ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.29
Committed: Fri Jun 3 18:12:58 2011 UTC (12 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.28: +3 -9 lines
Log Message:
Fixed bugs in variable-resolution isotropic BSDFs

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf.c,v 2.28 2011/04/28 00:24:43 greg Exp $";
3 #endif
4 /*
5 * bsdf.c
6 *
7 * Definitions for bidirectional scattering distribution functions.
8 *
9 * Created by Greg Ward on 1/10/11.
10 *
11 */
12
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <math.h>
16 #include "ezxml.h"
17 #include "hilbert.h"
18 #include "bsdf.h"
19 #include "bsdf_m.h"
20 #include "bsdf_t.h"
21
22 /* English ASCII strings corresponding to ennumerated errors */
23 const char *SDerrorEnglish[] = {
24 "No error",
25 "Memory error",
26 "File input/output error",
27 "File format error",
28 "Illegal argument",
29 "Invalid data",
30 "Unsupported feature",
31 "Internal program error",
32 "Unknown error"
33 };
34
35 /* Additional information on last error (ASCII English) */
36 char SDerrorDetail[256];
37
38 /* Cache of loaded BSDFs */
39 struct SDCache_s *SDcacheList = NULL;
40
41 /* Retain BSDFs in cache list */
42 int SDretainSet = SDretainNone;
43
44 /* Report any error to the indicated stream (in English) */
45 SDError
46 SDreportEnglish(SDError ec, FILE *fp)
47 {
48 if (!ec)
49 return SDEnone;
50 if ((ec < SDEnone) | (ec > SDEunknown)) {
51 SDerrorDetail[0] = '\0';
52 ec = SDEunknown;
53 }
54 if (fp == NULL)
55 return ec;
56 fputs(SDerrorEnglish[ec], fp);
57 if (SDerrorDetail[0]) {
58 fputs(": ", fp);
59 fputs(SDerrorDetail, fp);
60 }
61 fputc('\n', fp);
62 if (fp != stderr)
63 fflush(fp);
64 return ec;
65 }
66
67 static double
68 to_meters( /* return factor to convert given unit to meters */
69 const char *unit
70 )
71 {
72 if (unit == NULL) return(1.); /* safe assumption? */
73 if (!strcasecmp(unit, "Meter")) return(1.);
74 if (!strcasecmp(unit, "Foot")) return(.3048);
75 if (!strcasecmp(unit, "Inch")) return(.0254);
76 if (!strcasecmp(unit, "Centimeter")) return(.01);
77 if (!strcasecmp(unit, "Millimeter")) return(.001);
78 sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
79 return(-1.);
80 }
81
82 /* Load geometric dimensions and description (if any) */
83 static SDError
84 SDloadGeometry(SDData *sd, ezxml_t wdb)
85 {
86 ezxml_t geom;
87 double cfact;
88 const char *fmt, *mgfstr;
89
90 if (wdb == NULL) /* no geometry section? */
91 return SDEnone;
92 sd->dim[0] = sd->dim[1] = sd->dim[2] = .0;
93 if ((geom = ezxml_child(wdb, "Width")) != NULL)
94 sd->dim[0] = atof(ezxml_txt(geom)) *
95 to_meters(ezxml_attr(geom, "unit"));
96 if ((geom = ezxml_child(wdb, "Height")) != NULL)
97 sd->dim[1] = atof(ezxml_txt(geom)) *
98 to_meters(ezxml_attr(geom, "unit"));
99 if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
100 sd->dim[2] = atof(ezxml_txt(geom)) *
101 to_meters(ezxml_attr(geom, "unit"));
102 if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) {
103 sprintf(SDerrorDetail, "Negative size in \"%s\"", sd->name);
104 return SDEdata;
105 }
106 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
107 (mgfstr = ezxml_txt(geom)) == NULL)
108 return SDEnone;
109 if ((fmt = ezxml_attr(geom, "format")) != NULL &&
110 strcasecmp(fmt, "MGF")) {
111 sprintf(SDerrorDetail,
112 "Unrecognized geometry format '%s' in \"%s\"",
113 fmt, sd->name);
114 return SDEsupport;
115 }
116 cfact = to_meters(ezxml_attr(geom, "unit"));
117 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
118 if (sd->mgf == NULL) {
119 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
120 return SDEmemory;
121 }
122 if (cfact < 0.99 || cfact > 1.01)
123 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
124 else
125 strcpy(sd->mgf, mgfstr);
126 return SDEnone;
127 }
128
129 /* Load a BSDF struct from the given file (free first and keep name) */
130 SDError
131 SDloadFile(SDData *sd, const char *fname)
132 {
133 SDError lastErr;
134 ezxml_t fl, wtl;
135
136 if ((sd == NULL) | (fname == NULL || !*fname))
137 return SDEargument;
138 /* free old data, keeping name */
139 SDfreeBSDF(sd);
140 /* parse XML file */
141 fl = ezxml_parse_file(fname);
142 if (fl == NULL) {
143 sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
144 return SDEfile;
145 }
146 if (ezxml_error(fl)[0]) {
147 sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
148 ezxml_free(fl);
149 return SDEformat;
150 }
151 if (strcmp(ezxml_name(fl), "WindowElement")) {
152 sprintf(SDerrorDetail,
153 "BSDF \"%s\": top level node not 'WindowElement'",
154 sd->name);
155 ezxml_free(fl);
156 return SDEformat;
157 }
158 wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
159 if (wtl == NULL) {
160 sprintf(SDerrorDetail, "BSDF \"%s\": no optical layer'",
161 sd->name);
162 ezxml_free(fl);
163 return SDEformat;
164 }
165 /* load geometry if present */
166 lastErr = SDloadGeometry(sd, ezxml_child(wtl, "Material"));
167 if (lastErr)
168 return lastErr;
169 /* try loading variable resolution data */
170 lastErr = SDloadTre(sd, wtl);
171 /* check our result */
172 if (lastErr == SDEsupport) /* try matrix BSDF if not tree data */
