ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.35
Committed: Sun Aug 21 22:38:12 2011 UTC (12 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.34: +3 -3 lines
Log Message:
Minor improvements to direct specular sampling

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf.c,v 2.34 2011/07/07 15:25:09 greg Exp $";
3 #endif
4 /*
5 * bsdf.c
6 *
7 * Definitions for bidirectional scattering distribution functions.
8 *
9 * Created by Greg Ward on 1/10/11.
10 *
11 */
12
13 #define _USE_MATH_DEFINES
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include <math.h>
18 #include <ctype.h>
19 #include "ezxml.h"
20 #include "hilbert.h"
21 #include "bsdf.h"
22 #include "bsdf_m.h"
23 #include "bsdf_t.h"
24
25 /* English ASCII strings corresponding to ennumerated errors */
26 const char *SDerrorEnglish[] = {
27 "No error",
28 "Memory error",
29 "File input/output error",
30 "File format error",
31 "Illegal argument",
32 "Invalid data",
33 "Unsupported feature",
34 "Internal program error",
35 "Unknown error"
36 };
37
38 /* Additional information on last error (ASCII English) */
39 char SDerrorDetail[256];
40
41 /* Cache of loaded BSDFs */
42 struct SDCache_s *SDcacheList = NULL;
43
44 /* Retain BSDFs in cache list */
45 int SDretainSet = SDretainNone;
46
47 /* Report any error to the indicated stream (in English) */
48 SDError
49 SDreportEnglish(SDError ec, FILE *fp)
50 {
51 if (!ec)
52 return SDEnone;
53 if ((ec < SDEnone) | (ec > SDEunknown)) {
54 SDerrorDetail[0] = '\0';
55 ec = SDEunknown;
56 }
57 if (fp == NULL)
58 return ec;
59 fputs(SDerrorEnglish[ec], fp);
60 if (SDerrorDetail[0]) {
61 fputs(": ", fp);
62 fputs(SDerrorDetail, fp);
63 }
64 fputc('\n', fp);
65 if (fp != stderr)
66 fflush(fp);
67 return ec;
68 }
69
70 static double
71 to_meters( /* return factor to convert given unit to meters */
72 const char *unit
73 )
74 {
75 if (unit == NULL) return(1.); /* safe assumption? */
76 if (!strcasecmp(unit, "Meter")) return(1.);
77 if (!strcasecmp(unit, "Foot")) return(.3048);
78 if (!strcasecmp(unit, "Inch")) return(.0254);
79 if (!strcasecmp(unit, "Centimeter")) return(.01);
80 if (!strcasecmp(unit, "Millimeter")) return(.001);
81 sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
82 return(-1.);
83 }
84
85 /* Load geometric dimensions and description (if any) */
86 static SDError
87 SDloadGeometry(SDData *sd, ezxml_t wdb)
88 {
89 ezxml_t geom;
90 double cfact;
91 const char *fmt, *mgfstr;
92
93 if (wdb == NULL) /* no geometry section? */
94 return SDEnone;
95 sd->dim[0] = sd->dim[1] = sd->dim[2] = .0;
96 if ((geom = ezxml_child(wdb, "Width")) != NULL)
97 sd->dim[0] = atof(ezxml_txt(geom)) *
98 to_meters(ezxml_attr(geom, "unit"));
99 if ((geom = ezxml_child(wdb, "Height")) != NULL)
100 sd->dim[1] = atof(ezxml_txt(geom)) *
101 to_meters(ezxml_attr(geom, "unit"));
102 if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
103 sd->dim[2] = atof(ezxml_txt(geom)) *
104 to_meters(ezxml_attr(geom, "unit"));
105 if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) {
106 sprintf(SDerrorDetail, "Negative size in \"%s\"", sd->name);
107 return SDEdata;
108 }
109 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
110 (mgfstr = ezxml_txt(geom)) == NULL)
111 return SDEnone;
112 while (isspace(*mgfstr))
113 ++mgfstr;
114 if (!*mgfstr)
115 return SDEnone;
116 if ((fmt = ezxml_attr(geom, "format")) != NULL &&
117 strcasecmp(fmt, "MGF")) {
118 sprintf(SDerrorDetail,
119 "Unrecognized geometry format '%s' in \"%s\"",
120 fmt, sd->name);
121 return SDEsupport;
122 }
123 cfact = to_meters(ezxml_attr(geom, "unit"));
124 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
125 if (sd->mgf == NULL) {
126 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
127 return SDEmemory;
128 }
129 if (cfact < 0.99 || cfact > 1.01)
130 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
131 else
132 strcpy(sd->mgf, mgfstr);
133 return SDEnone;
134 }
135
136 /* Load a BSDF struct from the given file (free first and keep name) */
137 SDError
138 SDloadFile(SDData *sd, const char *fname)
139 {
140 SDError lastErr;
141 ezxml_t fl, wtl;
142
143 if ((sd == NULL) | (fname == NULL || !*fname))
144 return SDEargument;
145 /* free old data, keeping name */
146 SDfreeBSDF(sd);
147 /* parse XML file */
148 fl = ezxml_parse_file(fname);
149 if (fl == NULL) {
150 sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
151 return SDEfile;
152 }
153 if (ezxml_error(fl)[0]) {
154 sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
155 ezxml_free(fl);
156 return SDEformat;
157 }
158 if (strcmp(ezxml_name(fl), "WindowElement")) {
159 sprintf(SDerrorDetail,
160 "BSDF \"%s\": top level node not 'WindowElement'",
161 sd->name);
162 ezxml_free(fl);
163 return SDEformat;
164 }
165 wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
166 if (wtl == NULL) {
167 sprintf(SDerrorDetail, "BSDF \"%s\": no optical layer'",
168 sd->name);
169 ezxml_free(fl);
170 return SDEformat;
171 }
172 /* load geometry if present */
173 lastErr = SDloadGeometry(sd, ezxml_child(wtl, "Material"));
174 if (lastErr)
175 return lastErr;
176 /* try loading variable resolution data */
177 lastErr = SDloadTre(sd, wtl);
