ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.36
Committed: Sat Sep 17 22:09:33 2011 UTC (12 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad4R1
Changes since 2.35: +4 -2 lines
Log Message:
Added missing call to free EZXML structures on error

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf.c,v 2.35 2011/08/21 22:38:12 greg Exp $";
3 #endif
4 /*
5 * bsdf.c
6 *
7 * Definitions for bidirectional scattering distribution functions.
8 *
9 * Created by Greg Ward on 1/10/11.
10 *
11 */
12
13 #define _USE_MATH_DEFINES
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include <math.h>
18 #include <ctype.h>
19 #include "ezxml.h"
20 #include "hilbert.h"
21 #include "bsdf.h"
22 #include "bsdf_m.h"
23 #include "bsdf_t.h"
24
25 /* English ASCII strings corresponding to ennumerated errors */
26 const char *SDerrorEnglish[] = {
27 "No error",
28 "Memory error",
29 "File input/output error",
30 "File format error",
31 "Illegal argument",
32 "Invalid data",
33 "Unsupported feature",
34 "Internal program error",
35 "Unknown error"
36 };
37
38 /* Additional information on last error (ASCII English) */
39 char SDerrorDetail[256];
40
41 /* Cache of loaded BSDFs */
42 struct SDCache_s *SDcacheList = NULL;
43
44 /* Retain BSDFs in cache list */
45 int SDretainSet = SDretainNone;
46
47 /* Report any error to the indicated stream (in English) */
48 SDError
49 SDreportEnglish(SDError ec, FILE *fp)
50 {
51 if (!ec)
52 return SDEnone;
53 if ((ec < SDEnone) | (ec > SDEunknown)) {
54 SDerrorDetail[0] = '\0';
55 ec = SDEunknown;
56 }
57 if (fp == NULL)
58 return ec;
59 fputs(SDerrorEnglish[ec], fp);
60 if (SDerrorDetail[0]) {
61 fputs(": ", fp);
62 fputs(SDerrorDetail, fp);
63 }
64 fputc('\n', fp);
65 if (fp != stderr)
66 fflush(fp);
67 return ec;
68 }
69
70 static double
71 to_meters( /* return factor to convert given unit to meters */
72 const char *unit
73 )
74 {
75 if (unit == NULL) return(1.); /* safe assumption? */
76 if (!strcasecmp(unit, "Meter")) return(1.);
77 if (!strcasecmp(unit, "Foot")) return(.3048);
78 if (!strcasecmp(unit, "Inch")) return(.0254);
79 if (!strcasecmp(unit, "Centimeter")) return(.01);
80 if (!strcasecmp(unit, "Millimeter")) return(.001);
81 sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
82 return(-1.);
83 }
84
85 /* Load geometric dimensions and description (if any) */
86 static SDError
87 SDloadGeometry(SDData *sd, ezxml_t wdb)
88 {
89 ezxml_t geom;
90 double cfact;
91 const char *fmt, *mgfstr;
92
93 if (wdb == NULL) /* no geometry section? */
94 return SDEnone;
95 sd->dim[0] = sd->dim[1] = sd->dim[2] = .0;
96 if ((geom = ezxml_child(wdb, "Width")) != NULL)
97 sd->dim[0] = atof(ezxml_txt(geom)) *
98 to_meters(ezxml_attr(geom, "unit"));
99 if ((geom = ezxml_child(wdb, "Height")) != NULL)
100 sd->dim[1] = atof(ezxml_txt(geom)) *
101 to_meters(ezxml_attr(geom, "unit"));
102 if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
103 sd->dim[2] = atof(ezxml_txt(geom)) *
104 to_meters(ezxml_attr(geom, "unit"));
105 if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) {
106 sprintf(SDerrorDetail, "Negative size in \"%s\"", sd->name);
107 return SDEdata;
108 }
109 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
110 (mgfstr = ezxml_txt(geom)) == NULL)
111 return SDEnone;
112 while (isspace(*mgfstr))
113 ++mgfstr;
114 if (!*mgfstr)
115 return SDEnone;
116 if ((fmt = ezxml_attr(geom, "format")) != NULL &&
117 strcasecmp(fmt, "MGF")) {
118 sprintf(SDerrorDetail,
119 "Unrecognized geometry format '%s' in \"%s\"",
120 fmt, sd->name);
121 return SDEsupport;
122 }
123 cfact = to_meters(ezxml_attr(geom, "unit"));
124 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
125 if (sd->mgf == NULL) {
126 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
127 return SDEmemory;
128 }
129 if (cfact < 0.99 || cfact > 1.01)
130 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
131 else
132 strcpy(sd->mgf, mgfstr);
133 return SDEnone;
134 }
135
136 /* Load a BSDF struct from the given file (free first and keep name) */
137 SDError
138 SDloadFile(SDData *sd, const char *fname)
139 {
140 SDError lastErr;
141 ezxml_t fl, wtl;
142
143 if ((sd == NULL) | (fname == NULL || !*fname))
144 return SDEargument;
145 /* free old data, keeping name */
146 SDfreeBSDF(sd);
147 /* parse XML file */
148 fl = ezxml_parse_file(fname);
149 if (fl == NULL) {
150 sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
151 return SDEfile;
152 }
153 if (ezxml_error(fl)[0]) {
154 sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
155 ezxml_free(fl);
156 return SDEformat;
157 }
158 if (strcmp(ezxml_name(fl), "WindowElement")) {
159 sprintf(SDerrorDetail,
160 "BSDF \"%s\": top level node not 'WindowElement'",
161 sd->name);
162 ezxml_free(fl);
163 return SDEformat;
164 }
165 wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
166 if (wtl == NULL) {
167 sprintf(SDerrorDetail, "BSDF \"%s\": no optical layer'",
168 sd->name);
169 ezxml_free(fl);
170 return SDEformat;
171 }
172 /* load geometry if present */
173 lastErr = SDloadGeometry(sd, ezxml_child(wtl, "Material"));
174 if (lastErr) {
175 ezxml_free(fl);
176 return lastErr;
177 }