173 lastErr = SDloadMtx(sd, wtl);
174
175 /* done with XML file */
176 ezxml_free(fl);
177
178 if (lastErr) { /* was there a load error? */
179 SDfreeBSDF(sd);
180 return lastErr;
181 }
182 /* remove any insignificant components */
183 if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
184 SDfreeSpectralDF(sd->rf); sd->rf = NULL;
185 }
186 if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
187 SDfreeSpectralDF(sd->rb); sd->rb = NULL;
188 }
189 if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
190 SDfreeSpectralDF(sd->tf); sd->tf = NULL;
191 }
192 /* return success */
193 return SDEnone;
194 }
195
196 /* Allocate new spectral distribution function */
197 SDSpectralDF *
198 SDnewSpectralDF(int nc)
199 {
200 SDSpectralDF *df;
201
202 if (nc <= 0) {
203 strcpy(SDerrorDetail, "Zero component spectral DF request");
204 return NULL;
205 }
206 df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
207 (nc-1)*sizeof(SDComponent));
208 if (df == NULL) {
209 sprintf(SDerrorDetail,
210 "Cannot allocate %d component spectral DF", nc);
211 return NULL;
212 }
213 df->minProjSA = .0;
214 df->maxHemi = .0;
215 df->ncomp = nc;
216 memset(df->comp, 0, nc*sizeof(SDComponent));
217 return df;
218 }
219
220 /* Free cached cumulative distributions for BSDF component */
221 void
222 SDfreeCumulativeCache(SDSpectralDF *df)
223 {
224 int n;
225 SDCDst *cdp;
226
227 if (df == NULL)
228 return;
229 for (n = df->ncomp; n-- > 0; )
230 while ((cdp = df->comp[n].cdList) != NULL) {
231 df->comp[n].cdList = cdp->next;
232 free(cdp);
233 }
234 }
235
236 /* Free a spectral distribution function */
237 void
238 SDfreeSpectralDF(SDSpectralDF *df)
239 {
240 int n;
241
242 if (df == NULL)
243 return;
244 SDfreeCumulativeCache(df);
245 for (n = df->ncomp; n-- > 0; )
246 (*df->comp[n].func->freeSC)(df->comp[n].dist);
247 free(df);
248 }
249
250 /* Shorten file path to useable BSDF name, removing suffix */
251 void
252 SDclipName(char *res, const char *fname)
253 {
254 const char *cp, *dot = NULL;
255
256 for (cp = fname; *cp; cp++)
257 if (*cp == '.')
258 dot = cp;
259 if ((dot == NULL) | (dot < fname+2))
260 dot = cp;
261 if (dot - fname >= SDnameLn)
262 fname = dot - SDnameLn + 1;
263 while (fname < dot)
264 *res++ = *fname++;
265 *res = '\0';
266 }
267
268 /* Initialize an unused BSDF struct (simply clears to zeroes) */
269 void
270 SDclearBSDF(SDData *sd, const char *fname)
271 {
272 if (sd == NULL)
273 return;
274 memset(sd, 0, sizeof(SDData));
275 if (fname == NULL)
276 return;
277 SDclipName(sd->name, fname);
278 }
279
280 /* Free data associated with BSDF struct */
281 void
282 SDfreeBSDF(SDData *sd)
283 {
284 if (sd == NULL)
285 return;
286 if (sd->mgf != NULL) {
287 free(sd->mgf);
288 sd->mgf = NULL;
289 }
290 if (sd->rf != NULL) {
291 SDfreeSpectralDF(sd->rf);
292 sd->rf = NULL;
293 }
294 if (sd->rb != NULL) {
295 SDfreeSpectralDF(sd->rb);
296 sd->rb = NULL;
297 }
298 if (sd->tf != NULL) {
299 SDfreeSpectralDF(sd->tf);
300 sd->tf = NULL;
301 }
302 sd->rLambFront.cieY = .0;
303 sd->rLambFront.spec.flags = 0;
304 sd->rLambBack.cieY = .0;
305 sd->rLambBack.spec.flags = 0;
306 sd->tLamb.cieY = .0;
307 sd->tLamb.spec.flags = 0;
308 }
309
310 /* Find writeable BSDF by name, or allocate new cache entry if absent */
311 SDData *
312 SDgetCache(const char *bname)
313 {
314 struct SDCache_s *sdl;
315 char sdnam[SDnameLn];
316
317 if (bname == NULL)
318 return NULL;
319
320 SDclipName(sdnam, bname);
321 for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
322 if (!strcmp(sdl->bsdf.name, sdnam)) {
323 sdl->refcnt++;
324 return &sdl->bsdf;
325 }
326
327 sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
328 if (sdl == NULL)
329 return NULL;
330
331 strcpy(sdl->bsdf.name, sdnam);
332 sdl->next = SDcacheList;
333 SDcacheList = sdl;
334
335 sdl->refcnt = 1;
336 return &sdl->bsdf;
337 }
338
339 /* Get loaded BSDF from cache (or load and cache it on first call) */
340 /* Report any problem to stderr and return NULL on failure */
341 const SDData *
342 SDcacheFile(const char *fname)
343 {
344 SDData *sd;
345 SDError ec;
346
347 if (fname == NULL || !*fname)
348 return NULL;
349 SDerrorDetail[0] = '\0';
350 if ((sd = SDgetCache(fname)) == NULL) {
351 SDreportEnglish(SDEmemory, stderr);
352 return NULL;
353 }
354 if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
355 SDreportEnglish(ec, stderr);
356 SDfreeCache(sd);
357 return NULL;
358 }
359 return sd;
360 }
361
362 /* Free a BSDF from our cache (clear all if NULL) */
363 void
364 SDfreeCache(const SDData *sd)
365 {
366 struct SDCache_s *sdl, *sdLast = NULL;
367
368 if (sd == NULL) { /* free entire list */
369 while ((sdl = SDcacheList) != NULL) {
370 SDcacheList = sdl->next;
371 SDfreeBSDF(&sdl->bsdf);
372 free(sdl);
373 }
374 return;
375 }
376 for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
377 if (&sdl->bsdf == sd)
378 break;
379 if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
380 return; /* missing or still in use */
381 /* keep unreferenced data? */
382 if (SDisLoaded(sd) && SDretainSet) {
383 if (SDretainSet == SDretainAll)
384 return; /* keep everything */
385 /* else free cumulative data */
