ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.23
Committed: Wed Apr 20 14:44:05 2011 UTC (13 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.22: +27 -22 lines
Log Message:
Fixes to last change -- tested

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf.c,v 2.22 2011/04/19 21:31:22 greg Exp $";
3 #endif
4 /*
5 * bsdf.c
6 *
7 * Definitions for bidirectional scattering distribution functions.
8 *
9 * Created by Greg Ward on 1/10/11.
10 *
11 */
12
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <math.h>
16 #include "ezxml.h"
17 #include "hilbert.h"
18 #include "bsdf.h"
19 #include "bsdf_m.h"
20 #include "bsdf_t.h"
21
22 /* English ASCII strings corresponding to ennumerated errors */
23 const char *SDerrorEnglish[] = {
24 "No error",
25 "Memory error",
26 "File input/output error",
27 "File format error",
28 "Illegal argument",
29 "Invalid data",
30 "Unsupported feature",
31 "Internal program error",
32 "Unknown error"
33 };
34
35 /* Additional information on last error (ASCII English) */
36 char SDerrorDetail[256];
37
38 /* Cache of loaded BSDFs */
39 struct SDCache_s *SDcacheList = NULL;
40
41 /* Retain BSDFs in cache list */
42 int SDretainSet = SDretainNone;
43
44 /* Report any error to the indicated stream (in English) */
45 SDError
46 SDreportEnglish(SDError ec, FILE *fp)
47 {
48 if (!ec)
49 return SDEnone;
50 if ((ec < SDEnone) | (ec > SDEunknown)) {
51 SDerrorDetail[0] = '\0';
52 ec = SDEunknown;
53 }
54 if (fp == NULL)
55 return ec;
56 fputs(SDerrorEnglish[ec], fp);
57 if (SDerrorDetail[0]) {
58 fputs(": ", fp);
59 fputs(SDerrorDetail, fp);
60 }
61 fputc('\n', fp);
62 if (fp != stderr)
63 fflush(fp);
64 return ec;
65 }
66
67 static double
68 to_meters( /* return factor to convert given unit to meters */
69 const char *unit
70 )
71 {
72 if (unit == NULL) return(1.); /* safe assumption? */
73 if (!strcasecmp(unit, "Meter")) return(1.);
74 if (!strcasecmp(unit, "Foot")) return(.3048);
75 if (!strcasecmp(unit, "Inch")) return(.0254);
76 if (!strcasecmp(unit, "Centimeter")) return(.01);
77 if (!strcasecmp(unit, "Millimeter")) return(.001);
78 sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
79 return(-1.);
80 }
81
82 /* Load geometric dimensions and description (if any) */
83 static SDError
84 SDloadGeometry(SDData *sd, ezxml_t wdb)
85 {
86 ezxml_t geom;
87 double cfact;
88 const char *fmt, *mgfstr;
89
90 if (wdb == NULL) /* no geometry section? */
91 return SDEnone;
92 sd->dim[0] = sd->dim[1] = sd->dim[2] = .0;
93 if ((geom = ezxml_child(wdb, "Width")) != NULL)
94 sd->dim[0] = atof(ezxml_txt(geom)) *
95 to_meters(ezxml_attr(geom, "unit"));
96 if ((geom = ezxml_child(wdb, "Height")) != NULL)
97 sd->dim[1] = atof(ezxml_txt(geom)) *
98 to_meters(ezxml_attr(geom, "unit"));
99 if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
100 sd->dim[2] = atof(ezxml_txt(geom)) *
101 to_meters(ezxml_attr(geom, "unit"));
102 if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) {
103 sprintf(SDerrorDetail, "Negative size in \"%s\"", sd->name);
104 return SDEdata;
105 }
106 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
107 (mgfstr = ezxml_txt(geom)) == NULL)
108 return SDEnone;
109 if ((fmt = ezxml_attr(geom, "format")) != NULL &&
110 strcasecmp(fmt, "MGF")) {
111 sprintf(SDerrorDetail,
112 "Unrecognized geometry format '%s' in \"%s\"",
113 fmt, sd->name);
114 return SDEsupport;
115 }
116 cfact = to_meters(ezxml_attr(geom, "unit"));
117 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
118 if (sd->mgf == NULL) {
119 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
120 return SDEmemory;
121 }
122 if (cfact < 0.99 || cfact > 1.01)
