
825 vTmp[0] = DOT(vMtx[0], inpVec);
826 vTmp[1] = DOT(vMtx[1], inpVec);
827 vTmp[2] = DOT(vMtx[2], inpVec);
828 if (normalize(vTmp) == 0)
829 return SDEargument;
830 VCOPY(resVec, vTmp);
831 return SDEnone;
832 }
833
834 /*################################################################*/
835 /*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/
836
837 /*
838 * Routines for handling BSDF data
839 */
840
841 #include "standard.h"
842 #include "paths.h"
843
844 #define MAXLATS 46 /* maximum number of latitudes */
845
846 /* BSDF angle specification */
847 typedef struct {
848 char name[64]; /* basis name */
849 int nangles; /* total number of directions */
850 struct {
851 float tmin; /* starting theta */
852 short nphis; /* number of phis (0 term) */
853 } lat[MAXLATS+1]; /* latitudes */
854 } ANGLE_BASIS;
855
856 #define MAXABASES 7 /* limit on defined bases */
857
858 static ANGLE_BASIS abase_list[MAXABASES] = {
859 {
860 "LBNL/Klems Full", 145,
861 { {-5., 1},
862 {5., 8},
863 {15., 16},
864 {25., 20},
865 {35., 24},
866 {45., 24},
867 {55., 24},
868 {65., 16},
869 {75., 12},
870 {90., 0} }
871 }, {
872 "LBNL/Klems Half", 73,
873 { {-6.5, 1},
874 {6.5, 8},
875 {19.5, 12},
876 {32.5, 16},
877 {46.5, 20},
878 {61.5, 12},
879 {76.5, 4},
880 {90., 0} }
881 }, {
882 "LBNL/Klems Quarter", 41,
883 { {-9., 1},
884 {9., 8},
885 {27., 12},
886 {46., 12},
887 {66., 8},
888 {90., 0} }
889 }
890 };
891
892 static int nabases = 3; /* current number of defined bases */
893
894 #define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6)
895
896 static int
897 fequal(double a, double b)
898 {
899 if (b != 0)
900 a = a/b - 1.;
901 return((a <= 1e-6) & (a >= -1e-6));
902 }
903
904 /* Returns the name of the given tag */
905 #ifdef ezxml_name
906 #undef ezxml_name
907 static char *
908 ezxml_name(ezxml_t xml)
909 {
910 if (xml == NULL)
911 return(NULL);
912 return(xml->name);
913 }
914 #endif
915
916 /* Returns the given tag's character content or empty string if none */
917 #ifdef ezxml_txt
918 #undef ezxml_txt
919 static char *
920 ezxml_txt(ezxml_t xml)
921 {
922 if (xml == NULL)
923 return("");
924 return(xml->txt);
925 }
926 #endif
927
928
929 static int
930 ab_getvec( /* get vector for this angle basis index */
931 FVECT v,
932 int ndx,
933 void *p
934 )
935 {
936 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
937 int li;
938 double pol, azi, d;
939
940 if ((ndx < 0) | (ndx >= ab->nangles))
941 return(0);
942 for (li = 0; ndx >= ab->lat[li].nphis; li++)
943 ndx -= ab->lat[li].nphis;
944 pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin);
945 azi = 2.*PI*ndx/ab->lat[li].nphis;
946 v[2] = d = cos(pol);
947 d = sqrt(1. - d*d); /* sin(pol) */
948 v[0] = cos(azi)*d;
949 v[1] = sin(azi)*d;
950 return(1);
951 }
952
953
954 static int
955 ab_getndx( /* get index corresponding to the given vector */
956 FVECT v,
957 void *p
958 )
959 {
960 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
961 int li, ndx;
962 double pol, azi;
963
964 if ((v[2] < -1.0) | (v[2] > 1.0))
965 return(-1);
966 pol = 180.0/PI*acos(v[2]);
967 azi = 180.0/PI*atan2(v[1], v[0]);
968 if (azi < 0.0) azi += 360.0;