386 SDfreeCumulativeCache(sd->rf);
387 SDfreeCumulativeCache(sd->rb);
388 SDfreeCumulativeCache(sd->tf);
389 return;
390 }
391 /* remove from list and free */
392 if (sdLast == NULL)
393 SDcacheList = sdl->next;
394 else
395 sdLast->next = sdl->next;
396 SDfreeBSDF(&sdl->bsdf);
397 free(sdl);
398 }
399
400 /* Sample an individual BSDF component */
401 SDError
402 SDsampComponent(SDValue *sv, FVECT ioVec, double randX, SDComponent *sdc)
403 {
404 float coef[SDmaxCh];
405 SDError ec;
406 FVECT inVec;
407 const SDCDst *cd;
408 double d;
409 int n;
410 /* check arguments */
411 if ((sv == NULL) | (ioVec == NULL) | (sdc == NULL))
412 return SDEargument;
413 /* get cumulative distribution */
414 VCOPY(inVec, ioVec);
415 cd = (*sdc->func->getCDist)(inVec, sdc);
416 if (cd == NULL)
417 return SDEmemory;
418 if (cd->cTotal <= 1e-7) { /* anything to sample? */
419 sv->spec = c_dfcolor;
420 sv->cieY = .0;
421 memset(ioVec, 0, 3*sizeof(double));
422 return SDEnone;
423 }
424 sv->cieY = cd->cTotal;
425 /* compute sample direction */
426 ec = (*sdc->func->sampCDist)(ioVec, randX, cd);
427 if (ec)
428 return ec;
429 /* get BSDF color */
430 n = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
431 if (n <= 0) {
432 strcpy(SDerrorDetail, "BSDF sample value error");
433 return SDEinternal;
434 }
435 sv->spec = sdc->cspec[0];
436 d = coef[0];
437 while (--n) {
438 c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
439 d += coef[n];
440 }
441 /* make sure everything is set */
442 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
443 return SDEnone;
444 }
445
446 #define MS_MAXDIM 15
447
448 /* Convert 1-dimensional random variable to N-dimensional */
449 void
450 SDmultiSamp(double t[], int n, double randX)
451 {
452 unsigned nBits;
453 double scale;
454 bitmask_t ndx, coord[MS_MAXDIM];
455
456 while (n > MS_MAXDIM) /* punt for higher dimensions */
457 t[--n] = rand()*(1./(RAND_MAX+.5));
458 nBits = (8*sizeof(bitmask_t) - 1) / n;
459 ndx = randX * (double)((bitmask_t)1 << (nBits*n));
460 /* get coordinate on Hilbert curve */
461 hilbert_i2c(n, nBits, ndx, coord);
462 /* convert back to [0,1) range */
463 scale = 1. / (double)((bitmask_t)1 << nBits);
464 while (n--)
465 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
466 }
467
468 #undef MS_MAXDIM
469
470 /* Generate diffuse hemispherical sample */
471 static void
472 SDdiffuseSamp(FVECT outVec, int outFront, double randX)
473 {
474 /* convert to position on hemisphere */
475 SDmultiSamp(outVec, 2, randX);
476 SDsquare2disk(outVec, outVec[0], outVec[1]);
477 outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
478 if (outVec[2] > 0) /* a bit of paranoia */
479 outVec[2] = sqrt(outVec[2]);
480 if (!outFront) /* going out back? */
481 outVec[2] = -outVec[2];
482 }
483
484 /* Query projected solid angle coverage for non-diffuse BSDF direction */
485 SDError
486 SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2,
487 int qflags, const SDData *sd)
488 {
489 SDSpectralDF *rdf, *tdf;
490 SDError ec;
491 int i;
492 /* check arguments */
493 if ((projSA == NULL) | (v1 == NULL) | (sd == NULL))
494 return SDEargument;
495 /* initialize extrema */
496 switch (qflags) {
497 case SDqueryMax:
498 projSA[0] = .0;
499 break;
500 case SDqueryMin+SDqueryMax:
501 projSA[1] = .0;
502 /* fall through */
503 case SDqueryMin:
504 projSA[0] = 10.;
505 break;
506 case 0:
507 return SDEargument;
508 }
509 if (v1[2] > 0) /* front surface query? */
510 rdf = sd->rf;
511 else
512 rdf = sd->rb;
513 tdf = sd->tf;
514 if (v2 != NULL) /* bidirectional? */
515 if (v1[2] > 0 ^ v2[2] > 0)
516 rdf = NULL;
517 else
518 tdf = NULL;
519 ec = SDEdata; /* run through components */
520 for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
521 ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2,
522 qflags, &rdf->comp[i]);
523 if (ec)
524 return ec;
525 }
526 for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) {
527 ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2,
528 qflags, &tdf->comp[i]);
529 if (ec)
530 return ec;
531 }
532 if (ec) { /* all diffuse? */
533 projSA[0] = M_PI;
534 if (qflags == SDqueryMin+SDqueryMax)
535 projSA[1] = M_PI;
536 }
537 return SDEnone;
538 }
539
540 /* Return BSDF for the given incident and scattered ray vectors */
541 SDError
542 SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
543 {
544 int inFront, outFront;
545 SDSpectralDF *sdf;
546 float coef[SDmaxCh];
547 int nch, i;
548 /* check arguments */
549 if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
550 return SDEargument;
551 /* whose side are we on? */
552 inFront = (inVec[2] > 0);
553 outFront = (outVec[2] > 0);
554 /* start with diffuse portion */
555 if (inFront & outFront) {
556 *sv = sd->rLambFront;
557 sdf = sd->rf;
558 } else if (!(inFront | outFront)) {
559 *sv = sd->rLambBack;
560 sdf = sd->rb;
561 } else /* inFront ^ outFront */ {
562 *sv = sd->tLamb;
563 sdf = sd->tf;
564 }
565 sv->cieY *= 1./M_PI;
566 /* add non-diffuse components */
567 i = (sdf != NULL) ? sdf->ncomp : 0;
568 while (i-- > 0) {
569 nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
570 &sdf->comp[i]);