123 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
124 else
125 strcpy(sd->mgf, mgfstr);
126 return SDEnone;
127 }
128
129 /* Load a BSDF struct from the given file (free first and keep name) */
130 SDError
131 SDloadFile(SDData *sd, const char *fname)
132 {
133 SDError lastErr;
134 ezxml_t fl, wtl;
135
136 if ((sd == NULL) | (fname == NULL || !*fname))
137 return SDEargument;
138 /* free old data, keeping name */
139 SDfreeBSDF(sd);
140 /* parse XML file */
141 fl = ezxml_parse_file(fname);
142 if (fl == NULL) {
143 sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
144 return SDEfile;
145 }
146 if (ezxml_error(fl)[0]) {
147 sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
148 ezxml_free(fl);
149 return SDEformat;
150 }
151 if (strcmp(ezxml_name(fl), "WindowElement")) {
152 sprintf(SDerrorDetail,
153 "BSDF \"%s\": top level node not 'WindowElement'",
154 sd->name);
155 ezxml_free(fl);
156 return SDEformat;
157 }
158 wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
159 if (wtl == NULL) {
160 sprintf(SDerrorDetail, "BSDF \"%s\": no optical layer'",
161 sd->name);
162 ezxml_free(fl);
163 return SDEformat;
164 }
165 /* load geometry if present */
166 lastErr = SDloadGeometry(sd, ezxml_child(wtl, "Material"));
167 if (lastErr)
168 return lastErr;
169 /* try loading variable resolution data */
170 lastErr = SDloadTre(sd, wtl);
171 /* check our result */
172 switch (lastErr) {
173 case SDEformat:
174 case SDEdata:
175 case SDEsupport: /* possibly we just tried the wrong format */
176 lastErr = SDloadMtx(sd, wtl);
177 break;
178 default: /* variable res. OK else serious error */
179 break;
180 }
181 /* done with XML file */
182 ezxml_free(fl);
183
184 if (lastErr) { /* was there a load error? */
185 SDfreeBSDF(sd);
186 return lastErr;
187 }
188 /* remove any insignificant components */
189 if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
190 SDfreeSpectralDF(sd->rf); sd->rf = NULL;
191 }
192 if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
193 SDfreeSpectralDF(sd->rb); sd->rb = NULL;
194 }
195 if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
196 SDfreeSpectralDF(sd->tf); sd->tf = NULL;
197 }
198 /* return success */
199 return SDEnone;
200 }
201
202 /* Allocate new spectral distribution function */
203 SDSpectralDF *
204 SDnewSpectralDF(int nc)
205 {
206 SDSpectralDF *df;
207
208 if (nc <= 0) {
209 strcpy(SDerrorDetail, "Zero component spectral DF request");
210 return NULL;
211 }
212 df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
213 (nc-1)*sizeof(SDComponent));
214 if (df == NULL) {
215 sprintf(SDerrorDetail,
216 "Cannot allocate %d component spectral DF", nc);
217 return NULL;
218 }
219 df->minProjSA = .0;
220 df->maxHemi = .0;
221 df->ncomp = nc;
222 memset(df->comp, 0, nc*sizeof(SDComponent));
223 return df;
224 }
225
226 /* Free cached cumulative distributions for BSDF component */
227 void
228 SDfreeCumulativeCache(SDSpectralDF *df)
229 {
230 int n;
231 SDCDst *cdp;
232
233 if (df == NULL)
234 return;
235 for (n = df->ncomp; n-- > 0; )
236 while ((cdp = df->comp[n].cdList) != NULL) {
237 df->comp[n].cdList = cdp->next;
238 free(cdp);
239 }
240 }
241
242 /* Free a spectral distribution function */
243 void
244 SDfreeSpectralDF(SDSpectralDF *df)
245 {
246 int n;
247
248 if (df == NULL)
249 return;
250 SDfreeCumulativeCache(df);
251 for (n = df->ncomp; n-- > 0; )
252 (*df->comp[n].func->freeSC)(df->comp[n].dist);
253 free(df);
254 }
255
256 /* Shorten file path to useable BSDF name, removing suffix */
257 void
258 SDclipName(char *res, const char *fname)
259 {
260 const char *cp, *dot = NULL;
261
262 for (cp = fname; *cp; cp++)
263 if (*cp == '.')