178 /* check our result */
179 if (lastErr == SDEsupport) /* try matrix BSDF if not tree data */
180 lastErr = SDloadMtx(sd, wtl);
181
182 /* done with XML file */
183 ezxml_free(fl);
184
185 if (lastErr) { /* was there a load error? */
186 SDfreeBSDF(sd);
187 return lastErr;
188 }
189 /* remove any insignificant components */
190 if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
191 SDfreeSpectralDF(sd->rf); sd->rf = NULL;
192 }
193 if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
194 SDfreeSpectralDF(sd->rb); sd->rb = NULL;
195 }
196 if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
197 SDfreeSpectralDF(sd->tf); sd->tf = NULL;
198 }
199 /* return success */
200 return SDEnone;
201 }
202
203 /* Allocate new spectral distribution function */
204 SDSpectralDF *
205 SDnewSpectralDF(int nc)
206 {
207 SDSpectralDF *df;
208
209 if (nc <= 0) {
210 strcpy(SDerrorDetail, "Zero component spectral DF request");
211 return NULL;
212 }
213 df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
214 (nc-1)*sizeof(SDComponent));
215 if (df == NULL) {
216 sprintf(SDerrorDetail,
217 "Cannot allocate %d component spectral DF", nc);
218 return NULL;
219 }
220 df->minProjSA = .0;
221 df->maxHemi = .0;
222 df->ncomp = nc;
223 memset(df->comp, 0, nc*sizeof(SDComponent));
224 return df;
225 }
226
227 /* Free cached cumulative distributions for BSDF component */
228 void
229 SDfreeCumulativeCache(SDSpectralDF *df)
230 {
231 int n;
232 SDCDst *cdp;
233
234 if (df == NULL)
235 return;
236 for (n = df->ncomp; n-- > 0; )
237 while ((cdp = df->comp[n].cdList) != NULL) {
238 df->comp[n].cdList = cdp->next;
239 free(cdp);
240 }
241 }
242
243 /* Free a spectral distribution function */
244 void
245 SDfreeSpectralDF(SDSpectralDF *df)
246 {
247 int n;
248
249 if (df == NULL)
250 return;
251 SDfreeCumulativeCache(df);
252 for (n = df->ncomp; n-- > 0; )
253 if (df->comp[n].dist != NULL)
254 (*df->comp[n].func->freeSC)(df->comp[n].dist);
255 free(df);
256 }
257
258 /* Shorten file path to useable BSDF name, removing suffix */
259 void
260 SDclipName(char *res, const char *fname)
261 {
262 const char *cp, *dot = NULL;
263
264 for (cp = fname; *cp; cp++)
265 if (*cp == '.')
266 dot = cp;
267 if ((dot == NULL) | (dot < fname+2))
268 dot = cp;
269 if (dot - fname >= SDnameLn)
270 fname = dot - SDnameLn + 1;
271 while (fname < dot)
272 *res++ = *fname++;
273 *res = '\0';
274 }
275
276 /* Initialize an unused BSDF struct (simply clears to zeroes) */
277 void
278 SDclearBSDF(SDData *sd, const char *fname)
279 {
280 if (sd == NULL)
281 return;
282 memset(sd, 0, sizeof(SDData));
283 if (fname == NULL)
284 return;
285 SDclipName(sd->name, fname);
286 }
287
288 /* Free data associated with BSDF struct */
289 void
290 SDfreeBSDF(SDData *sd)
291 {
292 if (sd == NULL)
293 return;
294 if (sd->mgf != NULL) {
295 free(sd->mgf);
296 sd->mgf = NULL;
297 }
298 if (sd->rf != NULL) {
299 SDfreeSpectralDF(sd->rf);
300 sd->rf = NULL;
301 }
302 if (sd->rb != NULL) {
303 SDfreeSpectralDF(sd->rb);
304 sd->rb = NULL;
305 }
306 if (sd->tf != NULL) {
307 SDfreeSpectralDF(sd->tf);
308 sd->tf = NULL;
309 }
310 sd->rLambFront.cieY = .0;
311 sd->rLambFront.spec.flags = 0;
312 sd->rLambBack.cieY = .0;
313 sd->rLambBack.spec.flags = 0;
314 sd->tLamb.cieY = .0;
315 sd->tLamb.spec.flags = 0;
316 }
317
318 /* Find writeable BSDF by name, or allocate new cache entry if absent */
319 SDData *
320 SDgetCache(const char *bname)
321 {
322 struct SDCache_s *sdl;
323 char sdnam[SDnameLn];
324
325 if (bname == NULL)
326 return NULL;
327
328 SDclipName(sdnam, bname);
329 for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
330 if (!strcmp(sdl->bsdf.name, sdnam)) {
331 sdl->refcnt++;
332 return &sdl->bsdf;
333 }
334
335 sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
336 if (sdl == NULL)
337 return NULL;
338
339 strcpy(sdl->bsdf.name, sdnam);
340 sdl->next = SDcacheList;
341 SDcacheList = sdl;
342
343 sdl->refcnt = 1;
344 return &sdl->bsdf;
345 }
346
347 /* Get loaded BSDF from cache (or load and cache it on first call) */
348 /* Report any problem to stderr and return NULL on failure */
349 const SDData *
350 SDcacheFile(const char *fname)
351 {
352 SDData *sd;
353 SDError ec;
354
355 if (fname == NULL || !*fname)
356 return NULL;
357 SDerrorDetail[0] = '\0';
358 if ((sd = SDgetCache(fname)) == NULL) {
359 SDreportEnglish(SDEmemory, stderr);
360 return NULL;
361 }
362 if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
363 SDreportEnglish(ec, stderr);
364 SDfreeCache(sd);
365 return NULL;
366 }
367 return sd;
368 }
369
370 /* Free a BSDF from our cache (clear all if NULL) */
371 void
372 SDfreeCache(const SDData *sd)
373 {
374 struct SDCache_s *sdl, *sdLast = NULL;
375
376 if (sd == NULL) { /* free entire list */
377 while ((sdl = SDcacheList) != NULL) {
378 SDcacheList = sdl->next;
379 SDfreeBSDF(&sdl->bsdf);
380 free(sdl);
381 }
382 return;
383 }
384 for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
385 if (&sdl->bsdf == sd)
386 break;
387 if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
388 return; /* missing or still in use */
389 /* keep unreferenced data? */