571 while (nch-- > 0) {
572 c_cmix(&sv->spec, sv->cieY, &sv->spec,
573 coef[nch], &sdf->comp[i].cspec[nch]);
574 sv->cieY += coef[nch];
575 }
576 }
577 /* make sure everything is set */
578 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
579 return SDEnone;
580 }
581
582 /* Compute directional hemispherical scattering at this incident angle */
583 double
584 SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
585 {
586 double hsum;
587 SDSpectralDF *rdf;
588 const SDCDst *cd;
589 int i;
590 /* check arguments */
591 if ((inVec == NULL) | (sd == NULL))
592 return .0;
593 /* gather diffuse components */
594 if (inVec[2] > 0) {
595 hsum = sd->rLambFront.cieY;
596 rdf = sd->rf;
597 } else /* !inFront */ {
598 hsum = sd->rLambBack.cieY;
599 rdf = sd->rb;
600 }
601 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
602 hsum = .0;
603 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
604 hsum += sd->tLamb.cieY;
605 /* gather non-diffuse components */
606 i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
607 rdf != NULL) ? rdf->ncomp : 0;
608 while (i-- > 0) { /* non-diffuse reflection */
609 cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
610 if (cd != NULL)
611 hsum += cd->cTotal;
612 }
613 i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
614 sd->tf != NULL) ? sd->tf->ncomp : 0;
615 while (i-- > 0) { /* non-diffuse transmission */
616 cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]);
617 if (cd != NULL)
618 hsum += cd->cTotal;
619 }
620 return hsum;
621 }
622
623 /* Sample BSDF direction based on the given random variable */
624 SDError
625 SDsampBSDF(SDValue *sv, FVECT ioVec, double randX, int sflags, const SDData *sd)
626 {
627 SDError ec;
628 FVECT inVec;
629 int inFront;
630 SDSpectralDF *rdf;
631 double rdiff;
632 float coef[SDmaxCh];
633 int i, j, n, nr;
634 SDComponent *sdc;
635 const SDCDst **cdarr = NULL;
636 /* check arguments */
637 if ((sv == NULL) | (ioVec == NULL) | (sd == NULL) |
638 (randX < 0) | (randX >= 1.))
639 return SDEargument;
640 /* whose side are we on? */
641 VCOPY(inVec, ioVec);
642 inFront = (inVec[2] > 0);
643 /* remember diffuse portions */
644 if (inFront) {
645 *sv = sd->rLambFront;
646 rdf = sd->rf;
647 } else /* !inFront */ {
648 *sv = sd->rLambBack;
649 rdf = sd->rb;
650 }
651 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
652 sv->cieY = .0;
653 rdiff = sv->cieY;
654 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
655 sv->cieY += sd->tLamb.cieY;
656 /* gather non-diffuse components */
657 i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
658 rdf != NULL) ? rdf->ncomp : 0;
659 j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
660 sd->tf != NULL) ? sd->tf->ncomp : 0;
661 n = i + j;
662 if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
663 return SDEmemory;
664 while (j-- > 0) { /* non-diffuse transmission */
665 cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]);
666 if (cdarr[i+j] == NULL) {
667 free(cdarr);
668 return SDEmemory;
669 }
670 sv->cieY += cdarr[i+j]->cTotal;
671 }
672 while (i-- > 0) { /* non-diffuse reflection */
673 cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
674 if (cdarr[i] == NULL) {
675 free(cdarr);
676 return SDEmemory;
677 }
678 sv->cieY += cdarr[i]->cTotal;
679 }
680 if (sv->cieY <= 1e-7) { /* anything to sample? */
681 sv->cieY = .0;
682 memset(ioVec, 0, 3*sizeof(double));
683 return SDEnone;
684 }
685 /* scale random variable */
686 randX *= sv->cieY;
687 /* diffuse reflection? */
688 if (randX < rdiff) {
689 SDdiffuseSamp(ioVec, inFront, randX/rdiff);
690 goto done;
691 }
692 randX -= rdiff;
693 /* diffuse transmission? */
694 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
695 if (randX < sd->tLamb.cieY) {
696 sv->spec = sd->tLamb.spec;
697 SDdiffuseSamp(ioVec, !inFront, randX/sd->tLamb.cieY);
698 goto done;
699 }
700 randX -= sd->tLamb.cieY;
701 }
702 /* else one of cumulative dist. */
703 for (i = 0; i < n && randX < cdarr[i]->cTotal; i++)
704 randX -= cdarr[i]->cTotal;
705 if (i >= n)
706 return SDEinternal;
707 /* compute sample direction */
708 sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr];
709 ec = (*sdc->func->sampCDist)(ioVec, randX/cdarr[i]->cTotal, cdarr[i]);
710 if (ec)
711 return ec;
712 /* compute color */
713 j = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
714 if (j <= 0) {
715 sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
716 sd->name);
717 return SDEinternal;
718 }
719 sv->spec = sdc->cspec[0];
720 rdiff = coef[0];
721 while (--j) {
722 c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
723 rdiff += coef[j];
724 }
725 done:
726 if (cdarr != NULL)
727 free(cdarr);
728 /* make sure everything is set */
729 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
730 return SDEnone;
731 }
732
733 /* Compute World->BSDF transform from surface normal and up (Y) vector */
734 SDError
735 SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
736 {
737 if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
738 return SDEargument;
739 VCOPY(vMtx[2], sNrm);
740 if (normalize(vMtx[2]) == 0)
741 return SDEargument;
742 fcross(vMtx[0], uVec, vMtx[2]);