264 dot = cp;
265 if ((dot == NULL) | (dot < fname+2))
266 dot = cp;
267 if (dot - fname >= SDnameLn)
268 fname = dot - SDnameLn + 1;
269 while (fname < dot)
270 *res++ = *fname++;
271 *res = '\0';
272 }
273
274 /* Initialize an unused BSDF struct (simply clears to zeroes) */
275 void
276 SDclearBSDF(SDData *sd, const char *fname)
277 {
278 if (sd == NULL)
279 return;
280 memset(sd, 0, sizeof(SDData));
281 if (fname == NULL)
282 return;
283 SDclipName(sd->name, fname);
284 }
285
286 /* Free data associated with BSDF struct */
287 void
288 SDfreeBSDF(SDData *sd)
289 {
290 if (sd == NULL)
291 return;
292 if (sd->mgf != NULL) {
293 free(sd->mgf);
294 sd->mgf = NULL;
295 }
296 if (sd->rf != NULL) {
297 SDfreeSpectralDF(sd->rf);
298 sd->rf = NULL;
299 }
300 if (sd->rb != NULL) {
301 SDfreeSpectralDF(sd->rb);
302 sd->rb = NULL;
303 }
304 if (sd->tf != NULL) {
305 SDfreeSpectralDF(sd->tf);
306 sd->tf = NULL;
307 }
308 sd->rLambFront.cieY = .0;
309 sd->rLambFront.spec.flags = 0;
310 sd->rLambBack.cieY = .0;
311 sd->rLambBack.spec.flags = 0;
312 sd->tLamb.cieY = .0;
313 sd->tLamb.spec.flags = 0;
314 }
315
316 /* Find writeable BSDF by name, or allocate new cache entry if absent */
317 SDData *
318 SDgetCache(const char *bname)
319 {
320 struct SDCache_s *sdl;
321 char sdnam[SDnameLn];
322
323 if (bname == NULL)
324 return NULL;
325
326 SDclipName(sdnam, bname);
327 for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
328 if (!strcmp(sdl->bsdf.name, sdnam)) {
329 sdl->refcnt++;
330 return &sdl->bsdf;
331 }
332
333 sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
334 if (sdl == NULL)
335 return NULL;
336
337 strcpy(sdl->bsdf.name, sdnam);
338 sdl->next = SDcacheList;
339 SDcacheList = sdl;
340
341 sdl->refcnt = 1;
342 return &sdl->bsdf;
343 }
344
345 /* Get loaded BSDF from cache (or load and cache it on first call) */
346 /* Report any problem to stderr and return NULL on failure */
347 const SDData *
348 SDcacheFile(const char *fname)
349 {
350 SDData *sd;
351 SDError ec;
352
353 if (fname == NULL || !*fname)
354 return NULL;
355 SDerrorDetail[0] = '\0';
356 if ((sd = SDgetCache(fname)) == NULL) {
357 SDreportEnglish(SDEmemory, stderr);
358 return NULL;
359 }
360 if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
361 SDreportEnglish(ec, stderr);
362 SDfreeCache(sd);
363 return NULL;
364 }
365 return sd;
366 }
367
368 /* Free a BSDF from our cache (clear all if NULL) */
369 void
370 SDfreeCache(const SDData *sd)
371 {
372 struct SDCache_s *sdl, *sdLast = NULL;
373
374 if (sd == NULL) { /* free entire list */
375 while ((sdl = SDcacheList) != NULL) {
376 SDcacheList = sdl->next;
377 SDfreeBSDF(&sdl->bsdf);
378 free(sdl);
379 }
380 return;
381 }
382 for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
383 if (&sdl->bsdf == sd)
384 break;
385 if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
386 return; /* missing or still in use */
387 /* keep unreferenced data? */
388 if (SDisLoaded(sd) && SDretainSet) {
389 if (SDretainSet == SDretainAll)
390 return; /* keep everything */
391 /* else free cumulative data */
392 SDfreeCumulativeCache(sd->rf);
393 SDfreeCumulativeCache(sd->rb);
394 SDfreeCumulativeCache(sd->tf);
395 return;
396 }
397 /* remove from list and free */
398 if (sdLast == NULL)
399 SDcacheList = sdl->next;
400 else
401 sdLast->next = sdl->next;
402 SDfreeBSDF(&sdl->bsdf);
403 free(sdl);
404 }
405