390 if (SDisLoaded(sd) && SDretainSet) {
391 if (SDretainSet == SDretainAll)
392 return; /* keep everything */
393 /* else free cumulative data */
394 SDfreeCumulativeCache(sd->rf);
395 SDfreeCumulativeCache(sd->rb);
396 SDfreeCumulativeCache(sd->tf);
397 return;
398 }
399 /* remove from list and free */
400 if (sdLast == NULL)
401 SDcacheList = sdl->next;
402 else
403 sdLast->next = sdl->next;
404 SDfreeBSDF(&sdl->bsdf);
405 free(sdl);
406 }
407
408 /* Sample an individual BSDF component */
409 SDError
410 SDsampComponent(SDValue *sv, FVECT ioVec, double randX, SDComponent *sdc)
411 {
412 float coef[SDmaxCh];
413 SDError ec;
414 FVECT inVec;
415 const SDCDst *cd;
416 double d;
417 int n;
418 /* check arguments */
419 if ((sv == NULL) | (ioVec == NULL) | (sdc == NULL))
420 return SDEargument;
421 /* get cumulative distribution */
422 VCOPY(inVec, ioVec);
423 cd = (*sdc->func->getCDist)(inVec, sdc);
424 if (cd == NULL)
425 return SDEmemory;
426 if (cd->cTotal <= 1e-6) { /* anything to sample? */
427 sv->spec = c_dfcolor;
428 sv->cieY = .0;
429 memset(ioVec, 0, 3*sizeof(double));
430 return SDEnone;
431 }
432 sv->cieY = cd->cTotal;
433 /* compute sample direction */
434 ec = (*sdc->func->sampCDist)(ioVec, randX, cd);
435 if (ec)
436 return ec;
437 /* get BSDF color */
438 n = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
439 if (n <= 0) {
440 strcpy(SDerrorDetail, "BSDF sample value error");
441 return SDEinternal;
442 }
443 sv->spec = sdc->cspec[0];
444 d = coef[0];
445 while (--n) {
446 c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
447 d += coef[n];
448 }
449 /* make sure everything is set */
450 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
451 return SDEnone;
452 }
453
454 #define MS_MAXDIM 15
455
456 /* Convert 1-dimensional random variable to N-dimensional */
457 void
458 SDmultiSamp(double t[], int n, double randX)
459 {
460 unsigned nBits;
461 double scale;
462 bitmask_t ndx, coord[MS_MAXDIM];
463
464 while (n > MS_MAXDIM) /* punt for higher dimensions */
465 t[--n] = rand()*(1./(RAND_MAX+.5));
466 nBits = (8*sizeof(bitmask_t) - 1) / n;
467 ndx = randX * (double)((bitmask_t)1 << (nBits*n));
468 /* get coordinate on Hilbert curve */
469 hilbert_i2c(n, nBits, ndx, coord);
470 /* convert back to [0,1) range */
471 scale = 1. / (double)((bitmask_t)1 << nBits);
472 while (n--)
473 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
474 }
475
476 #undef MS_MAXDIM
477
478 /* Generate diffuse hemispherical sample */
479 static void
480 SDdiffuseSamp(FVECT outVec, int outFront, double randX)
481 {
482 /* convert to position on hemisphere */
483 SDmultiSamp(outVec, 2, randX);
484 SDsquare2disk(outVec, outVec[0], outVec[1]);
485 outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
486 if (outVec[2] > 0) /* a bit of paranoia */
487 outVec[2] = sqrt(outVec[2]);
488 if (!outFront) /* going out back? */
489 outVec[2] = -outVec[2];
490 }
491
492 /* Query projected solid angle coverage for non-diffuse BSDF direction */
493 SDError
494 SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2,
495 int qflags, const SDData *sd)
496 {
497 SDSpectralDF *rdf, *tdf;
498 SDError ec;
499 int i;
500 /* check arguments */
501 if ((projSA == NULL) | (v1 == NULL) | (sd == NULL))
502 return SDEargument;
503 /* initialize extrema */
504 switch (qflags) {
505 case SDqueryMax:
506 projSA[0] = .0;
507 break;
508 case SDqueryMin+SDqueryMax:
509 projSA[1] = .0;
510 /* fall through */
511 case SDqueryMin:
512 projSA[0] = 10.;
513 break;
514 case 0:
515 return SDEargument;
516 }
517 if (v1[2] > 0) /* front surface query? */
518 rdf = sd->rf;
519 else
520 rdf = sd->rb;
521 tdf = sd->tf;
522 if (v2 != NULL) /* bidirectional? */
523 if (v1[2] > 0 ^ v2[2] > 0)
524 rdf = NULL;
525 else
526 tdf = NULL;
527 ec = SDEdata; /* run through components */
528 for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
529 ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2,
530 qflags, &rdf->comp[i]);
531 if (ec)
532 return ec;
533 }
534 for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) {
535 ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2,
536 qflags, &tdf->comp[i]);
537 if (ec)
538 return ec;
539 }
540 if (ec) { /* all diffuse? */
541 projSA[0] = M_PI;
542 if (qflags == SDqueryMin+SDqueryMax)
543 projSA[1] = M_PI;
544 }
545 return SDEnone;
546 }
547
548 /* Return BSDF for the given incident and scattered ray vectors */
549 SDError
550 SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
551 {
552 int inFront, outFront;
553 SDSpectralDF *sdf;
554 float coef[SDmaxCh];
555 int nch, i;
556 /* check arguments */
557 if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
558 return SDEargument;
559 /* whose side are we on? */
560 inFront = (inVec[2] > 0);
561 outFront = (outVec[2] > 0);
562 /* start with diffuse portion */
563 if (inFront & outFront) {
564 *sv = sd->rLambFront;
565 sdf = sd->rf;
566 } else if (!(inFront | outFront)) {
567 *sv = sd->rLambBack;
568 sdf = sd->rb;
569 } else /* inFront ^ outFront */ {
570 *sv = sd->tLamb;
571 sdf = sd->tf;
572 }
573 sv->cieY *= 1./M_PI;
574 /* add non-diffuse components */
575 i = (sdf != NULL) ? sdf->ncomp : 0;