743 if (normalize(vMtx[0]) == 0)
744 return SDEargument;
745 fcross(vMtx[1], vMtx[2], vMtx[0]);
746 return SDEnone;
747 }
748
749 /* Compute inverse transform */
750 SDError
751 SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
752 {
753 RREAL mTmp[3][3];
754 double d;
755
756 if ((iMtx == NULL) | (vMtx == NULL))
757 return SDEargument;
758 /* compute determinant */
759 mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
760 mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
761 mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
762 d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
763 if (d == 0) {
764 strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
765 return SDEargument;
766 }
767 d = 1./d; /* invert matrix */
768 mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
769 mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
770 mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
771 mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
772 mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
773 mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
774 mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
775 memcpy(iMtx, mTmp, sizeof(mTmp));
776 return SDEnone;
777 }
778
779 /* Transform and normalize direction (column) vector */
780 SDError
781 SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
782 {
783 FVECT vTmp;
784
785 if ((resVec == NULL) | (inpVec == NULL))
786 return SDEargument;
787 if (vMtx == NULL) { /* assume they just want to normalize */
788 if (resVec != inpVec)
789 VCOPY(resVec, inpVec);
790 return (normalize(resVec) > 0) ? SDEnone : SDEargument;
791 }
792 vTmp[0] = DOT(vMtx[0], inpVec);
793 vTmp[1] = DOT(vMtx[1], inpVec);
794 vTmp[2] = DOT(vMtx[2], inpVec);
795 if (normalize(vTmp) == 0)
796 return SDEargument;
797 VCOPY(resVec, vTmp);
798 return SDEnone;
799 }
800
801 /*################################################################*/
802 /*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/
803
804 /*
805 * Routines for handling BSDF data
806 */
807
808 #include "standard.h"
809 #include "paths.h"
810 #include <ctype.h>
811
812 #define MAXLATS 46 /* maximum number of latitudes */
813
814 /* BSDF angle specification */
815 typedef struct {
816 char name[64]; /* basis name */
817 int nangles; /* total number of directions */
818 struct {
819 float tmin; /* starting theta */
820 short nphis; /* number of phis (0 term) */
821 } lat[MAXLATS+1]; /* latitudes */
822 } ANGLE_BASIS;
823
824 #define MAXABASES 7 /* limit on defined bases */
825
826 static ANGLE_BASIS abase_list[MAXABASES] = {
827 {
828 "LBNL/Klems Full", 145,
829 { {-5., 1},
830 {5., 8},
831 {15., 16},
832 {25., 20},
833 {35., 24},
834 {45., 24},
835 {55., 24},
836 {65., 16},
837 {75., 12},
838 {90., 0} }
839 }, {
840 "LBNL/Klems Half", 73,
841 { {-6.5, 1},
842 {6.5, 8},
843 {19.5, 12},
844 {32.5, 16},
845 {46.5, 20},
846 {61.5, 12},
847 {76.5, 4},
848 {90., 0} }
849 }, {
850 "LBNL/Klems Quarter", 41,
851 { {-9., 1},
852 {9., 8},
853 {27., 12},
854 {46., 12},
855 {66., 8},
856 {90., 0} }
857 }
858 };
859
860 static int nabases = 3; /* current number of defined bases */
861
862 #define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6)
863
864 static int
865 fequal(double a, double b)
866 {
867 if (b != 0)
868 a = a/b - 1.;
869 return((a <= 1e-6) & (a >= -1e-6));
870 }
871
872 /* Returns the name of the given tag */
873 #ifdef ezxml_name
874 #undef ezxml_name
875 static char *
876 ezxml_name(ezxml_t xml)
877 {
878 if (xml == NULL)
879 return(NULL);
880 return(xml->name);
881 }
882 #endif
883
884 /* Returns the given tag's character content or empty string if none */
885 #ifdef ezxml_txt
886 #undef ezxml_txt
887 static char *
888 ezxml_txt(ezxml_t xml)
889 {
890 if (xml == NULL)
891 return("");
892 return(xml->txt);
893 }
894 #endif
895
896
897 static int
898 ab_getvec( /* get vector for this angle basis index */
899 FVECT v,
900 int ndx,
901 void *p
902 )
903 {
904 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
905 int li;
906 double pol, azi, d;
907
908 if ((ndx < 0) | (ndx >= ab->nangles))
909 return(0);
910 for (li = 0; ndx >= ab->lat[li].nphis; li++)
911 ndx -= ab->lat[li].nphis;
912 pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin);
913 azi = 2.*PI*ndx/ab->lat[li].nphis;
914 v[2] = d = cos(pol);
915 d = sqrt(1. - d*d); /* sin(pol) */
916 v[0] = cos(azi)*d;
917 v[1] = sin(azi)*d;
918 return(1);
919 }
920
921
922 static int
923 ab_getndx( /* get index corresponding to the given vector */
924 FVECT v,
925 void *p
926 )
927 {
928 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
929 int li, ndx;
930 double pol, azi, d;
931
932 if ((v[2] < -1.0) | (v[2] > 1.0))
933 return(-1);
934 pol = 180.0/PI*acos(v[2]);
935 azi = 180.0/PI*atan2(v[1], v[0]);
936 if (azi < 0.0) azi += 360.0;
937 for (li = 1; ab->lat[li].tmin <= pol; li++)
938 if (!ab->lat[li].nphis)
939 return(-1);
940 --li;
941 ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
942 if (ndx >= ab->lat[li].nphis) ndx = 0;
943 while (li--)
944 ndx += ab->lat[li].nphis;
945 return(ndx);
946 }
947
948
949 static double