178 /* try loading variable resolution data */
179 lastErr = SDloadTre(sd, wtl);
180 /* check our result */
181 if (lastErr == SDEsupport) /* try matrix BSDF if not tree data */
182 lastErr = SDloadMtx(sd, wtl);
183
184 /* done with XML file */
185 ezxml_free(fl);
186
187 if (lastErr) { /* was there a load error? */
188 SDfreeBSDF(sd);
189 return lastErr;
190 }
191 /* remove any insignificant components */
192 if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
193 SDfreeSpectralDF(sd->rf); sd->rf = NULL;
194 }
195 if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
196 SDfreeSpectralDF(sd->rb); sd->rb = NULL;
197 }
198 if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
199 SDfreeSpectralDF(sd->tf); sd->tf = NULL;
200 }
201 /* return success */
202 return SDEnone;
203 }
204
205 /* Allocate new spectral distribution function */
206 SDSpectralDF *
207 SDnewSpectralDF(int nc)
208 {
209 SDSpectralDF *df;
210
211 if (nc <= 0) {
212 strcpy(SDerrorDetail, "Zero component spectral DF request");
213 return NULL;
214 }
215 df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
216 (nc-1)*sizeof(SDComponent));
217 if (df == NULL) {
218 sprintf(SDerrorDetail,
219 "Cannot allocate %d component spectral DF", nc);
220 return NULL;
221 }
222 df->minProjSA = .0;
223 df->maxHemi = .0;
224 df->ncomp = nc;
225 memset(df->comp, 0, nc*sizeof(SDComponent));
226 return df;
227 }
228
229 /* Free cached cumulative distributions for BSDF component */
230 void
231 SDfreeCumulativeCache(SDSpectralDF *df)
232 {
233 int n;
234 SDCDst *cdp;
235
236 if (df == NULL)
237 return;
238 for (n = df->ncomp; n-- > 0; )
239 while ((cdp = df->comp[n].cdList) != NULL) {
240 df->comp[n].cdList = cdp->next;
241 free(cdp);
242 }
243 }
244
245 /* Free a spectral distribution function */
246 void
247 SDfreeSpectralDF(SDSpectralDF *df)
248 {
249 int n;
250
251 if (df == NULL)
252 return;
253 SDfreeCumulativeCache(df);
254 for (n = df->ncomp; n-- > 0; )
255 if (df->comp[n].dist != NULL)
256 (*df->comp[n].func->freeSC)(df->comp[n].dist);
257 free(df);
258 }
259
260 /* Shorten file path to useable BSDF name, removing suffix */
261 void
262 SDclipName(char *res, const char *fname)
263 {
264 const char *cp, *dot = NULL;
265
266 for (cp = fname; *cp; cp++)
267 if (*cp == '.')
268 dot = cp;
269 if ((dot == NULL) | (dot < fname+2))
270 dot = cp;
271 if (dot - fname >= SDnameLn)
272 fname = dot - SDnameLn + 1;
273 while (fname < dot)
274 *res++ = *fname++;
275 *res = '\0';
276 }
277
278 /* Initialize an unused BSDF struct (simply clears to zeroes) */
279 void
280 SDclearBSDF(SDData *sd, const char *fname)
281 {
282 if (sd == NULL)
283 return;
284 memset(sd, 0, sizeof(SDData));
285 if (fname == NULL)
286 return;
287 SDclipName(sd->name, fname);
288 }
289
290 /* Free data associated with BSDF struct */
291 void
292 SDfreeBSDF(SDData *sd)
293 {
294 if (sd == NULL)
295 return;
296 if (sd->mgf != NULL) {
297 free(sd->mgf);
298 sd->mgf = NULL;
299 }
300 if (sd->rf != NULL) {
301 SDfreeSpectralDF(sd->rf);
302 sd->rf = NULL;
303 }
304 if (sd->rb != NULL) {
305 SDfreeSpectralDF(sd->rb);
306 sd->rb = NULL;
307 }
308 if (sd->tf != NULL) {
309 SDfreeSpectralDF(sd->tf);
310 sd->tf = NULL;
311 }
312 sd->rLambFront.cieY = .0;
313 sd->rLambFront.spec.flags = 0;
314 sd->rLambBack.cieY = .0;
315 sd->rLambBack.spec.flags = 0;
316 sd->tLamb.cieY = .0;
317 sd->tLamb.spec.flags = 0;
318 }
319
320 /* Find writeable BSDF by name, or allocate new cache entry if absent */
321 SDData *
322 SDgetCache(const char *bname)
323 {
324 struct SDCache_s *sdl;
325 char sdnam[SDnameLn];
326
327 if (bname == NULL)
328 return NULL;
329
330 SDclipName(sdnam, bname);
331 for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
332 if (!strcmp(sdl->bsdf.name, sdnam)) {
333 sdl->refcnt++;
334 return &sdl->bsdf;
335 }
336
337 sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
338 if (sdl == NULL)
339 return NULL;
340
341 strcpy(sdl->bsdf.name, sdnam);
342 sdl->next = SDcacheList;
343 SDcacheList = sdl;
344
345 sdl->refcnt = 1;
346 return &sdl->bsdf;
347 }
348
349 /* Get loaded BSDF from cache (or load and cache it on first call) */
350 /* Report any problem to stderr and return NULL on failure */
351 const SDData *
352 SDcacheFile(const char *fname)
353 {
354 SDData *sd;
355 SDError ec;
356
357 if (fname == NULL || !*fname)
358 return NULL;
359 SDerrorDetail[0] = '\0';
360 if ((sd = SDgetCache(fname)) == NULL) {
361 SDreportEnglish(SDEmemory, stderr);
362 return NULL;
363 }
364 if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
365 SDreportEnglish(ec, stderr);
366 SDfreeCache(sd);
367 return NULL;
368 }
369 return sd;
370 }
371
372 /* Free a BSDF from our cache (clear all if NULL) */
373 void
374 SDfreeCache(const SDData *sd)
375 {
376 struct SDCache_s *sdl, *sdLast = NULL;
377
378 if (sd == NULL) { /* free entire list */
379 while ((sdl = SDcacheList) != NULL) {
380 SDcacheList = sdl->next;
381 SDfreeBSDF(&sdl->bsdf);
382 free(sdl);
383 }
384 return;
385 }
386 for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
387 if (&sdl->bsdf == sd)
388 break;
389 if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
390 return; /* missing or still in use */