576 while (i-- > 0) {
577 nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
578 &sdf->comp[i]);
579 while (nch-- > 0) {
580 c_cmix(&sv->spec, sv->cieY, &sv->spec,
581 coef[nch], &sdf->comp[i].cspec[nch]);
582 sv->cieY += coef[nch];
583 }
584 }
585 /* make sure everything is set */
586 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
587 return SDEnone;
588 }
589
590 /* Compute directional hemispherical scattering at this incident angle */
591 double
592 SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
593 {
594 double hsum;
595 SDSpectralDF *rdf;
596 const SDCDst *cd;
597 int i;
598 /* check arguments */
599 if ((inVec == NULL) | (sd == NULL))
600 return .0;
601 /* gather diffuse components */
602 if (inVec[2] > 0) {
603 hsum = sd->rLambFront.cieY;
604 rdf = sd->rf;
605 } else /* !inFront */ {
606 hsum = sd->rLambBack.cieY;
607 rdf = sd->rb;
608 }
609 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
610 hsum = .0;
611 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
612 hsum += sd->tLamb.cieY;
613 /* gather non-diffuse components */
614 i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
615 rdf != NULL) ? rdf->ncomp : 0;
616 while (i-- > 0) { /* non-diffuse reflection */
617 cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
618 if (cd != NULL)
619 hsum += cd->cTotal;
620 }
621 i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
622 sd->tf != NULL) ? sd->tf->ncomp : 0;
623 while (i-- > 0) { /* non-diffuse transmission */
624 cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]);
625 if (cd != NULL)
626 hsum += cd->cTotal;
627 }
628 return hsum;
629 }
630
631 /* Sample BSDF direction based on the given random variable */
632 SDError
633 SDsampBSDF(SDValue *sv, FVECT ioVec, double randX, int sflags, const SDData *sd)
634 {
635 SDError ec;
636 FVECT inVec;
637 int inFront;
638 SDSpectralDF *rdf;
639 double rdiff;
640 float coef[SDmaxCh];
641 int i, j, n, nr;
642 SDComponent *sdc;
643 const SDCDst **cdarr = NULL;
644 /* check arguments */
645 if ((sv == NULL) | (ioVec == NULL) | (sd == NULL) |
646 (randX < 0) | (randX >= 1.))
647 return SDEargument;
648 /* whose side are we on? */
649 VCOPY(inVec, ioVec);
650 inFront = (inVec[2] > 0);
651 /* remember diffuse portions */
652 if (inFront) {
653 *sv = sd->rLambFront;
654 rdf = sd->rf;
655 } else /* !inFront */ {
656 *sv = sd->rLambBack;
657 rdf = sd->rb;
658 }
659 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
660 sv->cieY = .0;
661 rdiff = sv->cieY;
662 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
663 sv->cieY += sd->tLamb.cieY;
664 /* gather non-diffuse components */
665 i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
666 rdf != NULL) ? rdf->ncomp : 0;
667 j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
668 sd->tf != NULL) ? sd->tf->ncomp : 0;
669 n = i + j;
670 if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
671 return SDEmemory;
672 while (j-- > 0) { /* non-diffuse transmission */
673 cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]);
674 if (cdarr[i+j] == NULL) {
675 free(cdarr);
676 return SDEmemory;
677 }
678 sv->cieY += cdarr[i+j]->cTotal;
679 }
680 while (i-- > 0) { /* non-diffuse reflection */
681 cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
682 if (cdarr[i] == NULL) {
683 free(cdarr);
684 return SDEmemory;
685 }
686 sv->cieY += cdarr[i]->cTotal;
687 }
688 if (sv->cieY <= 1e-6) { /* anything to sample? */
689 sv->cieY = .0;
690 memset(ioVec, 0, 3*sizeof(double));
691 return SDEnone;
692 }
693 /* scale random variable */
694 randX *= sv->cieY;
695 /* diffuse reflection? */
696 if (randX < rdiff) {
697 SDdiffuseSamp(ioVec, inFront, randX/rdiff);
698 goto done;
699 }
700 randX -= rdiff;
701 /* diffuse transmission? */
702 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
703 if (randX < sd->tLamb.cieY) {
704 sv->spec = sd->tLamb.spec;
705 SDdiffuseSamp(ioVec, !inFront, randX/sd->tLamb.cieY);
706 goto done;
707 }
708 randX -= sd->tLamb.cieY;
709 }
710 /* else one of cumulative dist. */
711 for (i = 0; i < n && randX < cdarr[i]->cTotal; i++)
712 randX -= cdarr[i]->cTotal;
713 if (i >= n)
714 return SDEinternal;
715 /* compute sample direction */
716 sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr];
717 ec = (*sdc->func->sampCDist)(ioVec, randX/cdarr[i]->cTotal, cdarr[i]);
718 if (ec)
719 return ec;
720 /* compute color */
721 j = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
722 if (j <= 0) {
723 sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
724 sd->name);
725 return SDEinternal;
726 }
727 sv->spec = sdc->cspec[0];
728 rdiff = coef[0];
729 while (--j) {
730 c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
731 rdiff += coef[j];
732 }
733 done:
734 if (cdarr != NULL)
735 free(cdarr);
736 /* make sure everything is set */
737 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
738 return SDEnone;
739 }
740
741 /* Compute World->BSDF transform from surface normal and up (Y) vector */
742 SDError
743 SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
744 {
745 if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
746 return SDEargument;
747 VCOPY(vMtx[2], sNrm);