969 for (li = 1; ab->lat[li].tmin <= pol; li++)
970 if (!ab->lat[li].nphis)
971 return(-1);
972 --li;
973 ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
974 if (ndx >= ab->lat[li].nphis) ndx = 0;
975 while (li--)
976 ndx += ab->lat[li].nphis;
977 return(ndx);
978 }
979
980
981 static double
982 ab_getohm( /* get solid angle for this angle basis index */
983 int ndx,
984 void *p
985 )
986 {
987 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
988 int li;
989 double theta, theta1;
990
991 if ((ndx < 0) | (ndx >= ab->nangles))
992 return(0);
993 for (li = 0; ndx >= ab->lat[li].nphis; li++)
994 ndx -= ab->lat[li].nphis;
995 theta1 = PI/180. * ab->lat[li+1].tmin;
996 if (ab->lat[li].nphis == 1) { /* special case */
997 if (ab->lat[li].tmin > FTINY)
998 error(USER, "unsupported BSDF coordinate system");
999 return(2.*PI*(1. - cos(theta1)));
1000 }
1001 theta = PI/180. * ab->lat[li].tmin;
1002 return(2.*PI*(cos(theta) - cos(theta1))/(double)ab->lat[li].nphis);
1003 }
1004
1005
1006 static int
1007 ab_getvecR( /* get reverse vector for this angle basis index */
1008 FVECT v,
1009 int ndx,
1010 void *p
1011 )
1012 {
1013 if (!ab_getvec(v, ndx, p))
1014 return(0);
1015
1016 v[0] = -v[0];
1017 v[1] = -v[1];
1018 v[2] = -v[2];
1019
1020 return(1);
1021 }
1022
1023
1024 static int
1025 ab_getndxR( /* get index corresponding to the reverse vector */
1026 FVECT v,
1027 void *p
1028 )
1029 {
1030 FVECT v2;
1031
1032 v2[0] = -v[0];
1033 v2[1] = -v[1];
1034 v2[2] = -v[2];
1035
1036 return ab_getndx(v2, p);
1037 }
1038
1039
1040 static void
1041 load_angle_basis( /* load custom BSDF angle basis */
1042 ezxml_t wab
1043 )
1044 {
1045 char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
1046 ezxml_t wbb;
1047 int i;
1048
1049 if (!abname || !*abname)
1050 return;
1051 for (i = nabases; i--; )
1052 if (!strcasecmp(abname, abase_list[i].name))
1053 return; /* assume it's the same */
1054 if (nabases >= MAXABASES)
1055 error(INTERNAL, "too many angle bases");
1056 strcpy(abase_list[nabases].name, abname);
1057 abase_list[nabases].nangles = 0;
1058 for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
1059 wbb != NULL; i++, wbb = wbb->next) {
1060 if (i >= MAXLATS)
1061 error(INTERNAL, "too many latitudes in custom basis");
1062 abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
1063 ezxml_child(ezxml_child(wbb,
1064 "ThetaBounds"), "UpperTheta")));
1065 if (!i)
1066 abase_list[nabases].lat[i].tmin =
1067 -abase_list[nabases].lat[i+1].tmin;
1068 else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
1069 "ThetaBounds"), "LowerTheta"))),
1070 abase_list[nabases].lat[i].tmin))
1071 error(WARNING, "theta values disagree in custom basis");
1072 abase_list[nabases].nangles +=
1073 abase_list[nabases].lat[i].nphis =
1074 atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
1075 }
1076 abase_list[nabases++].lat[i].nphis = 0;
1077 }
1078
1079
1080 static void
1081 load_geometry( /* load geometric dimensions and description (if any) */
1082 struct BSDF_data *dp,
1083 ezxml_t wdb
1084 )
1085 {
1086 ezxml_t geom;
1087 double cfact;
1088 const char *fmt, *mgfstr;
1089
1090 dp->dim[0] = dp->dim[1] = dp->dim[2] = 0;