391 /* keep unreferenced data? */
392 if (SDisLoaded(sd) && SDretainSet) {
393 if (SDretainSet == SDretainAll)
394 return; /* keep everything */
395 /* else free cumulative data */
396 SDfreeCumulativeCache(sd->rf);
397 SDfreeCumulativeCache(sd->rb);
398 SDfreeCumulativeCache(sd->tf);
399 return;
400 }
401 /* remove from list and free */
402 if (sdLast == NULL)
403 SDcacheList = sdl->next;
404 else
405 sdLast->next = sdl->next;
406 SDfreeBSDF(&sdl->bsdf);
407 free(sdl);
408 }
409
410 /* Sample an individual BSDF component */
411 SDError
412 SDsampComponent(SDValue *sv, FVECT ioVec, double randX, SDComponent *sdc)
413 {
414 float coef[SDmaxCh];
415 SDError ec;
416 FVECT inVec;
417 const SDCDst *cd;
418 double d;
419 int n;
420 /* check arguments */
421 if ((sv == NULL) | (ioVec == NULL) | (sdc == NULL))
422 return SDEargument;
423 /* get cumulative distribution */
424 VCOPY(inVec, ioVec);
425 cd = (*sdc->func->getCDist)(inVec, sdc);
426 if (cd == NULL)
427 return SDEmemory;
428 if (cd->cTotal <= 1e-6) { /* anything to sample? */
429 sv->spec = c_dfcolor;
430 sv->cieY = .0;
431 memset(ioVec, 0, 3*sizeof(double));
432 return SDEnone;
433 }
434 sv->cieY = cd->cTotal;
435 /* compute sample direction */
436 ec = (*sdc->func->sampCDist)(ioVec, randX, cd);
437 if (ec)
438 return ec;
439 /* get BSDF color */
440 n = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
441 if (n <= 0) {
442 strcpy(SDerrorDetail, "BSDF sample value error");
443 return SDEinternal;
444 }
445 sv->spec = sdc->cspec[0];
446 d = coef[0];
447 while (--n) {
448 c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
449 d += coef[n];
450 }
451 /* make sure everything is set */
452 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
453 return SDEnone;
454 }
455
456 #define MS_MAXDIM 15
457
458 /* Convert 1-dimensional random variable to N-dimensional */
459 void
460 SDmultiSamp(double t[], int n, double randX)
461 {
462 unsigned nBits;
463 double scale;
464 bitmask_t ndx, coord[MS_MAXDIM];
465
466 while (n > MS_MAXDIM) /* punt for higher dimensions */
467 t[--n] = rand()*(1./(RAND_MAX+.5));
468 nBits = (8*sizeof(bitmask_t) - 1) / n;
469 ndx = randX * (double)((bitmask_t)1 << (nBits*n));
470 /* get coordinate on Hilbert curve */
471 hilbert_i2c(n, nBits, ndx, coord);
472 /* convert back to [0,1) range */
473 scale = 1. / (double)((bitmask_t)1 << nBits);
474 while (n--)
475 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
476 }
477
478 #undef MS_MAXDIM
479
480 /* Generate diffuse hemispherical sample */
481 static void
482 SDdiffuseSamp(FVECT outVec, int outFront, double randX)
483 {
484 /* convert to position on hemisphere */
485 SDmultiSamp(outVec, 2, randX);
486 SDsquare2disk(outVec, outVec[0], outVec[1]);
487 outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
488 if (outVec[2] > 0) /* a bit of paranoia */
489 outVec[2] = sqrt(outVec[2]);
490 if (!outFront) /* going out back? */
491 outVec[2] = -outVec[2];
492 }
493
494 /* Query projected solid angle coverage for non-diffuse BSDF direction */
495 SDError
496 SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2,
497 int qflags, const SDData *sd)
498 {
499 SDSpectralDF *rdf, *tdf;
500 SDError ec;
501 int i;
502 /* check arguments */
503 if ((projSA == NULL) | (v1 == NULL) | (sd == NULL))
504 return SDEargument;
505 /* initialize extrema */
506 switch (qflags) {
507 case SDqueryMax:
508 projSA[0] = .0;
509 break;
510 case SDqueryMin+SDqueryMax:
511 projSA[1] = .0;
512 /* fall through */
513 case SDqueryMin:
514 projSA[0] = 10.;
515 break;
516 case 0:
517 return SDEargument;
518 }
519 if (v1[2] > 0) /* front surface query? */
520 rdf = sd->rf;
521 else
522 rdf = sd->rb;
523 tdf = sd->tf;
524 if (v2 != NULL) /* bidirectional? */
525 if (v1[2] > 0 ^ v2[2] > 0)
526 rdf = NULL;
527 else
528 tdf = NULL;
529 ec = SDEdata; /* run through components */
530 for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
531 ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2,
532 qflags, &rdf->comp[i]);
533 if (ec)
534 return ec;
535 }
536 for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) {
537 ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2,
538 qflags, &tdf->comp[i]);
539 if (ec)
540 return ec;
541 }
542 if (ec) { /* all diffuse? */
543 projSA[0] = M_PI;
544 if (qflags == SDqueryMin+SDqueryMax)
545 projSA[1] = M_PI;
546 }
547 return SDEnone;
548 }
549
550 /* Return BSDF for the given incident and scattered ray vectors */
551 SDError
552 SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
553 {
554 int inFront, outFront;
555 SDSpectralDF *sdf;
556 float coef[SDmaxCh];
557 int nch, i;
558 /* check arguments */
559 if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
560 return SDEargument;
561 /* whose side are we on? */
562 inFront = (inVec[2] > 0);
563 outFront = (outVec[2] > 0);
564 /* start with diffuse portion */
565 if (inFront & outFront) {
566 *sv = sd->rLambFront;
567 sdf = sd->rf;
568 } else if (!(inFront | outFront)) {
569 *sv = sd->rLambBack;
570 sdf = sd->rb;
571 } else /* inFront ^ outFront */ {
572 *sv = sd->tLamb;
573 sdf = sd->tf;
574 }
575 sv->cieY *= 1./M_PI;
576 /* add non-diffuse components */