748 if (normalize(vMtx[2]) == 0)
749 return SDEargument;
750 fcross(vMtx[0], uVec, vMtx[2]);
751 if (normalize(vMtx[0]) == 0)
752 return SDEargument;
753 fcross(vMtx[1], vMtx[2], vMtx[0]);
754 return SDEnone;
755 }
756
757 /* Compute inverse transform */
758 SDError
759 SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
760 {
761 RREAL mTmp[3][3];
762 double d;
763
764 if ((iMtx == NULL) | (vMtx == NULL))
765 return SDEargument;
766 /* compute determinant */
767 mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
768 mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
769 mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
770 d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
771 if (d == 0) {
772 strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
773 return SDEargument;
774 }
775 d = 1./d; /* invert matrix */
776 mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
777 mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
778 mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
779 mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
780 mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
781 mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
782 mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
783 memcpy(iMtx, mTmp, sizeof(mTmp));
784 return SDEnone;
785 }
786
787 /* Transform and normalize direction (column) vector */
788 SDError
789 SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
790 {
791 FVECT vTmp;
792
793 if ((resVec == NULL) | (inpVec == NULL))
794 return SDEargument;
795 if (vMtx == NULL) { /* assume they just want to normalize */
796 if (resVec != inpVec)
797 VCOPY(resVec, inpVec);
798 return (normalize(resVec) > 0) ? SDEnone : SDEargument;
799 }
800 vTmp[0] = DOT(vMtx[0], inpVec);
801 vTmp[1] = DOT(vMtx[1], inpVec);
802 vTmp[2] = DOT(vMtx[2], inpVec);
803 if (normalize(vTmp) == 0)
804 return SDEargument;
805 VCOPY(resVec, vTmp);
806 return SDEnone;
807 }
808
809 /*################################################################*/
810 /*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/
811
812 /*
813 * Routines for handling BSDF data
814 */
815
816 #include "standard.h"
817 #include "paths.h"
818
819 #define MAXLATS 46 /* maximum number of latitudes */
820
821 /* BSDF angle specification */
822 typedef struct {
823 char name[64]; /* basis name */
824 int nangles; /* total number of directions */
825 struct {
826 float tmin; /* starting theta */
827 short nphis; /* number of phis (0 term) */
828 } lat[MAXLATS+1]; /* latitudes */
829 } ANGLE_BASIS;
830
831 #define MAXABASES 7 /* limit on defined bases */
832
833 static ANGLE_BASIS abase_list[MAXABASES] = {
834 {
835 "LBNL/Klems Full", 145,
836 { {-5., 1},
837 {5., 8},
838 {15., 16},
839 {25., 20},
840 {35., 24},
841 {45., 24},
842 {55., 24},
843 {65., 16},
844 {75., 12},
845 {90., 0} }
846 }, {
847 "LBNL/Klems Half", 73,
848 { {-6.5, 1},
849 {6.5, 8},
850 {19.5, 12},
851 {32.5, 16},
852 {46.5, 20},
853 {61.5, 12},
854 {76.5, 4},
855 {90., 0} }
856 }, {
857 "LBNL/Klems Quarter", 41,
858 { {-9., 1},
859 {9., 8},
860 {27., 12},
861 {46., 12},
862 {66., 8},
863 {90., 0} }
864 }
865 };
866
867 static int nabases = 3; /* current number of defined bases */
868
869 #define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6)
870
871 static int
872 fequal(double a, double b)
873 {
874 if (b != 0)
875 a = a/b - 1.;
876 return((a <= 1e-6) & (a >= -1e-6));
877 }
878
879 /* Returns the name of the given tag */
880 #ifdef ezxml_name
881 #undef ezxml_name
882 static char *
883 ezxml_name(ezxml_t xml)
884 {
885 if (xml == NULL)
886 return(NULL);
887 return(xml->name);
888 }
889 #endif
890
891 /* Returns the given tag's character content or empty string if none */
892 #ifdef ezxml_txt
893 #undef ezxml_txt
894 static char *
895 ezxml_txt(ezxml_t xml)
896 {
897 if (xml == NULL)
898 return("");
899 return(xml->txt);
900 }
901 #endif
902
903
904 static int
905 ab_getvec( /* get vector for this angle basis index */
906 FVECT v,
907 int ndx,
908 void *p
909 )
910 {
911 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
912 int li;
913 double pol, azi, d;
914
915 if ((ndx < 0) | (ndx >= ab->nangles))
916 return(0);
917 for (li = 0; ndx >= ab->lat[li].nphis; li++)
918 ndx -= ab->lat[li].nphis;
919 pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin);
920 azi = 2.*PI*ndx/ab->lat[li].nphis;
921 v[2] = d = cos(pol);
922 d = sqrt(1. - d*d); /* sin(pol) */
923 v[0] = cos(azi)*d;
924 v[1] = sin(azi)*d;
925 return(1);
926 }
927
928
929 static int
930 ab_getndx( /* get index corresponding to the given vector */
931 FVECT v,
932 void *p
933 )
934 {
935 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
936 int li, ndx;
937 double pol, azi;
938
939 if ((v[2] < -1.0) | (v[2] > 1.0))
940 return(-1);
941 pol = 180.0/PI*acos(v[2]);
942 azi = 180.0/PI*atan2(v[1], v[0]);
943 if (azi < 0.0) azi += 360.0;
944 for (li = 1; ab->lat[li].tmin <= pol; li++)
945 if (!ab->lat[li].nphis)
946 return(-1);
947 --li;
948 ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
949 if (ndx >= ab->lat[li].nphis) ndx = 0;
950 while (li--)
951 ndx += ab->lat[li].nphis;
952 return(ndx);
953 }
954