406 /* Sample an individual BSDF component */
407 SDError
408 SDsampComponent(SDValue *sv, FVECT outVec, const FVECT inVec,
409 double randX, SDComponent *sdc)
410 {
411 float coef[SDmaxCh];
412 SDError ec;
413 const SDCDst *cd;
414 double d;
415 int n;
416 /* check arguments */
417 if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL))
418 return SDEargument;
419 /* get cumulative distribution */
420 cd = (*sdc->func->getCDist)(inVec, sdc);
421 if (cd == NULL)
422 return SDEmemory;
423 if (cd->cTotal <= 1e-7) { /* anything to sample? */
424 sv->spec = c_dfcolor;
425 sv->cieY = .0;
426 memset(outVec, 0, 3*sizeof(double));
427 return SDEnone;
428 }
429 sv->cieY = cd->cTotal;
430 /* compute sample direction */
431 ec = (*sdc->func->sampCDist)(outVec, randX, cd);
432 if (ec)
433 return ec;
434 /* get BSDF color */
435 n = (*sdc->func->getBSDFs)(coef, outVec, inVec, sdc->dist);
436 if (n <= 0) {
437 strcpy(SDerrorDetail, "BSDF sample value error");
438 return SDEinternal;
439 }
440 sv->spec = sdc->cspec[0];
441 d = coef[0];
442 while (--n) {
443 c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
444 d += coef[n];
445 }
446 /* make sure everything is set */
447 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
448 return SDEnone;
449 }
450
451 #define MS_MAXDIM 15
452
453 /* Convert 1-dimensional random variable to N-dimensional */
454 void
455 SDmultiSamp(double t[], int n, double randX)
456 {
457 unsigned nBits;
458 double scale;
459 bitmask_t ndx, coord[MS_MAXDIM];
460
461 while (n > MS_MAXDIM) /* punt for higher dimensions */
462 t[--n] = rand()*(1./(RAND_MAX+.5));
463 nBits = (8*sizeof(bitmask_t) - 1) / n;
464 ndx = randX * (double)((bitmask_t)1 << (nBits*n));
465 /* get coordinate on Hilbert curve */
466 hilbert_i2c(n, nBits, ndx, coord);
467 /* convert back to [0,1) range */
468 scale = 1. / (double)((bitmask_t)1 << nBits);
469 while (n--)
470 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
471 }
472
473 #undef MS_MAXDIM
474
475 /* Generate diffuse hemispherical sample */
476 static void
477 SDdiffuseSamp(FVECT outVec, int outFront, double randX)
478 {
479 /* convert to position on hemisphere */
480 SDmultiSamp(outVec, 2, randX);
481 SDsquare2disk(outVec, outVec[0], outVec[1]);
482 outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
483 if (outVec[2] > 0) /* a bit of paranoia */
484 outVec[2] = sqrt(outVec[2]);
485 if (!outFront) /* going out back? */
486 outVec[2] = -outVec[2];
487 }
488
489 /* Query projected solid angle coverage for non-diffuse BSDF direction */
490 SDError
491 SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2,
492 int qflags, const SDData *sd)
493 {
494 SDSpectralDF *rdf, *tdf;
495 SDError ec;
496 int i;
497 /* check arguments */
498 if ((projSA == NULL) | (v1 == NULL))
499 return SDEargument;
500 /* initialize extrema */
501 switch (qflags) {
502 case SDqueryMax:
503 projSA[0] = .0;
504 break;
505 case SDqueryMin+SDqueryMax:
506 projSA[1] = .0;
507 /* fall through */
508 case SDqueryMin:
509 projSA[0] = 10.;
510 break;
511 case 0:
512 return SDEargument;
513 }
514 if (v1[2] > 0) /* front surface query? */
515 rdf = sd->rf;
516 else
517 rdf = sd->rb;
518 tdf = NULL; /* transmitted component? */
519 if (v2 != NULL && v1[2] > 0 ^ v2[2] > 0) {
520 rdf = NULL;
521 tdf = sd->tf;
522 }
523 ec = SDEdata; /* run through components */
524 for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