577 i = (sdf != NULL) ? sdf->ncomp : 0;
578 while (i-- > 0) {
579 nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
580 &sdf->comp[i]);
581 while (nch-- > 0) {
582 c_cmix(&sv->spec, sv->cieY, &sv->spec,
583 coef[nch], &sdf->comp[i].cspec[nch]);
584 sv->cieY += coef[nch];
585 }
586 }
587 /* make sure everything is set */
588 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
589 return SDEnone;
590 }
591
592 /* Compute directional hemispherical scattering at this incident angle */
593 double
594 SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
595 {
596 double hsum;
597 SDSpectralDF *rdf;
598 const SDCDst *cd;
599 int i;
600 /* check arguments */
601 if ((inVec == NULL) | (sd == NULL))
602 return .0;
603 /* gather diffuse components */
604 if (inVec[2] > 0) {
605 hsum = sd->rLambFront.cieY;
606 rdf = sd->rf;
607 } else /* !inFront */ {
608 hsum = sd->rLambBack.cieY;
609 rdf = sd->rb;
610 }
611 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
612 hsum = .0;
613 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
614 hsum += sd->tLamb.cieY;
615 /* gather non-diffuse components */
616 i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
617 rdf != NULL) ? rdf->ncomp : 0;
618 while (i-- > 0) { /* non-diffuse reflection */
619 cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
620 if (cd != NULL)
621 hsum += cd->cTotal;
622 }
623 i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
624 sd->tf != NULL) ? sd->tf->ncomp : 0;
625 while (i-- > 0) { /* non-diffuse transmission */
626 cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]);
627 if (cd != NULL)
628 hsum += cd->cTotal;
629 }
630 return hsum;
631 }
632
633 /* Sample BSDF direction based on the given random variable */
634 SDError
635 SDsampBSDF(SDValue *sv, FVECT ioVec, double randX, int sflags, const SDData *sd)
636 {
637 SDError ec;
638 FVECT inVec;
639 int inFront;
640 SDSpectralDF *rdf;
641 double rdiff;
642 float coef[SDmaxCh];
643 int i, j, n, nr;
644 SDComponent *sdc;
645 const SDCDst **cdarr = NULL;
646 /* check arguments */
647 if ((sv == NULL) | (ioVec == NULL) | (sd == NULL) |
648 (randX < 0) | (randX >= 1.))
649 return SDEargument;
650 /* whose side are we on? */
651 VCOPY(inVec, ioVec);
652 inFront = (inVec[2] > 0);
653 /* remember diffuse portions */
654 if (inFront) {
655 *sv = sd->rLambFront;
656 rdf = sd->rf;
657 } else /* !inFront */ {
658 *sv = sd->rLambBack;
659 rdf = sd->rb;
660 }
661 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
662 sv->cieY = .0;
663 rdiff = sv->cieY;
664 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
665 sv->cieY += sd->tLamb.cieY;
666 /* gather non-diffuse components */
667 i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
668 rdf != NULL) ? rdf->ncomp : 0;
669 j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
670 sd->tf != NULL) ? sd->tf->ncomp : 0;
671 n = i + j;
672 if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
673 return SDEmemory;
674 while (j-- > 0) { /* non-diffuse transmission */
675 cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]);
676 if (cdarr[i+j] == NULL) {
677 free(cdarr);
678 return SDEmemory;
679 }
680 sv->cieY += cdarr[i+j]->cTotal;
681 }
682 while (i-- > 0) { /* non-diffuse reflection */
683 cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
684 if (cdarr[i] == NULL) {
685 free(cdarr);
686 return SDEmemory;
687 }
688 sv->cieY += cdarr[i]->cTotal;
689 }
690 if (sv->cieY <= 1e-6) { /* anything to sample? */
691 sv->cieY = .0;
692 memset(ioVec, 0, 3*sizeof(double));
693 return SDEnone;
694 }
695 /* scale random variable */
696 randX *= sv->cieY;
697 /* diffuse reflection? */
698 if (randX < rdiff) {
699 SDdiffuseSamp(ioVec, inFront, randX/rdiff);
700 goto done;
701 }
702 randX -= rdiff;
703 /* diffuse transmission? */
704 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
705 if (randX < sd->tLamb.cieY) {
706 sv->spec = sd->tLamb.spec;
707 SDdiffuseSamp(ioVec, !inFront, randX/sd->tLamb.cieY);
708 goto done;
709 }
710 randX -= sd->tLamb.cieY;
711 }
712 /* else one of cumulative dist. */
713 for (i = 0; i < n && randX < cdarr[i]->cTotal; i++)
714 randX -= cdarr[i]->cTotal;
715 if (i >= n)
716 return SDEinternal;
717 /* compute sample direction */
718 sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr];
719 ec = (*sdc->func->sampCDist)(ioVec, randX/cdarr[i]->cTotal, cdarr[i]);
720 if (ec)
721 return ec;
722 /* compute color */
723 j = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
724 if (j <= 0) {
725 sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
726 sd->name);
727 return SDEinternal;
728 }
729 sv->spec = sdc->cspec[0];
730 rdiff = coef[0];
731 while (--j) {
732 c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
733 rdiff += coef[j];
734 }
735 done:
736 if (cdarr != NULL)
737 free(cdarr);
738 /* make sure everything is set */
739 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
740 return SDEnone;
741 }
742
743 /* Compute World->BSDF transform from surface normal and up (Y) vector */
744 SDError
745 SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
746 {
747 if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
748 return SDEargument;