955
956 static double
957 ab_getohm( /* get solid angle for this angle basis index */
958 int ndx,
959 void *p
960 )
961 {
962 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
963 int li;
964 double theta, theta1;
965
966 if ((ndx < 0) | (ndx >= ab->nangles))
967 return(0);
968 for (li = 0; ndx >= ab->lat[li].nphis; li++)
969 ndx -= ab->lat[li].nphis;
970 theta1 = PI/180. * ab->lat[li+1].tmin;
971 if (ab->lat[li].nphis == 1) { /* special case */
972 if (ab->lat[li].tmin > FTINY)
973 error(USER, "unsupported BSDF coordinate system");
974 return(2.*PI*(1. - cos(theta1)));
975 }
976 theta = PI/180. * ab->lat[li].tmin;
977 return(2.*PI*(cos(theta) - cos(theta1))/(double)ab->lat[li].nphis);
978 }
979
980
981 static int
982 ab_getvecR( /* get reverse vector for this angle basis index */
983 FVECT v,
984 int ndx,
985 void *p
986 )
987 {
988 if (!ab_getvec(v, ndx, p))
989 return(0);
990
991 v[0] = -v[0];
992 v[1] = -v[1];
993 v[2] = -v[2];
994
995 return(1);
996 }
997
998
999 static int
1000 ab_getndxR( /* get index corresponding to the reverse vector */
1001 FVECT v,
1002 void *p
1003 )
1004 {
1005 FVECT v2;
1006
1007 v2[0] = -v[0];
1008 v2[1] = -v[1];
1009 v2[2] = -v[2];
1010
1011 return ab_getndx(v2, p);
1012 }
1013
1014
1015 static void
1016 load_angle_basis( /* load custom BSDF angle basis */
1017 ezxml_t wab
1018 )
1019 {
1020 char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
1021 ezxml_t wbb;
1022 int i;
1023
1024 if (!abname || !*abname)
1025 return;
1026 for (i = nabases; i--; )
1027 if (!strcasecmp(abname, abase_list[i].name))
1028 return; /* assume it's the same */
1029 if (nabases >= MAXABASES)
1030 error(INTERNAL, "too many angle bases");
1031 strcpy(abase_list[nabases].name, abname);
1032 abase_list[nabases].nangles = 0;
1033 for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
1034 wbb != NULL; i++, wbb = wbb->next) {
1035 if (i >= MAXLATS)
1036 error(INTERNAL, "too many latitudes in custom basis");
1037 abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
1038 ezxml_child(ezxml_child(wbb,
1039 "ThetaBounds"), "UpperTheta")));
1040 if (!i)
1041 abase_list[nabases].lat[i].tmin =
1042 -abase_list[nabases].lat[i+1].tmin;
1043 else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
1044 "ThetaBounds"), "LowerTheta"))),
1045 abase_list[nabases].lat[i].tmin))
1046 error(WARNING, "theta values disagree in custom basis");
1047 abase_list[nabases].nangles +=
1048 abase_list[nabases].lat[i].nphis =
1049 atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
1050 }
1051 abase_list[nabases++].lat[i].nphis = 0;
1052 }
1053
1054
1055 static void
1056 load_geometry( /* load geometric dimensions and description (if any) */
1057 struct BSDF_data *dp,
1058 ezxml_t wdb
1059 )
1060 {
1061 ezxml_t geom;
1062 double cfact;
1063 const char *fmt, *mgfstr;
1064
1065 dp->dim[0] = dp->dim[1] = dp->dim[2] = 0;
1066 dp->mgf = NULL;
1067 if ((geom = ezxml_child(wdb, "Width")) != NULL)
1068 dp->dim[0] = atof(ezxml_txt(geom)) *
1069 to_meters(ezxml_attr(geom, "unit"));
1070 if ((geom = ezxml_child(wdb, "Height")) != NULL)
1071 dp->dim[1] = atof(ezxml_txt(geom)) *
1072 to_meters(ezxml_attr(geom, "unit"));
1073 if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
1074 dp->dim[2] = atof(ezxml_txt(geom)) *
1075 to_meters(ezxml_attr(geom, "unit"));
1076 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
1077 (mgfstr = ezxml_txt(geom)) == NULL)
1078 return;
1079 if ((fmt = ezxml_attr(geom, "format")) != NULL &&
1080 strcasecmp(fmt, "MGF")) {
1081 sprintf(errmsg, "unrecognized geometry format '%s'", fmt);
1082 error(WARNING, errmsg);
1083 return;
1084 }
1085 cfact = to_meters(ezxml_attr(geom, "unit"));
1086 dp->mgf = (char *)malloc(strlen(mgfstr)+32);
1087 if (dp->mgf == NULL)
1088 error(SYSTEM, "out of memory in load_geometry");
1089 if (cfact < 0.99 || cfact > 1.01)
1090 sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
1091 else
1092 strcpy(dp->mgf, mgfstr);
1093 }
1094
1095
1096 static void
1097 load_bsdf_data( /* load BSDF distribution for this wavelength */
1098 struct BSDF_data *dp,
1099 ezxml_t wdb
1100 )
1101 {
1102 char *cbasis = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
1103 char *rbasis = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
1104 char *sdata;
1105 int i;
1106
1107 if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) {
1108 error(WARNING, "missing column/row basis for BSDF");
1109 return;
1110 }
1111 for (i = nabases; i--; )
1112 if (!strcasecmp(cbasis, abase_list[i].name)) {
1113 dp->ninc = abase_list[i].nangles;
1114 dp->ib_priv = (void *)&abase_list[i];
1115 dp->ib_vec = ab_getvecR;
1116 dp->ib_ndx = ab_getndxR;
1117 dp->ib_ohm = ab_getohm;
1118 break;
1119 }
1120 if (i < 0) {
1121 sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis);
1122 error(WARNING, errmsg);
1123 return;
1124 }
1125 for (i = nabases; i--; )
1126 if (!strcasecmp(rbasis, abase_list[i].name)) {
1127 dp->nout = abase_list[i].nangles;
1128 dp->ob_priv = (void *)&abase_list[i];
1129 dp->ob_vec = ab_getvec;
1130 dp->ob_ndx = ab_getndx;
1131 dp->ob_ohm = ab_getohm;
1132 break;
1133 }
1134 if (i < 0) {
1135 sprintf(errmsg, "undefined RowAngleBasis '%s'", rbasis);