525 ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2,
526 qflags, rdf->comp[i].dist);
527 if (ec)
528 return ec;
529 }
530 for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) {
531 ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2,
532 qflags, tdf->comp[i].dist);
533 if (ec)
534 return ec;
535 }
536 if (ec) { /* all diffuse? */
537 projSA[0] = M_PI;
538 if (qflags == SDqueryMin+SDqueryMax)
539 projSA[1] = M_PI;
540 }
541 return SDEnone;
542 }
543
544 /* Return BSDF for the given incident and scattered ray vectors */
545 SDError
546 SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
547 {
548 int inFront, outFront;
549 SDSpectralDF *sdf;
550 float coef[SDmaxCh];
551 int nch, i;
552 /* check arguments */
553 if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
554 return SDEargument;
555 /* whose side are we on? */
556 inFront = (inVec[2] > 0);
557 outFront = (outVec[2] > 0);
558 /* start with diffuse portion */
559 if (inFront & outFront) {
560 *sv = sd->rLambFront;
561 sdf = sd->rf;
562 } else if (!(inFront | outFront)) {
563 *sv = sd->rLambBack;
564 sdf = sd->rb;
565 } else /* inFront ^ outFront */ {
566 *sv = sd->tLamb;
567 sdf = sd->tf;
568 }
569 sv->cieY *= 1./M_PI;
570 /* add non-diffuse components */
571 i = (sdf != NULL) ? sdf->ncomp : 0;
572 while (i-- > 0) {
573 nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
574 sdf->comp[i].dist);
575 while (nch-- > 0) {
576 c_cmix(&sv->spec, sv->cieY, &sv->spec,
577 coef[nch], &sdf->comp[i].cspec[nch]);
578 sv->cieY += coef[nch];
579 }
580 }
581 /* make sure everything is set */
582 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
583 return SDEnone;
584 }
585
586 /* Compute directional hemispherical scattering at this incident angle */
587 double
588 SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
589 {
590 double hsum;
591 SDSpectralDF *rdf;
592 const SDCDst *cd;
593 int i;
594 /* check arguments */
595 if ((inVec == NULL) | (sd == NULL))
596 return .0;
597 /* gather diffuse components */
598 if (inVec[2] > 0) {
599 hsum = sd->rLambFront.cieY;
600 rdf = sd->rf;
601 } else /* !inFront */ {
602 hsum = sd->rLambBack.cieY;
603 rdf = sd->rb;
604 }
605 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
606 hsum = .0;
607 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
608 hsum += sd->tLamb.cieY;
609 /* gather non-diffuse components */
610 i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
611 rdf != NULL) ? rdf->ncomp : 0;
612 while (i-- > 0) { /* non-diffuse reflection */
613 cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
614 if (cd != NULL)
615 hsum += cd->cTotal;
616 }
617 i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
618 sd->tf != NULL) ? sd->tf->ncomp : 0;
619 while (i-- > 0) { /* non-diffuse transmission */
620 cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]);
621 if (cd != NULL)
622 hsum += cd->cTotal;
623 }
624 return hsum;
625 }
626
627 /* Sample BSDF direction based on the given random variable */
628 SDError
629 SDsampBSDF(SDValue *sv, FVECT outVec, const FVECT inVec,
630 double randX, int sflags, const SDData *sd)
631 {
632 SDError ec;
633 int inFront;
634 SDSpectralDF *rdf;
635 double rdiff;
636 float coef[SDmaxCh];
637 int i, j, n, nr;
638 SDComponent *sdc;
639 const SDCDst **cdarr = NULL;
640 /* check arguments */
641 if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL) |
642 (randX < 0) | (randX >= 1.))