1091 dp->mgf = NULL;
1092 if ((geom = ezxml_child(wdb, "Width")) != NULL)
1093 dp->dim[0] = atof(ezxml_txt(geom)) *
1094 to_meters(ezxml_attr(geom, "unit"));
1095 if ((geom = ezxml_child(wdb, "Height")) != NULL)
1096 dp->dim[1] = atof(ezxml_txt(geom)) *
1097 to_meters(ezxml_attr(geom, "unit"));
1098 if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
1099 dp->dim[2] = atof(ezxml_txt(geom)) *
1100 to_meters(ezxml_attr(geom, "unit"));
1101 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
1102 (mgfstr = ezxml_txt(geom)) == NULL)
1103 return;
1104 if ((fmt = ezxml_attr(geom, "format")) != NULL &&
1105 strcasecmp(fmt, "MGF")) {
1106 sprintf(errmsg, "unrecognized geometry format '%s'", fmt);
1107 error(WARNING, errmsg);
1108 return;
1109 }
1110 cfact = to_meters(ezxml_attr(geom, "unit"));
1111 dp->mgf = (char *)malloc(strlen(mgfstr)+32);
1112 if (dp->mgf == NULL)
1113 error(SYSTEM, "out of memory in load_geometry");
1114 if (cfact < 0.99 || cfact > 1.01)
1115 sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
1116 else
1117 strcpy(dp->mgf, mgfstr);
1118 }
1119
1120
1121 static void
1122 load_bsdf_data( /* load BSDF distribution for this wavelength */
1123 struct BSDF_data *dp,
1124 ezxml_t wdb
1125 )
1126 {
1127 char *cbasis = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
1128 char *rbasis = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
1129 char *sdata;
1130 int i;
1131
1132 if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) {
1133 error(WARNING, "missing column/row basis for BSDF");
1134 return;
1135 }
1136 for (i = nabases; i--; )
1137 if (!strcasecmp(cbasis, abase_list[i].name)) {
1138 dp->ninc = abase_list[i].nangles;
1139 dp->ib_priv = (void *)&abase_list[i];
1140 dp->ib_vec = ab_getvecR;
1141 dp->ib_ndx = ab_getndxR;
1142 dp->ib_ohm = ab_getohm;
1143 break;
1144 }
1145 if (i < 0) {
1146 sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis);
1147 error(WARNING, errmsg);
1148 return;
1149 }
1150 for (i = nabases; i--; )
1151 if (!strcasecmp(rbasis, abase_list[i].name)) {
1152 dp->nout = abase_list[i].nangles;
1153 dp->ob_priv = (void *)&abase_list[i];
1154 dp->ob_vec = ab_getvec;
1155 dp->ob_ndx = ab_getndx;
1156 dp->ob_ohm = ab_getohm;
1157 break;
1158 }
1159 if (i < 0) {
1160 sprintf(errmsg, "undefined RowAngleBasis '%s'", rbasis);
1161 error(WARNING, errmsg);
1162 return;
1163 }
1164 /* read BSDF data */
1165 sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
1166 if (!sdata || !*sdata) {
1167 error(WARNING, "missing BSDF ScatteringData");
1168 return;
1169 }
1170 dp->bsdf = (float *)malloc(sizeof(float)*dp->ninc*dp->nout);
1171 if (dp->bsdf == NULL)
1172 error(SYSTEM, "out of memory in load_bsdf_data");
1173 for (i = 0; i < dp->ninc*dp->nout; i++) {
1174 char *sdnext = fskip(sdata);
1175 if (sdnext == NULL) {
1176 error(WARNING, "bad/missing BSDF ScatteringData");
1177 free(dp->bsdf); dp->bsdf = NULL;
1178 return;
1179 }
1180 while (*sdnext && isspace(*sdnext))
1181 sdnext++;
1182 if (*sdnext == ',') sdnext++;
1183 dp->bsdf[i] = atof(sdata);
1184 sdata = sdnext;
1185 }
1186 while (isspace(*sdata))
1187 sdata++;
1188 if (*sdata) {