1136 error(WARNING, errmsg);
1137 return;
1138 }
1139 /* read BSDF data */
1140 sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
1141 if (!sdata || !*sdata) {
1142 error(WARNING, "missing BSDF ScatteringData");
1143 return;
1144 }
1145 dp->bsdf = (float *)malloc(sizeof(float)*dp->ninc*dp->nout);
1146 if (dp->bsdf == NULL)
1147 error(SYSTEM, "out of memory in load_bsdf_data");
1148 for (i = 0; i < dp->ninc*dp->nout; i++) {
1149 char *sdnext = fskip(sdata);
1150 if (sdnext == NULL) {
1151 error(WARNING, "bad/missing BSDF ScatteringData");
1152 free(dp->bsdf); dp->bsdf = NULL;
1153 return;
1154 }
1155 while (*sdnext && isspace(*sdnext))
1156 sdnext++;
1157 if (*sdnext == ',') sdnext++;
1158 dp->bsdf[i] = atof(sdata);
1159 sdata = sdnext;
1160 }
1161 while (isspace(*sdata))
1162 sdata++;
1163 if (*sdata) {
1164 sprintf(errmsg, "%d extra characters after BSDF ScatteringData",
1165 (int)strlen(sdata));
1166 error(WARNING, errmsg);
1167 }
1168 }
1169
1170
1171 static int
1172 check_bsdf_data( /* check that BSDF data is sane */
1173 struct BSDF_data *dp
1174 )
1175 {
1176 double *omega_iarr, *omega_oarr;
1177 double dom, hemi_total, full_total;
1178 int nneg;
1179 FVECT v;
1180 int i, o;
1181
1182 if (dp == NULL || dp->bsdf == NULL)
1183 return(0);
1184 omega_iarr = (double *)calloc(dp->ninc, sizeof(double));
1185 omega_oarr = (double *)calloc(dp->nout, sizeof(double));
1186 if ((omega_iarr == NULL) | (omega_oarr == NULL))
1187 error(SYSTEM, "out of memory in check_bsdf_data");
1188 /* incoming projected solid angles */
1189 hemi_total = .0;
1190 for (i = dp->ninc; i--; ) {
1191 dom = getBSDF_incohm(dp,i);
1192 if (dom <= 0) {
1193 error(WARNING, "zero/negative incoming solid angle");
1194 continue;
1195 }
1196 if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) {
1197 error(WARNING, "illegal incoming BSDF direction");
1198 free(omega_iarr); free(omega_oarr);
1199 return(0);
1200 }
1201 hemi_total += omega_iarr[i] = dom * -v[2];
1202 }
1203 if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1204 sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%",
1205 100.*(hemi_total/PI - 1.));
1206 error(WARNING, errmsg);
1207 }
1208 dom = PI / hemi_total; /* fix normalization */
1209 for (i = dp->ninc; i--; )
1210 omega_iarr[i] *= dom;
1211 /* outgoing projected solid angles */
1212 hemi_total = .0;
1213 for (o = dp->nout; o--; ) {
1214 dom = getBSDF_outohm(dp,o);
1215 if (dom <= 0) {
1216 error(WARNING, "zero/negative outgoing solid angle");
1217 continue;
1218 }
1219 if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) {
1220 error(WARNING, "illegal outgoing BSDF direction");
1221 free(omega_iarr); free(omega_oarr);
1222 return(0);
1223 }
1224 hemi_total += omega_oarr[o] = dom * v[2];
1225 }
1226 if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1227 sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%",
1228 100.*(hemi_total/PI - 1.));
1229 error(WARNING, errmsg);
1230 }
1231 dom = PI / hemi_total; /* fix normalization */
1232 for (o = dp->nout; o--; )
1233 omega_oarr[o] *= dom;
1234 nneg = 0; /* check outgoing totals */
1235 for (i = 0; i < dp->ninc; i++) {
1236 hemi_total = .0;
1237 for (o = dp->nout; o--; ) {
1238 double f = BSDF_value(dp,i,o);
1239 if (f >= 0)
1240 hemi_total += f*omega_oarr[o];
1241 else {
1242 nneg += (f < -FTINY);
1243 BSDF_value(dp,i,o) = .0f;
1244 }
1245 }
1246 if (hemi_total > 1.01) {
1247 sprintf(errmsg,
1248 "incoming BSDF direction %d passes %.1f%% of light",
1249 i, 100.*hemi_total);
1250 error(WARNING, errmsg);
1251 }
1252 }
1253 if (nneg) {
1254 sprintf(errmsg, "%d negative BSDF values (ignored)", nneg);
1255 error(WARNING, errmsg);
1256 }
1257 full_total = .0; /* reverse roles and check again */
1258 for (o = 0; o < dp->nout; o++) {
1259 hemi_total = .0;
1260 for (i = dp->ninc; i--; )
1261 hemi_total += BSDF_value(dp,i,o) * omega_iarr[i];
1262
1263 if (hemi_total > 1.01) {
1264 sprintf(errmsg,
1265 "outgoing BSDF direction %d collects %.1f%% of light",
1266 o, 100.*hemi_total);
1267 error(WARNING, errmsg);
1268 }
1269 full_total += hemi_total*omega_oarr[o];
1270 }
1271 full_total /= PI;
1272 if (full_total > 1.00001) {
1273 sprintf(errmsg, "BSDF transfers %.4f%% of light",
1274 100.*full_total);
1275 error(WARNING, errmsg);
1276 }
1277 free(omega_iarr); free(omega_oarr);
1278 return(1);
1279 }
1280
1281
1282 struct BSDF_data *
1283 load_BSDF( /* load BSDF data from file */
1284 char *fname
1285 )
1286 {
1287 char *path;
1288 ezxml_t fl, wtl, wld, wdb;
1289 struct BSDF_data *dp;
1290
1291 path = getpath(fname, getrlibpath(), R_OK);
1292 if (path == NULL) {
1293 sprintf(errmsg, "cannot find BSDF file \"%s\"", fname);
1294 error(WARNING, errmsg);
1295 return(NULL);
1296 }
1297 fl = ezxml_parse_file(path);
1298 if (fl == NULL) {
1299 sprintf(errmsg, "cannot open BSDF \"%s\"", path);
1300 error(WARNING, errmsg);
1301 return(NULL);
1302 }
1303 if (ezxml_error(fl)[0]) {
1304 sprintf(errmsg, "BSDF \"%s\" %s", path, ezxml_error(fl));
1305 error(WARNING, errmsg);
1306 ezxml_free(fl);
1307 return(NULL);
1308 }
1309 if (strcmp(ezxml_name(fl), "WindowElement")) {
1310 sprintf(errmsg,