749 VCOPY(vMtx[2], sNrm);
750 if (normalize(vMtx[2]) == 0)
751 return SDEargument;
752 fcross(vMtx[0], uVec, vMtx[2]);
753 if (normalize(vMtx[0]) == 0)
754 return SDEargument;
755 fcross(vMtx[1], vMtx[2], vMtx[0]);
756 return SDEnone;
757 }
758
759 /* Compute inverse transform */
760 SDError
761 SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
762 {
763 RREAL mTmp[3][3];
764 double d;
765
766 if ((iMtx == NULL) | (vMtx == NULL))
767 return SDEargument;
768 /* compute determinant */
769 mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
770 mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
771 mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
772 d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
773 if (d == 0) {
774 strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
775 return SDEargument;
776 }
777 d = 1./d; /* invert matrix */
778 mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
779 mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
780 mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
781 mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
782 mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
783 mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
784 mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
785 memcpy(iMtx, mTmp, sizeof(mTmp));
786 return SDEnone;
787 }
788
789 /* Transform and normalize direction (column) vector */
790 SDError
791 SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
792 {
793 FVECT vTmp;
794
795 if ((resVec == NULL) | (inpVec == NULL))
796 return SDEargument;
797 if (vMtx == NULL) { /* assume they just want to normalize */
798 if (resVec != inpVec)
799 VCOPY(resVec, inpVec);
800 return (normalize(resVec) > 0) ? SDEnone : SDEargument;
801 }
802 vTmp[0] = DOT(vMtx[0], inpVec);
803 vTmp[1] = DOT(vMtx[1], inpVec);
804 vTmp[2] = DOT(vMtx[2], inpVec);
805 if (normalize(vTmp) == 0)
806 return SDEargument;
807 VCOPY(resVec, vTmp);
808 return SDEnone;
809 }
810
811 /*################################################################*/
812 /*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/
813
814 /*
815 * Routines for handling BSDF data
816 */
817
818 #include "standard.h"
819 #include "paths.h"
820
821 #define MAXLATS 46 /* maximum number of latitudes */
822
823 /* BSDF angle specification */
824 typedef struct {
825 char name[64]; /* basis name */
826 int nangles; /* total number of directions */
827 struct {
828 float tmin; /* starting theta */
829 short nphis; /* number of phis (0 term) */
830 } lat[MAXLATS+1]; /* latitudes */
831 } ANGLE_BASIS;
832
833 #define MAXABASES 7 /* limit on defined bases */
834
835 static ANGLE_BASIS abase_list[MAXABASES] = {
836 {
837 "LBNL/Klems Full", 145,
838 { {-5., 1},
839 {5., 8},
840 {15., 16},
841 {25., 20},
842 {35., 24},
843 {45., 24},
844 {55., 24},
845 {65., 16},
846 {75., 12},
847 {90., 0} }
848 }, {
849 "LBNL/Klems Half", 73,
850 { {-6.5, 1},
851 {6.5, 8},
852 {19.5, 12},
853 {32.5, 16},
854 {46.5, 20},
855 {61.5, 12},
856 {76.5, 4},
857 {90., 0} }
858 }, {
859 "LBNL/Klems Quarter", 41,
860 { {-9., 1},
861 {9., 8},
862 {27., 12},
863 {46., 12},
864 {66., 8},
865 {90., 0} }
866 }
867 };
868
869 static int nabases = 3; /* current number of defined bases */
870
871 #define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6)
872
873 static int
874 fequal(double a, double b)
875 {
876 if (b != 0)
877 a = a/b - 1.;
878 return((a <= 1e-6) & (a >= -1e-6));
879 }
880
881 /* Returns the name of the given tag */
882 #ifdef ezxml_name
883 #undef ezxml_name
884 static char *
885 ezxml_name(ezxml_t xml)
886 {
887 if (xml == NULL)
888 return(NULL);
889 return(xml->name);
890 }
891 #endif
892
893 /* Returns the given tag's character content or empty string if none */
894 #ifdef ezxml_txt
895 #undef ezxml_txt
896 static char *
897 ezxml_txt(ezxml_t xml)
898 {
899 if (xml == NULL)
900 return("");
901 return(xml->txt);
902 }
903 #endif
904
905
906 static int
907 ab_getvec( /* get vector for this angle basis index */
908 FVECT v,
909 int ndx,
910 void *p
911 )
912 {
913 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
914 int li;
915 double pol, azi, d;
916
917 if ((ndx < 0) | (ndx >= ab->nangles))
918 return(0);
919 for (li = 0; ndx >= ab->lat[li].nphis; li++)
920 ndx -= ab->lat[li].nphis;
921 pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin);
922 azi = 2.*PI*ndx/ab->lat[li].nphis;
923 v[2] = d = cos(pol);
924 d = sqrt(1. - d*d); /* sin(pol) */
925 v[0] = cos(azi)*d;
926 v[1] = sin(azi)*d;
927 return(1);
928 }
929
930
931 static int
932 ab_getndx( /* get index corresponding to the given vector */
933 FVECT v,
934 void *p
935 )
936 {
937 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
938 int li, ndx;
939 double pol, azi;
940
941 if ((v[2] < -1.0) | (v[2] > 1.0))
942 return(-1);
943 pol = 180.0/PI*acos(v[2]);
944 azi = 180.0/PI*atan2(v[1], v[0]);
945 if (azi < 0.0) azi += 360.0;
946 for (li = 1; ab->lat[li].tmin <= pol; li++)
947 if (!ab->lat[li].nphis)
948 return(-1);
949 --li;
950 ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
951 if (ndx >= ab->lat[li].nphis) ndx = 0;
952 while (li--)
953 ndx += ab->lat[li].nphis;