950 ab_getohm( /* get solid angle for this angle basis index */
951 int ndx,
952 void *p
953 )
954 {
955 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
956 int li;
957 double theta, theta1;
958
959 if ((ndx < 0) | (ndx >= ab->nangles))
960 return(0);
961 for (li = 0; ndx >= ab->lat[li].nphis; li++)
962 ndx -= ab->lat[li].nphis;
963 theta1 = PI/180. * ab->lat[li+1].tmin;
964 if (ab->lat[li].nphis == 1) { /* special case */
965 if (ab->lat[li].tmin > FTINY)
966 error(USER, "unsupported BSDF coordinate system");
967 return(2.*PI*(1. - cos(theta1)));
968 }
969 theta = PI/180. * ab->lat[li].tmin;
970 return(2.*PI*(cos(theta) - cos(theta1))/(double)ab->lat[li].nphis);
971 }
972
973
974 static int
975 ab_getvecR( /* get reverse vector for this angle basis index */
976 FVECT v,
977 int ndx,
978 void *p
979 )
980 {
981 if (!ab_getvec(v, ndx, p))
982 return(0);
983
984 v[0] = -v[0];
985 v[1] = -v[1];
986 v[2] = -v[2];
987
988 return(1);
989 }
990
991
992 static int
993 ab_getndxR( /* get index corresponding to the reverse vector */
994 FVECT v,
995 void *p
996 )
997 {
998 FVECT v2;
999
1000 v2[0] = -v[0];
1001 v2[1] = -v[1];
1002 v2[2] = -v[2];
1003
1004 return ab_getndx(v2, p);
1005 }
1006
1007
1008 static void
1009 load_angle_basis( /* load custom BSDF angle basis */
1010 ezxml_t wab
1011 )
1012 {
1013 char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
1014 ezxml_t wbb;
1015 int i;
1016
1017 if (!abname || !*abname)
1018 return;
1019 for (i = nabases; i--; )
1020 if (!strcasecmp(abname, abase_list[i].name))
1021 return; /* assume it's the same */
1022 if (nabases >= MAXABASES)
1023 error(INTERNAL, "too many angle bases");
1024 strcpy(abase_list[nabases].name, abname);
1025 abase_list[nabases].nangles = 0;
1026 for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
1027 wbb != NULL; i++, wbb = wbb->next) {
1028 if (i >= MAXLATS)
1029 error(INTERNAL, "too many latitudes in custom basis");
1030 abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
1031 ezxml_child(ezxml_child(wbb,
1032 "ThetaBounds"), "UpperTheta")));
1033 if (!i)
1034 abase_list[nabases].lat[i].tmin =
1035 -abase_list[nabases].lat[i+1].tmin;
1036 else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
1037 "ThetaBounds"), "LowerTheta"))),
1038 abase_list[nabases].lat[i].tmin))
1039 error(WARNING, "theta values disagree in custom basis");
1040 abase_list[nabases].nangles +=
1041 abase_list[nabases].lat[i].nphis =
1042 atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
1043 }
1044 abase_list[nabases++].lat[i].nphis = 0;
1045 }
1046
1047
1048 static void
1049 load_geometry( /* load geometric dimensions and description (if any) */
1050 struct BSDF_data *dp,
1051 ezxml_t wdb
1052 )
1053 {
1054 ezxml_t geom;
1055 double cfact;
1056 const char *fmt, *mgfstr;
1057
1058 dp->dim[0] = dp->dim[1] = dp->dim[2] = 0;
1059 dp->mgf = NULL;
1060 if ((geom = ezxml_child(wdb, "Width")) != NULL)
1061 dp->dim[0] = atof(ezxml_txt(geom)) *
1062 to_meters(ezxml_attr(geom, "unit"));
1063 if ((geom = ezxml_child(wdb, "Height")) != NULL)
1064 dp->dim[1] = atof(ezxml_txt(geom)) *
1065 to_meters(ezxml_attr(geom, "unit"));
1066 if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
1067 dp->dim[2] = atof(ezxml_txt(geom)) *
1068 to_meters(ezxml_attr(geom, "unit"));
1069 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
1070 (mgfstr = ezxml_txt(geom)) == NULL)
1071 return;
1072 if ((fmt = ezxml_attr(geom, "format")) != NULL &&
1073 strcasecmp(fmt, "MGF")) {
1074 sprintf(errmsg, "unrecognized geometry format '%s'", fmt);
1075 error(WARNING, errmsg);
1076 return;
1077 }
1078 cfact = to_meters(ezxml_attr(geom, "unit"));
1079 dp->mgf = (char *)malloc(strlen(mgfstr)+32);
1080 if (dp->mgf == NULL)
1081 error(SYSTEM, "out of memory in load_geometry");
1082 if (cfact < 0.99 || cfact > 1.01)
1083 sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
1084 else
1085 strcpy(dp->mgf, mgfstr);
1086 }
1087
1088
1089 static void
1090 load_bsdf_data( /* load BSDF distribution for this wavelength */
1091 struct BSDF_data *dp,
1092 ezxml_t wdb
1093 )
1094 {
1095 char *cbasis = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
1096 char *rbasis = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
1097 char *sdata;
1098 int i;
1099
1100 if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) {
1101 error(WARNING, "missing column/row basis for BSDF");
1102 return;
1103 }
1104 for (i = nabases; i--; )
1105 if (!strcasecmp(cbasis, abase_list[i].name)) {
1106 dp->ninc = abase_list[i].nangles;
1107 dp->ib_priv = (void *)&abase_list[i];
1108 dp->ib_vec = ab_getvecR;
1109 dp->ib_ndx = ab_getndxR;
1110 dp->ib_ohm = ab_getohm;
1111 break;
1112 }
1113 if (i < 0) {
1114 sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis);
1115 error(WARNING, errmsg);
1116 return;
1117 }
1118 for (i = nabases; i--; )
1119 if (!strcasecmp(rbasis, abase_list[i].name)) {
1120 dp->nout = abase_list[i].nangles;
1121 dp->ob_priv = (void *)&abase_list[i];
1122 dp->ob_vec = ab_getvec;
1123 dp->ob_ndx = ab_getndx;
1124 dp->ob_ohm = ab_getohm;
1125 break;
1126 }
1127 if (i < 0) {
1128 sprintf(errmsg, "undefined RowAngleBasis '%s'", rbasis);