1311 "BSDF \"%s\": top level node not 'WindowElement'",
1312 path);
1313 error(WARNING, errmsg);
1314 ezxml_free(fl);
1315 return(NULL);
1316 }
1317 wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
1318 if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl,
1319 "DataDefinition"), "IncidentDataStructure")),
1320 "Columns")) {
1321 sprintf(errmsg,
1322 "BSDF \"%s\": unsupported IncidentDataStructure",
1323 path);
1324 error(WARNING, errmsg);
1325 ezxml_free(fl);
1326 return(NULL);
1327 }
1328 for (wld = ezxml_child(ezxml_child(wtl,
1329 "DataDefinition"), "AngleBasis");
1330 wld != NULL; wld = wld->next)
1331 load_angle_basis(wld);
1332 dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data));
1333 load_geometry(dp, ezxml_child(wtl, "Material"));
1334 for (wld = ezxml_child(wtl, "WavelengthData");
1335 wld != NULL; wld = wld->next) {
1336 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1337 "Visible"))
1338 continue;
1339 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1340 wdb != NULL; wdb = wdb->next)
1341 if (!strcasecmp(ezxml_txt(ezxml_child(wdb,
1342 "WavelengthDataDirection")),
1343 "Transmission Front"))
1344 break;
1345 if (wdb != NULL) { /* load front BTDF */
1346 load_bsdf_data(dp, wdb);
1347 break; /* ignore the rest */
1348 }
1349 }
1350 ezxml_free(fl); /* done with XML file */
1351 if (!check_bsdf_data(dp)) {
1352 sprintf(errmsg, "bad/missing BTDF data in \"%s\"", path);
1353 error(WARNING, errmsg);
1354 free_BSDF(dp);
1355 dp = NULL;
1356 }
1357 return(dp);
1358 }
1359
1360
1361 void
1362 free_BSDF( /* free BSDF data structure */
1363 struct BSDF_data *b
1364 )
1365 {
1366 if (b == NULL)
1367 return;
1368 if (b->mgf != NULL)
1369 free(b->mgf);
1370 if (b->bsdf != NULL)
1371 free(b->bsdf);
1372 free(b);
1373 }
1374
1375
1376 int
1377 r_BSDF_incvec( /* compute random input vector at given location */
1378 FVECT v,
1379 struct BSDF_data *b,
1380 int i,
1381 double rv,
1382 MAT4 xm
1383 )
1384 {
1385 FVECT pert;
1386 double rad;
1387 int j;
1388
1389 if (!getBSDF_incvec(v, b, i))
1390 return(0);
1391 rad = sqrt(getBSDF_incohm(b, i) / PI);
1392 multisamp(pert, 3, rv);
1393 for (j = 0; j < 3; j++)
1394 v[j] += rad*(2.*pert[j] - 1.);
1395 if (xm != NULL)
1396 multv3(v, v, xm);
1397 return(normalize(v) != 0.0);
1398 }
1399
1400
1401 int
1402 r_BSDF_outvec( /* compute random output vector at given location */
1403 FVECT v,
1404 struct BSDF_data *b,
1405 int o,
1406 double rv,
1407 MAT4 xm
1408 )
1409 {
1410 FVECT pert;
1411 double rad;
1412 int j;
1413
1414 if (!getBSDF_outvec(v, b, o))
1415 return(0);
1416 rad = sqrt(getBSDF_outohm(b, o) / PI);
1417 multisamp(pert, 3, rv);
1418 for (j = 0; j < 3; j++)
1419 v[j] += rad*(2.*pert[j] - 1.);
1420 if (xm != NULL)
1421 multv3(v, v, xm);
1422 return(normalize(v) != 0.0);
1423 }
1424
1425
1426 static int
1427 addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */
1428 char *xfarg[],
1429 FVECT xp,
1430 FVECT yp,
1431 FVECT zp
1432 )
1433 {
1434 static char bufs[3][16];
1435 int bn = 0;
1436 char **xfp = xfarg;
1437 double theta;
1438
1439 if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
1440 /* Special case for X' along Z-axis */
1441 theta = -atan2(yp[0], yp[1]);
1442 *xfp++ = "-ry";
1443 *xfp++ = xp[2] < 0.0 ? "90" : "-90";
1444 *xfp++ = "-rz";
1445 sprintf(bufs[bn], "%f", theta*(180./PI));
1446 *xfp++ = bufs[bn++];
1447 return(xfp - xfarg);
1448 }
1449 theta = atan2(yp[2], zp[2]);
1450 if (!FEQ(theta,0.0)) {
1451 *xfp++ = "-rx";
1452 sprintf(bufs[bn], "%f", theta*(180./PI));
1453 *xfp++ = bufs[bn++];
1454 }
1455 theta = asin(-xp[2]);
1456 if (!FEQ(theta,0.0)) {
1457 *xfp++ = "-ry";
1458 sprintf(bufs[bn], " %f", theta*(180./PI));
1459 *xfp++ = bufs[bn++];
1460 }
1461 theta = atan2(xp[1], xp[0]);
1462 if (!FEQ(theta,0.0)) {
1463 *xfp++ = "-rz";
1464 sprintf(bufs[bn], "%f", theta*(180./PI));
1465 *xfp++ = bufs[bn++];
1466 }
1467 *xfp = NULL;
1468 return(xfp - xfarg);
1469 }
1470
1471
1472 int
1473 getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */
1474 MAT4 xm,
1475 FVECT nrm,
1476 UpDir ud,
1477 char *xfbuf
1478 )
1479 {
1480 char *xfargs[7];
1481 XF myxf;
1482 FVECT updir, xdest, ydest;
1483 int i;
1484
1485 updir[0] = updir[1] = updir[2] = 0.;
1486 switch (ud) {
1487 case UDzneg:
1488 updir[2] = -1.;
1489 break;
1490 case UDyneg:
1491 updir[1] = -1.;
1492 break;
1493 case UDxneg:
1494 updir[0] = -1.;
1495 break;
1496 case UDxpos:
1497 updir[0] = 1.;
1498 break;
1499 case UDypos:
1500 updir[1] = 1.;
1501 break;
1502 case UDzpos:
1503 updir[2] = 1.;
1504 break;
1505 case UDunknown:
1506 return(0);
1507 }
1508 fcross(xdest, updir, nrm);
1509 if (normalize(xdest) == 0.0)
1510 return(0);
1511 fcross(ydest, nrm, xdest);
1512 xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs);
1513 copymat4(xm, myxf.xfm);
1514 if (xfbuf == NULL)
1515 return(1);
1516 /* return xf arguments as well */
1517 for (i = 0; xfargs[i] != NULL; i++) {
1518 *xfbuf++ = ' ';
1519 strcpy(xfbuf, xfargs[i]);
1520 while (*xfbuf) ++xfbuf;
1521 }
1522 return(1);
1523 }
1524
1525 /*######### END DEPRECATED ROUTINES #######*/
1526 /*################################################################*/