1189 sprintf(errmsg, "%d extra characters after BSDF ScatteringData",
1190 (int)strlen(sdata));
1191 error(WARNING, errmsg);
1192 }
1193 }
1194
1195
1196 static int
1197 check_bsdf_data( /* check that BSDF data is sane */
1198 struct BSDF_data *dp
1199 )
1200 {
1201 double *omega_iarr, *omega_oarr;
1202 double dom, hemi_total, full_total;
1203 int nneg;
1204 FVECT v;
1205 int i, o;
1206
1207 if (dp == NULL || dp->bsdf == NULL)
1208 return(0);
1209 omega_iarr = (double *)calloc(dp->ninc, sizeof(double));
1210 omega_oarr = (double *)calloc(dp->nout, sizeof(double));
1211 if ((omega_iarr == NULL) | (omega_oarr == NULL))
1212 error(SYSTEM, "out of memory in check_bsdf_data");
1213 /* incoming projected solid angles */
1214 hemi_total = .0;
1215 for (i = dp->ninc; i--; ) {
1216 dom = getBSDF_incohm(dp,i);
1217 if (dom <= 0) {
1218 error(WARNING, "zero/negative incoming solid angle");
1219 continue;
1220 }
1221 if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) {
1222 error(WARNING, "illegal incoming BSDF direction");
1223 free(omega_iarr); free(omega_oarr);
1224 return(0);
1225 }
1226 hemi_total += omega_iarr[i] = dom * -v[2];
1227 }
1228 if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1229 sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%",
1230 100.*(hemi_total/PI - 1.));
1231 error(WARNING, errmsg);
1232 }
1233 dom = PI / hemi_total; /* fix normalization */
1234 for (i = dp->ninc; i--; )
1235 omega_iarr[i] *= dom;
1236 /* outgoing projected solid angles */
1237 hemi_total = .0;
1238 for (o = dp->nout; o--; ) {
1239 dom = getBSDF_outohm(dp,o);
1240 if (dom <= 0) {
1241 error(WARNING, "zero/negative outgoing solid angle");
1242 continue;
1243 }
1244 if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) {
1245 error(WARNING, "illegal outgoing BSDF direction");
1246 free(omega_iarr); free(omega_oarr);
1247 return(0);
1248 }
1249 hemi_total += omega_oarr[o] = dom * v[2];
1250 }
1251 if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1252 sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%",
1253 100.*(hemi_total/PI - 1.));
1254 error(WARNING, errmsg);
1255 }
1256 dom = PI / hemi_total; /* fix normalization */
1257 for (o = dp->nout; o--; )
1258 omega_oarr[o] *= dom;
1259 nneg = 0; /* check outgoing totals */
1260 for (i = 0; i < dp->ninc; i++) {
1261 hemi_total = .0;
1262 for (o = dp->nout; o--; ) {
1263 double f = BSDF_value(dp,i,o);
1264 if (f >= 0)
1265 hemi_total += f*omega_oarr[o];
1266 else {
1267 nneg += (f < -FTINY);
1268 BSDF_value(dp,i,o) = .0f;
1269 }
1270 }
1271 if (hemi_total > 1.01) {
1272 sprintf(errmsg,
1273 "incoming BSDF direction %d passes %.1f%% of light",
1274 i, 100.*hemi_total);
1275 error(WARNING, errmsg);
1276 }
1277 }
1278 if (nneg) {
1279 sprintf(errmsg, "%d negative BSDF values (ignored)", nneg);
1280 error(WARNING, errmsg);
1281 }
1282 full_total = .0; /* reverse roles and check again */
1283 for (o = 0; o < dp->nout; o++) {
1284 hemi_total = .0;
1285 for (i = dp->ninc; i--; )
1286 hemi_total += BSDF_value(dp,i,o) * omega_iarr[i];
1287
1288 if (hemi_total > 1.01) {
1289 sprintf(errmsg,
1290 "outgoing BSDF direction %d collects %.1f%% of light",