954 return(ndx);
955 }
956
957
958 static double
959 ab_getohm( /* get solid angle for this angle basis index */
960 int ndx,
961 void *p
962 )
963 {
964 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
965 int li;
966 double theta, theta1;
967
968 if ((ndx < 0) | (ndx >= ab->nangles))
969 return(0);
970 for (li = 0; ndx >= ab->lat[li].nphis; li++)
971 ndx -= ab->lat[li].nphis;
972 theta1 = PI/180. * ab->lat[li+1].tmin;
973 if (ab->lat[li].nphis == 1) { /* special case */
974 if (ab->lat[li].tmin > FTINY)
975 error(USER, "unsupported BSDF coordinate system");
976 return(2.*PI*(1. - cos(theta1)));
977 }
978 theta = PI/180. * ab->lat[li].tmin;
979 return(2.*PI*(cos(theta) - cos(theta1))/(double)ab->lat[li].nphis);
980 }
981
982
983 static int
984 ab_getvecR( /* get reverse vector for this angle basis index */
985 FVECT v,
986 int ndx,
987 void *p
988 )
989 {
990 if (!ab_getvec(v, ndx, p))
991 return(0);
992
993 v[0] = -v[0];
994 v[1] = -v[1];
995 v[2] = -v[2];
996
997 return(1);
998 }
999
1000
1001 static int
1002 ab_getndxR( /* get index corresponding to the reverse vector */
1003 FVECT v,
1004 void *p
1005 )
1006 {
1007 FVECT v2;
1008
1009 v2[0] = -v[0];
1010 v2[1] = -v[1];
1011 v2[2] = -v[2];
1012
1013 return ab_getndx(v2, p);
1014 }
1015
1016
1017 static void
1018 load_angle_basis( /* load custom BSDF angle basis */
1019 ezxml_t wab
1020 )
1021 {
1022 char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
1023 ezxml_t wbb;
1024 int i;
1025
1026 if (!abname || !*abname)
1027 return;
1028 for (i = nabases; i--; )
1029 if (!strcasecmp(abname, abase_list[i].name))
1030 return; /* assume it's the same */
1031 if (nabases >= MAXABASES)
1032 error(INTERNAL, "too many angle bases");
1033 strcpy(abase_list[nabases].name, abname);
1034 abase_list[nabases].nangles = 0;
1035 for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
1036 wbb != NULL; i++, wbb = wbb->next) {
1037 if (i >= MAXLATS)
1038 error(INTERNAL, "too many latitudes in custom basis");
1039 abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
1040 ezxml_child(ezxml_child(wbb,
1041 "ThetaBounds"), "UpperTheta")));
1042 if (!i)
1043 abase_list[nabases].lat[i].tmin =
1044 -abase_list[nabases].lat[i+1].tmin;
1045 else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
1046 "ThetaBounds"), "LowerTheta"))),
1047 abase_list[nabases].lat[i].tmin))
1048 error(WARNING, "theta values disagree in custom basis");
1049 abase_list[nabases].nangles +=
1050 abase_list[nabases].lat[i].nphis =
1051 atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
1052 }
1053 abase_list[nabases++].lat[i].nphis = 0;
1054 }
1055
1056
1057 static void
1058 load_geometry( /* load geometric dimensions and description (if any) */
1059 struct BSDF_data *dp,
1060 ezxml_t wdb
1061 )
1062 {
1063 ezxml_t geom;
1064 double cfact;
1065 const char *fmt, *mgfstr;
1066
1067 dp->dim[0] = dp->dim[1] = dp->dim[2] = 0;
1068 dp->mgf = NULL;
1069 if ((geom = ezxml_child(wdb, "Width")) != NULL)
1070 dp->dim[0] = atof(ezxml_txt(geom)) *
1071 to_meters(ezxml_attr(geom, "unit"));
1072 if ((geom = ezxml_child(wdb, "Height")) != NULL)
1073 dp->dim[1] = atof(ezxml_txt(geom)) *
1074 to_meters(ezxml_attr(geom, "unit"));
1075 if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
1076 dp->dim[2] = atof(ezxml_txt(geom)) *
1077 to_meters(ezxml_attr(geom, "unit"));
1078 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
1079 (mgfstr = ezxml_txt(geom)) == NULL)
1080 return;
1081 if ((fmt = ezxml_attr(geom, "format")) != NULL &&
1082 strcasecmp(fmt, "MGF")) {
1083 sprintf(errmsg, "unrecognized geometry format '%s'", fmt);
1084 error(WARNING, errmsg);
1085 return;
1086 }
1087 cfact = to_meters(ezxml_attr(geom, "unit"));
1088 dp->mgf = (char *)malloc(strlen(mgfstr)+32);
1089 if (dp->mgf == NULL)
1090 error(SYSTEM, "out of memory in load_geometry");
1091 if (cfact < 0.99 || cfact > 1.01)
1092 sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
1093 else
1094 strcpy(dp->mgf, mgfstr);
1095 }
1096
1097
1098 static void
1099 load_bsdf_data( /* load BSDF distribution for this wavelength */
1100 struct BSDF_data *dp,
1101 ezxml_t wdb
1102 )
1103 {
1104 char *cbasis = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
1105 char *rbasis = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
1106 char *sdata;
1107 int i;
1108
1109 if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) {
1110 error(WARNING, "missing column/row basis for BSDF");
1111 return;
1112 }
1113 for (i = nabases; i--; )
1114 if (!strcasecmp(cbasis, abase_list[i].name)) {
1115 dp->ninc = abase_list[i].nangles;
1116 dp->ib_priv = (void *)&abase_list[i];
1117 dp->ib_vec = ab_getvecR;
1118 dp->ib_ndx = ab_getndxR;
1119 dp->ib_ohm = ab_getohm;
1120 break;
1121 }
1122 if (i < 0) {
1123 sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis);
1124 error(WARNING, errmsg);
1125 return;
1126 }
1127 for (i = nabases; i--; )
1128 if (!strcasecmp(rbasis, abase_list[i].name)) {
1129 dp->nout = abase_list[i].nangles;
1130 dp->ob_priv = (void *)&abase_list[i];
1131 dp->ob_vec = ab_getvec;
1132 dp->ob_ndx = ab_getndx;
1133 dp->ob_ohm = ab_getohm;
1134 break;
1135 }
1136 if (i < 0) {