1129 error(WARNING, errmsg);
1130 return;
1131 }
1132 /* read BSDF data */
1133 sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
1134 if (!sdata || !*sdata) {
1135 error(WARNING, "missing BSDF ScatteringData");
1136 return;
1137 }
1138 dp->bsdf = (float *)malloc(sizeof(float)*dp->ninc*dp->nout);
1139 if (dp->bsdf == NULL)
1140 error(SYSTEM, "out of memory in load_bsdf_data");
1141 for (i = 0; i < dp->ninc*dp->nout; i++) {
1142 char *sdnext = fskip(sdata);
1143 if (sdnext == NULL) {
1144 error(WARNING, "bad/missing BSDF ScatteringData");
1145 free(dp->bsdf); dp->bsdf = NULL;
1146 return;
1147 }
1148 while (*sdnext && isspace(*sdnext))
1149 sdnext++;
1150 if (*sdnext == ',') sdnext++;
1151 dp->bsdf[i] = atof(sdata);
1152 sdata = sdnext;
1153 }
1154 while (isspace(*sdata))
1155 sdata++;
1156 if (*sdata) {
1157 sprintf(errmsg, "%d extra characters after BSDF ScatteringData",
1158 (int)strlen(sdata));
1159 error(WARNING, errmsg);
1160 }
1161 }
1162
1163
1164 static int
1165 check_bsdf_data( /* check that BSDF data is sane */
1166 struct BSDF_data *dp
1167 )
1168 {
1169 double *omega_iarr, *omega_oarr;
1170 double dom, contrib, hemi_total, full_total;
1171 int nneg;
1172 FVECT v;
1173 int i, o;
1174
1175 if (dp == NULL || dp->bsdf == NULL)
1176 return(0);
1177 omega_iarr = (double *)calloc(dp->ninc, sizeof(double));
1178 omega_oarr = (double *)calloc(dp->nout, sizeof(double));
1179 if ((omega_iarr == NULL) | (omega_oarr == NULL))
1180 error(SYSTEM, "out of memory in check_bsdf_data");
1181 /* incoming projected solid angles */
1182 hemi_total = .0;
1183 for (i = dp->ninc; i--; ) {
1184 dom = getBSDF_incohm(dp,i);
1185 if (dom <= 0) {
1186 error(WARNING, "zero/negative incoming solid angle");
1187 continue;
1188 }
1189 if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) {
1190 error(WARNING, "illegal incoming BSDF direction");
1191 free(omega_iarr); free(omega_oarr);
1192 return(0);
1193 }
1194 hemi_total += omega_iarr[i] = dom * -v[2];
1195 }
1196 if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1197 sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%",
1198 100.*(hemi_total/PI - 1.));
1199 error(WARNING, errmsg);
1200 }
1201 dom = PI / hemi_total; /* fix normalization */
1202 for (i = dp->ninc; i--; )
1203 omega_iarr[i] *= dom;
1204 /* outgoing projected solid angles */
1205 hemi_total = .0;
1206 for (o = dp->nout; o--; ) {
1207 dom = getBSDF_outohm(dp,o);
1208 if (dom <= 0) {
1209 error(WARNING, "zero/negative outgoing solid angle");
1210 continue;
1211 }
1212 if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) {
1213 error(WARNING, "illegal outgoing BSDF direction");
1214 free(omega_iarr); free(omega_oarr);
1215 return(0);
1216 }
1217 hemi_total += omega_oarr[o] = dom * v[2];
1218 }
1219 if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1220 sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%",
1221 100.*(hemi_total/PI - 1.));
1222 error(WARNING, errmsg);
1223 }
1224 dom = PI / hemi_total; /* fix normalization */
1225 for (o = dp->nout; o--; )
1226 omega_oarr[o] *= dom;
1227 nneg = 0; /* check outgoing totals */
1228 for (i = 0; i < dp->ninc; i++) {
1229 hemi_total = .0;
1230 for (o = dp->nout; o--; ) {
1231 double f = BSDF_value(dp,i,o);
1232 if (f >= 0)
1233 hemi_total += f*omega_oarr[o];
1234 else {
1235 nneg += (f < -FTINY);
1236 BSDF_value(dp,i,o) = .0f;
1237 }
1238 }
1239 if (hemi_total > 1.01) {
1240 sprintf(errmsg,
1241 "incoming BSDF direction %d passes %.1f%% of light",
1242 i, 100.*hemi_total);
1243 error(WARNING, errmsg);
1244 }
1245 }
1246 if (nneg) {
1247 sprintf(errmsg, "%d negative BSDF values (ignored)", nneg);
1248 error(WARNING, errmsg);
1249 }
1250 full_total = .0; /* reverse roles and check again */
1251 for (o = 0; o < dp->nout; o++) {
1252 hemi_total = .0;
1253 for (i = dp->ninc; i--; )
1254 hemi_total += BSDF_value(dp,i,o) * omega_iarr[i];
1255
1256 if (hemi_total > 1.01) {
1257 sprintf(errmsg,
1258 "outgoing BSDF direction %d collects %.1f%% of light",
1259 o, 100.*hemi_total);
1260 error(WARNING, errmsg);
1261 }
1262 full_total += hemi_total*omega_oarr[o];
1263 }
1264 full_total /= PI;
1265 if (full_total > 1.00001) {
1266 sprintf(errmsg, "BSDF transfers %.4f%% of light",
1267 100.*full_total);
1268 error(WARNING, errmsg);
1269 }
1270 free(omega_iarr); free(omega_oarr);
1271 return(1);
1272 }
1273
1274
1275 struct BSDF_data *
1276 load_BSDF( /* load BSDF data from file */
1277 char *fname
1278 )
1279 {
1280 char *path;
1281 ezxml_t fl, wtl, wld, wdb;
1282 struct BSDF_data *dp;
1283
1284 path = getpath(fname, getrlibpath(), R_OK);
1285 if (path == NULL) {
1286 sprintf(errmsg, "cannot find BSDF file \"%s\"", fname);
1287 error(WARNING, errmsg);
1288 return(NULL);
1289 }
1290 fl = ezxml_parse_file(path);
1291 if (fl == NULL) {
1292 sprintf(errmsg, "cannot open BSDF \"%s\"", path);
1293 error(WARNING, errmsg);
1294 return(NULL);
1295 }
1296 if (ezxml_error(fl)[0]) {
1297 sprintf(errmsg, "BSDF \"%s\" %s", path, ezxml_error(fl));
1298 error(WARNING, errmsg);
1299 ezxml_free(fl);
1300 return(NULL);
1301 }
1302 if (strcmp(ezxml_name(fl), "WindowElement")) {