1291 o, 100.*hemi_total);
1292 error(WARNING, errmsg);
1293 }
1294 full_total += hemi_total*omega_oarr[o];
1295 }
1296 full_total /= PI;
1297 if (full_total > 1.00001) {
1298 sprintf(errmsg, "BSDF transfers %.4f%% of light",
1299 100.*full_total);
1300 error(WARNING, errmsg);
1301 }
1302 free(omega_iarr); free(omega_oarr);
1303 return(1);
1304 }
1305
1306
1307 struct BSDF_data *
1308 load_BSDF( /* load BSDF data from file */
1309 char *fname
1310 )
1311 {
1312 char *path;
1313 ezxml_t fl, wtl, wld, wdb;
1314 struct BSDF_data *dp;
1315
1316 path = getpath(fname, getrlibpath(), R_OK);
1317 if (path == NULL) {
1318 sprintf(errmsg, "cannot find BSDF file \"%s\"", fname);
1319 error(WARNING, errmsg);
1320 return(NULL);
1321 }
1322 fl = ezxml_parse_file(path);
1323 if (fl == NULL) {
1324 sprintf(errmsg, "cannot open BSDF \"%s\"", path);
1325 error(WARNING, errmsg);
1326 return(NULL);
1327 }
1328 if (ezxml_error(fl)[0]) {
1329 sprintf(errmsg, "BSDF \"%s\" %s", path, ezxml_error(fl));
1330 error(WARNING, errmsg);
1331 ezxml_free(fl);
1332 return(NULL);
1333 }
1334 if (strcmp(ezxml_name(fl), "WindowElement")) {
1335 sprintf(errmsg,
1336 "BSDF \"%s\": top level node not 'WindowElement'",
1337 path);
1338 error(WARNING, errmsg);
1339 ezxml_free(fl);
1340 return(NULL);
1341 }
1342 wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
1343 if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl,
1344 "DataDefinition"), "IncidentDataStructure")),
1345 "Columns")) {
1346 sprintf(errmsg,
1347 "BSDF \"%s\": unsupported IncidentDataStructure",
1348 path);
1349 error(WARNING, errmsg);
1350 ezxml_free(fl);
1351 return(NULL);
1352 }
1353 for (wld = ezxml_child(ezxml_child(wtl,
1354 "DataDefinition"), "AngleBasis");
1355 wld != NULL; wld = wld->next)
1356 load_angle_basis(wld);
1357 dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data));
1358 load_geometry(dp, ezxml_child(wtl, "Material"));
1359 for (wld = ezxml_child(wtl, "WavelengthData");
1360 wld != NULL; wld = wld->next) {
1361 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1362 "Visible"))
1363 continue;
1364 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1365 wdb != NULL; wdb = wdb->next)
1366 if (!strcasecmp(ezxml_txt(ezxml_child(wdb,
1367 "WavelengthDataDirection")),
1368 "Transmission Front"))
1369 break;
1370 if (wdb != NULL) { /* load front BTDF */
1371 load_bsdf_data(dp, wdb);
1372 break; /* ignore the rest */
1373 }
1374 }
1375 ezxml_free(fl); /* done with XML file */
1376 if (!check_bsdf_data(dp)) {
1377 sprintf(errmsg, "bad/missing BTDF data in \"%s\"", path);
1378 error(WARNING, errmsg);
1379 free_BSDF(dp);
1380 dp = NULL;
1381 }
1382 return(dp);
1383 }
1384
1385
1386 void
1387 free_BSDF( /* free BSDF data structure */
1388 struct BSDF_data *b
1389 )
1390 {
1391 if (b == NULL)
1392 return;
1393 if (b->mgf != NULL)
1394 free(b->mgf);
1395 if (b->bsdf != NULL)
1396 free(b->bsdf);
1397 free(b);
1398 }
1399
1400
1401 int
1402 r_BSDF_incvec( /* compute random input vector at given location */
1403 FVECT v,
1404 struct BSDF_data *b,
1405 int i,
1406 double rv,
1407 MAT4 xm
1408 )
1409 {
1410 FVECT pert;
1411 double rad;