1137 sprintf(errmsg, "undefined RowAngleBasis '%s'", rbasis);
1138 error(WARNING, errmsg);
1139 return;
1140 }
1141 /* read BSDF data */
1142 sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
1143 if (!sdata || !*sdata) {
1144 error(WARNING, "missing BSDF ScatteringData");
1145 return;
1146 }
1147 dp->bsdf = (float *)malloc(sizeof(float)*dp->ninc*dp->nout);
1148 if (dp->bsdf == NULL)
1149 error(SYSTEM, "out of memory in load_bsdf_data");
1150 for (i = 0; i < dp->ninc*dp->nout; i++) {
1151 char *sdnext = fskip(sdata);
1152 if (sdnext == NULL) {
1153 error(WARNING, "bad/missing BSDF ScatteringData");
1154 free(dp->bsdf); dp->bsdf = NULL;
1155 return;
1156 }
1157 while (*sdnext && isspace(*sdnext))
1158 sdnext++;
1159 if (*sdnext == ',') sdnext++;
1160 dp->bsdf[i] = atof(sdata);
1161 sdata = sdnext;
1162 }
1163 while (isspace(*sdata))
1164 sdata++;
1165 if (*sdata) {
1166 sprintf(errmsg, "%d extra characters after BSDF ScatteringData",
1167 (int)strlen(sdata));
1168 error(WARNING, errmsg);
1169 }
1170 }
1171
1172
1173 static int
1174 check_bsdf_data( /* check that BSDF data is sane */
1175 struct BSDF_data *dp
1176 )
1177 {
1178 double *omega_iarr, *omega_oarr;
1179 double dom, hemi_total, full_total;
1180 int nneg;
1181 FVECT v;
1182 int i, o;
1183
1184 if (dp == NULL || dp->bsdf == NULL)
1185 return(0);
1186 omega_iarr = (double *)calloc(dp->ninc, sizeof(double));
1187 omega_oarr = (double *)calloc(dp->nout, sizeof(double));
1188 if ((omega_iarr == NULL) | (omega_oarr == NULL))
1189 error(SYSTEM, "out of memory in check_bsdf_data");
1190 /* incoming projected solid angles */
1191 hemi_total = .0;
1192 for (i = dp->ninc; i--; ) {
1193 dom = getBSDF_incohm(dp,i);
1194 if (dom <= 0) {
1195 error(WARNING, "zero/negative incoming solid angle");
1196 continue;
1197 }
1198 if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) {
1199 error(WARNING, "illegal incoming BSDF direction");
1200 free(omega_iarr); free(omega_oarr);
1201 return(0);
1202 }
1203 hemi_total += omega_iarr[i] = dom * -v[2];
1204 }
1205 if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1206 sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%",
1207 100.*(hemi_total/PI - 1.));
1208 error(WARNING, errmsg);
1209 }
1210 dom = PI / hemi_total; /* fix normalization */
1211 for (i = dp->ninc; i--; )
1212 omega_iarr[i] *= dom;
1213 /* outgoing projected solid angles */
1214 hemi_total = .0;
1215 for (o = dp->nout; o--; ) {
1216 dom = getBSDF_outohm(dp,o);
1217 if (dom <= 0) {
1218 error(WARNING, "zero/negative outgoing solid angle");
1219 continue;
1220 }
1221 if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) {
1222 error(WARNING, "illegal outgoing BSDF direction");
1223 free(omega_iarr); free(omega_oarr);
1224 return(0);
1225 }
1226 hemi_total += omega_oarr[o] = dom * v[2];
1227 }
1228 if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1229 sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%",
1230 100.*(hemi_total/PI - 1.));
1231 error(WARNING, errmsg);
1232 }
1233 dom = PI / hemi_total; /* fix normalization */
1234 for (o = dp->nout; o--; )
1235 omega_oarr[o] *= dom;
1236 nneg = 0; /* check outgoing totals */
1237 for (i = 0; i < dp->ninc; i++) {
1238 hemi_total = .0;
1239 for (o = dp->nout; o--; ) {
1240 double f = BSDF_value(dp,i,o);
1241 if (f >= 0)
1242 hemi_total += f*omega_oarr[o];
1243 else {
1244 nneg += (f < -FTINY);
1245 BSDF_value(dp,i,o) = .0f;
1246 }
1247 }
1248 if (hemi_total > 1.01) {
1249 sprintf(errmsg,
1250 "incoming BSDF direction %d passes %.1f%% of light",
1251 i, 100.*hemi_total);
1252 error(WARNING, errmsg);
1253 }
1254 }
1255 if (nneg) {
1256 sprintf(errmsg, "%d negative BSDF values (ignored)", nneg);
1257 error(WARNING, errmsg);
1258 }
1259 full_total = .0; /* reverse roles and check again */
1260 for (o = 0; o < dp->nout; o++) {
1261 hemi_total = .0;
1262 for (i = dp->ninc; i--; )
1263 hemi_total += BSDF_value(dp,i,o) * omega_iarr[i];
1264
1265 if (hemi_total > 1.01) {
1266 sprintf(errmsg,
1267 "outgoing BSDF direction %d collects %.1f%% of light",
1268 o, 100.*hemi_total);
1269 error(WARNING, errmsg);
1270 }
1271 full_total += hemi_total*omega_oarr[o];
1272 }
1273 full_total /= PI;
1274 if (full_total > 1.00001) {
1275 sprintf(errmsg, "BSDF transfers %.4f%% of light",
1276 100.*full_total);
1277 error(WARNING, errmsg);
1278 }
1279 free(omega_iarr); free(omega_oarr);
1280 return(1);
1281 }
1282
1283
1284 struct BSDF_data *
1285 load_BSDF( /* load BSDF data from file */
1286 char *fname
1287 )
1288 {
1289 char *path;
1290 ezxml_t fl, wtl, wld, wdb;
1291 struct BSDF_data *dp;
1292
1293 path = getpath(fname, getrlibpath(), R_OK);
1294 if (path == NULL) {
1295 sprintf(errmsg, "cannot find BSDF file \"%s\"", fname);
1296 error(WARNING, errmsg);
1297 return(NULL);
1298 }
1299 fl = ezxml_parse_file(path);
1300 if (fl == NULL) {
1301 sprintf(errmsg, "cannot open BSDF \"%s\"", path);
1302 error(WARNING, errmsg);
1303 return(NULL);
1304 }
1305 if (ezxml_error(fl)[0]) {
1306 sprintf(errmsg, "BSDF \"%s\" %s", path, ezxml_error(fl));
1307 error(WARNING, errmsg);
1308 ezxml_free(fl);
1309 return(NULL);
1310 }
1311 if (strcmp(ezxml_name(fl), "WindowElement")) {
1312 sprintf(errmsg,