643 return SDEargument;
644 /* whose side are we on? */
645 inFront = (inVec[2] > 0);
646 /* remember diffuse portions */
647 if (inFront) {
648 *sv = sd->rLambFront;
649 rdf = sd->rf;
650 } else /* !inFront */ {
651 *sv = sd->rLambBack;
652 rdf = sd->rb;
653 }
654 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
655 sv->cieY = .0;
656 rdiff = sv->cieY;
657 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
658 sv->cieY += sd->tLamb.cieY;
659 /* gather non-diffuse components */
660 i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
661 rdf != NULL) ? rdf->ncomp : 0;
662 j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
663 sd->tf != NULL) ? sd->tf->ncomp : 0;
664 n = i + j;
665 if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
666 return SDEmemory;
667 while (j-- > 0) { /* non-diffuse transmission */
668 cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]);
669 if (cdarr[i+j] == NULL) {
670 free(cdarr);
671 return SDEmemory;
672 }
673 sv->cieY += cdarr[i+j]->cTotal;
674 }
675 while (i-- > 0) { /* non-diffuse reflection */
676 cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
677 if (cdarr[i] == NULL) {
678 free(cdarr);
679 return SDEmemory;
680 }
681 sv->cieY += cdarr[i]->cTotal;
682 }
683 if (sv->cieY <= 1e-7) { /* anything to sample? */
684 sv->cieY = .0;
685 memset(outVec, 0, 3*sizeof(double));
686 return SDEnone;
687 }
688 /* scale random variable */
689 randX *= sv->cieY;
690 /* diffuse reflection? */
691 if (randX < rdiff) {
692 SDdiffuseSamp(outVec, inFront, randX/rdiff);
693 goto done;
694 }
695 randX -= rdiff;
696 /* diffuse transmission? */
697 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
698 if (randX < sd->tLamb.cieY) {
699 sv->spec = sd->tLamb.spec;
700 SDdiffuseSamp(outVec, !inFront, randX/sd->tLamb.cieY);
701 goto done;
702 }
703 randX -= sd->tLamb.cieY;
704 }
705 /* else one of cumulative dist. */
706 for (i = 0; i < n && randX < cdarr[i]->cTotal; i++)
707 randX -= cdarr[i]->cTotal;
708 if (i >= n)
709 return SDEinternal;
710 /* compute sample direction */
711 sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr];
712 ec = (*sdc->func->sampCDist)(outVec, randX/cdarr[i]->cTotal, cdarr[i]);
713 if (ec)
714 return ec;
715 /* compute color */
716 j = (*sdc->func->getBSDFs)(coef, outVec, inVec, sdc->dist);
717 if (j <= 0) {
718 sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
719 sd->name);
720 return SDEinternal;
721 }
722 sv->spec = sdc->cspec[0];
723 rdiff = coef[0];
724 while (--j) {
725 c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
726 rdiff += coef[j];
727 }
728 done:
729 if (cdarr != NULL)
730 free(cdarr);
731 /* make sure everything is set */
732 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
733 return SDEnone;
734 }
735
736 /* Compute World->BSDF transform from surface normal and up (Y) vector */
737 SDError
738 SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
739 {
740 if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
741 return SDEargument;
742 VCOPY(vMtx[2], sNrm);
743 if (normalize(vMtx[2]) == 0)
744 return SDEargument;
745 fcross(vMtx[0], uVec, vMtx[2]);
746 if (normalize(vMtx[0]) == 0)
747 return SDEargument;
748 fcross(vMtx[1], vMtx[2], vMtx[0]);
749 return SDEnone;
750 }
751
752 /* Compute inverse transform */
753 SDError
754 SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
755 {
756 RREAL mTmp[3][3];
757 double d;
758
759 if ((iMtx == NULL) | (vMtx == NULL))
760 return SDEargument;
761 /* compute determinant */
762 mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
763 mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
764 mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
765 d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
766 if (d == 0) {
767 strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
768 return SDEargument;
769 }
770 d = 1./d; /* invert matrix */
771 mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
772 mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
773 mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
774 mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
775 mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
776 mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