1303 sprintf(errmsg,
1304 "BSDF \"%s\": top level node not 'WindowElement'",
1305 path);
1306 error(WARNING, errmsg);
1307 ezxml_free(fl);
1308 return(NULL);
1309 }
1310 wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
1311 if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl,
1312 "DataDefinition"), "IncidentDataStructure")),
1313 "Columns")) {
1314 sprintf(errmsg,
1315 "BSDF \"%s\": unsupported IncidentDataStructure",
1316 path);
1317 error(WARNING, errmsg);
1318 ezxml_free(fl);
1319 return(NULL);
1320 }
1321 load_angle_basis(ezxml_child(ezxml_child(wtl,
1322 "DataDefinition"), "AngleBasis"));
1323 dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data));
1324 load_geometry(dp, ezxml_child(wtl, "Material"));
1325 for (wld = ezxml_child(wtl, "WavelengthData");
1326 wld != NULL; wld = wld->next) {
1327 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1328 "Visible"))
1329 continue;
1330 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1331 wdb != NULL; wdb = wdb->next)
1332 if (!strcasecmp(ezxml_txt(ezxml_child(wdb,
1333 "WavelengthDataDirection")),
1334 "Transmission Front"))
1335 break;
1336 if (wdb != NULL) { /* load front BTDF */
1337 load_bsdf_data(dp, wdb);
1338 break; /* ignore the rest */
1339 }
1340 }
1341 ezxml_free(fl); /* done with XML file */
1342 if (!check_bsdf_data(dp)) {
1343 sprintf(errmsg, "bad/missing BTDF data in \"%s\"", path);
1344 error(WARNING, errmsg);
1345 free_BSDF(dp);
1346 dp = NULL;
1347 }
1348 return(dp);
1349 }
1350
1351
1352 void
1353 free_BSDF( /* free BSDF data structure */
1354 struct BSDF_data *b
1355 )
1356 {
1357 if (b == NULL)
1358 return;
1359 if (b->mgf != NULL)
1360 free(b->mgf);
1361 if (b->bsdf != NULL)
1362 free(b->bsdf);
1363 free(b);
1364 }
1365
1366
1367 int
1368 r_BSDF_incvec( /* compute random input vector at given location */
1369 FVECT v,
1370 struct BSDF_data *b,
1371 int i,
1372 double rv,
1373 MAT4 xm
1374 )
1375 {
1376 FVECT pert;
1377 double rad;
1378 int j;
1379
1380 if (!getBSDF_incvec(v, b, i))
1381 return(0);
1382 rad = sqrt(getBSDF_incohm(b, i) / PI);
1383 multisamp(pert, 3, rv);
1384 for (j = 0; j < 3; j++)
1385 v[j] += rad*(2.*pert[j] - 1.);
1386 if (xm != NULL)
1387 multv3(v, v, xm);
1388 return(normalize(v) != 0.0);
1389 }
1390
1391
1392 int
1393 r_BSDF_outvec( /* compute random output vector at given location */
1394 FVECT v,
1395 struct BSDF_data *b,
1396 int o,
1397 double rv,
1398 MAT4 xm
1399 )
1400 {
1401 FVECT pert;
1402 double rad;
1403 int j;
1404
1405 if (!getBSDF_outvec(v, b, o))
1406 return(0);
1407 rad = sqrt(getBSDF_outohm(b, o) / PI);
1408 multisamp(pert, 3, rv);
1409 for (j = 0; j < 3; j++)
1410 v[j] += rad*(2.*pert[j] - 1.);
1411 if (xm != NULL)
1412 multv3(v, v, xm);
1413 return(normalize(v) != 0.0);
1414 }
1415
1416
1417 static int
1418 addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */
1419 char *xfarg[],
1420 FVECT xp,
1421 FVECT yp,
1422 FVECT zp
1423 )
1424 {
1425 static char bufs[3][16];
1426 int bn = 0;
1427 char **xfp = xfarg;
1428 double theta;
1429
1430 if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
1431 /* Special case for X' along Z-axis */
1432 theta = -atan2(yp[0], yp[1]);
1433 *xfp++ = "-ry";
1434 *xfp++ = xp[2] < 0.0 ? "90" : "-90";
1435 *xfp++ = "-rz";
1436 sprintf(bufs[bn], "%f", theta*(180./PI));
1437 *xfp++ = bufs[bn++];
1438 return(xfp - xfarg);
1439 }
1440 theta = atan2(yp[2], zp[2]);
1441 if (!FEQ(theta,0.0)) {
1442 *xfp++ = "-rx";
1443 sprintf(bufs[bn], "%f", theta*(180./PI));
1444 *xfp++ = bufs[bn++];
1445 }
1446 theta = asin(-xp[2]);
1447 if (!FEQ(theta,0.0)) {
1448 *xfp++ = "-ry";
1449 sprintf(bufs[bn], " %f", theta*(180./PI));
1450 *xfp++ = bufs[bn++];
1451 }
1452 theta = atan2(xp[1], xp[0]);
1453 if (!FEQ(theta,0.0)) {
1454 *xfp++ = "-rz";
1455 sprintf(bufs[bn], "%f", theta*(180./PI));
1456 *xfp++ = bufs[bn++];
1457 }
1458 *xfp = NULL;
1459 return(xfp - xfarg);
1460 }
1461
1462
1463 int
1464 getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */
1465 MAT4 xm,
1466 FVECT nrm,
1467 UpDir ud,
1468 char *xfbuf
1469 )
1470 {
1471 char *xfargs[7];
1472 XF myxf;
1473 FVECT updir, xdest, ydest;
1474 int i;
1475
1476 updir[0] = updir[1] = updir[2] = 0.;
1477 switch (ud) {
1478 case UDzneg:
1479 updir[2] = -1.;
1480 break;
1481 case UDyneg:
1482 updir[1] = -1.;
1483 break;
1484 case UDxneg:
1485 updir[0] = -1.;
1486 break;
1487 case UDxpos:
1488 updir[0] = 1.;
1489 break;
1490 case UDypos:
1491 updir[1] = 1.;
1492 break;
1493 case UDzpos:
1494 updir[2] = 1.;
1495 break;
1496 case UDunknown:
1497 return(0);
1498 }
1499 fcross(xdest, updir, nrm);
1500 if (normalize(xdest) == 0.0)
1501 return(0);
1502 fcross(ydest, nrm, xdest);
1503 xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs);
1504 copymat4(xm, myxf.xfm);
1505 if (xfbuf == NULL)
1506 return(1);
1507 /* return xf arguments as well */
1508 for (i = 0; xfargs[i] != NULL; i++) {
1509 *xfbuf++ = ' ';
1510 strcpy(xfbuf, xfargs[i]);
1511 while (*xfbuf) ++xfbuf;
1512 }
1513 return(1);
1514 }
1515
1516 /*######### END DEPRECATED ROUTINES #######*/
1517 /*################################################################*/