1313 "BSDF \"%s\": top level node not 'WindowElement'",
1314 path);
1315 error(WARNING, errmsg);
1316 ezxml_free(fl);
1317 return(NULL);
1318 }
1319 wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
1320 if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl,
1321 "DataDefinition"), "IncidentDataStructure")),
1322 "Columns")) {
1323 sprintf(errmsg,
1324 "BSDF \"%s\": unsupported IncidentDataStructure",
1325 path);
1326 error(WARNING, errmsg);
1327 ezxml_free(fl);
1328 return(NULL);
1329 }
1330 for (wld = ezxml_child(ezxml_child(wtl,
1331 "DataDefinition"), "AngleBasis");
1332 wld != NULL; wld = wld->next)
1333 load_angle_basis(wld);
1334 dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data));
1335 load_geometry(dp, ezxml_child(wtl, "Material"));
1336 for (wld = ezxml_child(wtl, "WavelengthData");
1337 wld != NULL; wld = wld->next) {
1338 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1339 "Visible"))
1340 continue;
1341 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1342 wdb != NULL; wdb = wdb->next)
1343 if (!strcasecmp(ezxml_txt(ezxml_child(wdb,
1344 "WavelengthDataDirection")),
1345 "Transmission Front"))
1346 break;
1347 if (wdb != NULL) { /* load front BTDF */
1348 load_bsdf_data(dp, wdb);
1349 break; /* ignore the rest */
1350 }
1351 }
1352 ezxml_free(fl); /* done with XML file */
1353 if (!check_bsdf_data(dp)) {
1354 sprintf(errmsg, "bad/missing BTDF data in \"%s\"", path);
1355 error(WARNING, errmsg);
1356 free_BSDF(dp);
1357 dp = NULL;
1358 }
1359 return(dp);
1360 }
1361
1362
1363 void
1364 free_BSDF( /* free BSDF data structure */
1365 struct BSDF_data *b
1366 )
1367 {
1368 if (b == NULL)
1369 return;
1370 if (b->mgf != NULL)
1371 free(b->mgf);
1372 if (b->bsdf != NULL)
1373 free(b->bsdf);
1374 free(b);
1375 }
1376
1377
1378 int
1379 r_BSDF_incvec( /* compute random input vector at given location */
1380 FVECT v,
1381 struct BSDF_data *b,
1382 int i,
1383 double rv,
1384 MAT4 xm
1385 )
1386 {
1387 FVECT pert;
1388 double rad;
1389 int j;
1390
1391 if (!getBSDF_incvec(v, b, i))
1392 return(0);
1393 rad = sqrt(getBSDF_incohm(b, i) / PI);
1394 multisamp(pert, 3, rv);
1395 for (j = 0; j < 3; j++)
1396 v[j] += rad*(2.*pert[j] - 1.);
1397 if (xm != NULL)
1398 multv3(v, v, xm);
1399 return(normalize(v) != 0.0);
1400 }
1401
1402
1403 int
1404 r_BSDF_outvec( /* compute random output vector at given location */
1405 FVECT v,
1406 struct BSDF_data *b,
1407 int o,
1408 double rv,
1409 MAT4 xm
1410 )
1411 {
1412 FVECT pert;
1413 double rad;
1414 int j;
1415
1416 if (!getBSDF_outvec(v, b, o))
1417 return(0);
1418 rad = sqrt(getBSDF_outohm(b, o) / PI);
1419 multisamp(pert, 3, rv);
1420 for (j = 0; j < 3; j++)
1421 v[j] += rad*(2.*pert[j] - 1.);
1422 if (xm != NULL)
1423 multv3(v, v, xm);
1424 return(normalize(v) != 0.0);
1425 }
1426
1427
1428 static int
1429 addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */
1430 char *xfarg[],
1431 FVECT xp,
1432 FVECT yp,
1433 FVECT zp
1434 )
1435 {
1436 static char bufs[3][16];
1437 int bn = 0;
1438 char **xfp = xfarg;
1439 double theta;
1440
1441 if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
1442 /* Special case for X' along Z-axis */
1443 theta = -atan2(yp[0], yp[1]);
1444 *xfp++ = "-ry";
1445 *xfp++ = xp[2] < 0.0 ? "90" : "-90";
1446 *xfp++ = "-rz";
1447 sprintf(bufs[bn], "%f", theta*(180./PI));
1448 *xfp++ = bufs[bn++];
1449 return(xfp - xfarg);
1450 }
1451 theta = atan2(yp[2], zp[2]);
1452 if (!FEQ(theta,0.0)) {
1453 *xfp++ = "-rx";
1454 sprintf(bufs[bn], "%f", theta*(180./PI));
1455 *xfp++ = bufs[bn++];
1456 }
1457 theta = asin(-xp[2]);
1458 if (!FEQ(theta,0.0)) {
1459 *xfp++ = "-ry";
1460 sprintf(bufs[bn], " %f", theta*(180./PI));
1461 *xfp++ = bufs[bn++];
1462 }
1463 theta = atan2(xp[1], xp[0]);
1464 if (!FEQ(theta,0.0)) {
1465 *xfp++ = "-rz";
1466 sprintf(bufs[bn], "%f", theta*(180./PI));
1467 *xfp++ = bufs[bn++];
1468 }
1469 *xfp = NULL;
1470 return(xfp - xfarg);
1471 }
1472
1473
1474 int
1475 getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */
1476 MAT4 xm,
1477 FVECT nrm,
1478 UpDir ud,
1479 char *xfbuf
1480 )
1481 {
1482 char *xfargs[7];
1483 XF myxf;
1484 FVECT updir, xdest, ydest;
1485 int i;
1486
1487 updir[0] = updir[1] = updir[2] = 0.;
1488 switch (ud) {
1489 case UDzneg:
1490 updir[2] = -1.;
1491 break;
1492 case UDyneg:
1493 updir[1] = -1.;
1494 break;
1495 case UDxneg:
1496 updir[0] = -1.;
1497 break;
1498 case UDxpos:
1499 updir[0] = 1.;
1500 break;
1501 case UDypos:
1502 updir[1] = 1.;
1503 break;
1504 case UDzpos:
1505 updir[2] = 1.;
1506 break;
1507 case UDunknown:
1508 return(0);
1509 }
1510 fcross(xdest, updir, nrm);
1511 if (normalize(xdest) == 0.0)
1512 return(0);
1513 fcross(ydest, nrm, xdest);
1514 xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs);
1515 copymat4(xm, myxf.xfm);
1516 if (xfbuf == NULL)
1517 return(1);
1518 /* return xf arguments as well */
1519 for (i = 0; xfargs[i] != NULL; i++) {
1520 *xfbuf++ = ' ';
1521 strcpy(xfbuf, xfargs[i]);
1522 while (*xfbuf) ++xfbuf;
1523 }
1524 return(1);
1525 }
1526
1527 /*######### END DEPRECATED ROUTINES #######*/
1528 /*################################################################*/