1412 int j;
1413
1414 if (!getBSDF_incvec(v, b, i))
1415 return(0);
1416 rad = sqrt(getBSDF_incohm(b, i) / PI);
1417 multisamp(pert, 3, rv);
1418 for (j = 0; j < 3; j++)
1419 v[j] += rad*(2.*pert[j] - 1.);
1420 if (xm != NULL)
1421 multv3(v, v, xm);
1422 return(normalize(v) != 0.0);
1423 }
1424
1425
1426 int
1427 r_BSDF_outvec( /* compute random output vector at given location */
1428 FVECT v,
1429 struct BSDF_data *b,
1430 int o,
1431 double rv,
1432 MAT4 xm
1433 )
1434 {
1435 FVECT pert;
1436 double rad;
1437 int j;
1438
1439 if (!getBSDF_outvec(v, b, o))
1440 return(0);
1441 rad = sqrt(getBSDF_outohm(b, o) / PI);
1442 multisamp(pert, 3, rv);
1443 for (j = 0; j < 3; j++)
1444 v[j] += rad*(2.*pert[j] - 1.);
1445 if (xm != NULL)
1446 multv3(v, v, xm);
1447 return(normalize(v) != 0.0);
1448 }
1449
1450
1451 static int
1452 addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */
1453 char *xfarg[],
1454 FVECT xp,
1455 FVECT yp,
1456 FVECT zp
1457 )
1458 {
1459 static char bufs[3][16];
1460 int bn = 0;
1461 char **xfp = xfarg;
1462 double theta;
1463
1464 if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
1465 /* Special case for X' along Z-axis */
1466 theta = -atan2(yp[0], yp[1]);
1467 *xfp++ = "-ry";
1468 *xfp++ = xp[2] < 0.0 ? "90" : "-90";
1469 *xfp++ = "-rz";
1470 sprintf(bufs[bn], "%f", theta*(180./PI));
1471 *xfp++ = bufs[bn++];
1472 return(xfp - xfarg);
1473 }
1474 theta = atan2(yp[2], zp[2]);
1475 if (!FEQ(theta,0.0)) {
1476 *xfp++ = "-rx";
1477 sprintf(bufs[bn], "%f", theta*(180./PI));
1478 *xfp++ = bufs[bn++];
1479 }
1480 theta = asin(-xp[2]);
1481 if (!FEQ(theta,0.0)) {
1482 *xfp++ = "-ry";
1483 sprintf(bufs[bn], " %f", theta*(180./PI));
1484 *xfp++ = bufs[bn++];
1485 }
1486 theta = atan2(xp[1], xp[0]);
1487 if (!FEQ(theta,0.0)) {
1488 *xfp++ = "-rz";
1489 sprintf(bufs[bn], "%f", theta*(180./PI));
1490 *xfp++ = bufs[bn++];
1491 }
1492 *xfp = NULL;
1493 return(xfp - xfarg);
1494 }
1495
1496
1497 int
1498 getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */
1499 MAT4 xm,
1500 FVECT nrm,
1501 UpDir ud,
1502 char *xfbuf
1503 )
1504 {
1505 char *xfargs[7];
1506 XF myxf;
1507 FVECT updir, xdest, ydest;
1508 int i;
1509
1510 updir[0] = updir[1] = updir[2] = 0.;
1511 switch (ud) {
1512 case UDzneg:
1513 updir[2] = -1.;
1514 break;
1515 case UDyneg:
1516 updir[1] = -1.;
1517 break;
1518 case UDxneg:
1519 updir[0] = -1.;
1520 break;
1521 case UDxpos:
1522 updir[0] = 1.;
1523 break;
1524 case UDypos:
1525 updir[1] = 1.;
1526 break;
1527 case UDzpos:
1528 updir[2] = 1.;
1529 break;
1530 case UDunknown:
1531 return(0);
1532 }
1533 fcross(xdest, updir, nrm);
1534 if (normalize(xdest) == 0.0)
1535 return(0);
1536 fcross(ydest, nrm, xdest);
1537 xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs);
1538 copymat4(xm, myxf.xfm);
1539 if (xfbuf == NULL)
1540 return(1);
1541 /* return xf arguments as well */
1542 for (i = 0; xfargs[i] != NULL; i++) {
1543 *xfbuf++ = ' ';
1544 strcpy(xfbuf, xfargs[i]);
1545 while (*xfbuf) ++xfbuf;
1546 }
1547 return(1);
1548 }
1549
1550 /*######### END DEPRECATED ROUTINES #######*/
1551 /*################################################################*/