777 mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
778 memcpy(iMtx, mTmp, sizeof(mTmp));
779 return SDEnone;
780 }
781
782 /* Transform and normalize direction (column) vector */
783 SDError
784 SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
785 {
786 FVECT vTmp;
787
788 if ((resVec == NULL) | (inpVec == NULL))
789 return SDEargument;
790 if (vMtx == NULL) { /* assume they just want to normalize */
791 if (resVec != inpVec)
792 VCOPY(resVec, inpVec);
793 return (normalize(resVec) > 0) ? SDEnone : SDEargument;
794 }
795 vTmp[0] = DOT(vMtx[0], inpVec);
796 vTmp[1] = DOT(vMtx[1], inpVec);
797 vTmp[2] = DOT(vMtx[2], inpVec);
798 if (normalize(vTmp) == 0)
799 return SDEargument;
800 VCOPY(resVec, vTmp);
801 return SDEnone;
802 }
803
804 /*################################################################*/
805 /*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/
806
807 /*
808 * Routines for handling BSDF data
809 */
810
811 #include "standard.h"
812 #include "paths.h"
813 #include <ctype.h>
814
815 #define MAXLATS 46 /* maximum number of latitudes */
816
817 /* BSDF angle specification */
818 typedef struct {
819 char name[64]; /* basis name */
820 int nangles; /* total number of directions */
821 struct {
822 float tmin; /* starting theta */
823 short nphis; /* number of phis (0 term) */
824 } lat[MAXLATS+1]; /* latitudes */
825 } ANGLE_BASIS;
826
827 #define MAXABASES 7 /* limit on defined bases */
828
829 static ANGLE_BASIS abase_list[MAXABASES] = {
830 {
831 "LBNL/Klems Full", 145,
832 { {-5., 1},
833 {5., 8},
834 {15., 16},
835 {25., 20},
836 {35., 24},
837 {45., 24},
838 {55., 24},
839 {65., 16},
840 {75., 12},
841 {90., 0} }
842 }, {
843 "LBNL/Klems Half", 73,
844 { {-6.5, 1},
845 {6.5, 8},
846 {19.5, 12},
847 {32.5, 16},
848 {46.5, 20},
849 {61.5, 12},
850 {76.5, 4},
851 {90., 0} }
852 }, {
853 "LBNL/Klems Quarter", 41,
854 { {-9., 1},
855 {9., 8},
856 {27., 12},
857 {46., 12},
858 {66., 8},
859 {90., 0} }
860 }
861 };
862
863 static int nabases = 3; /* current number of defined bases */
864
865 #define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6)
866
867 static int
868 fequal(double a, double b)
869 {
870 if (b != 0)
871 a = a/b - 1.;
872 return((a <= 1e-6) & (a >= -1e-6));
873 }
874
875 /* Returns the name of the given tag */
876 #ifdef ezxml_name
877 #undef ezxml_name
878 static char *
879 ezxml_name(ezxml_t xml)
880 {
881 if (xml == NULL)
882 return(NULL);
883 return(xml->name);
884 }
885 #endif
886
887 /* Returns the given tag's character content or empty string if none */
888 #ifdef ezxml_txt
889 #undef ezxml_txt
890 static char *
891 ezxml_txt(ezxml_t xml)
892 {
893 if (xml == NULL)
894 return("");
895 return(xml->txt);
896 }
897 #endif
898
899
900 static int
901 ab_getvec( /* get vector for this angle basis index */
902 FVECT v,
903 int ndx,
904 void *p
905 )
906 {
907 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
908 int li;
909 double pol, azi, d;
910
911 if ((ndx < 0) | (ndx >= ab->nangles))
912 return(0);
913 for (li = 0; ndx >= ab->lat[li].nphis; li++)
914 ndx -= ab->lat[li].nphis;
915 pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin);
916 azi = 2.*PI*ndx/ab->lat[li].nphis;
917 v[2] = d = cos(pol);
918 d = sqrt(1. - d*d); /* sin(pol) */
919 v[0] = cos(azi)*d;
920 v[1] = sin(azi)*d;
921 return(1);
922 }
923
924
925 static int
926 ab_getndx( /* get index corresponding to the given vector */
927 FVECT v,
928 void *p
929 )
930 {
931 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
932 int li, ndx;
933 double pol, azi, d;
934
935 if ((v[2] < -1.0) | (v[2] > 1.0))
936 return(-1);
937 pol = 180.0/PI*acos(v[2]);
938 azi = 180.0/PI*atan2(v[1], v[0]);
939 if (azi < 0.0) azi += 360.0;
940 for (li = 1; ab->lat[li].tmin <= pol; li++)
941 if (!ab->lat[li].nphis)
942 return(-1);
943 --li;
944 ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
945 if (ndx >= ab->lat[li].nphis) ndx = 0;
946 while (li--)
947 ndx += ab->lat[li].nphis;
948 return(ndx);
949 }
950
951
952 static double
953 ab_getohm( /* get solid angle for this angle basis index */
954 int ndx,
955 void *p
956 )
957 {
958 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
959 int li;
960 double theta, theta1;
961
962 if ((ndx < 0) | (ndx >= ab->nangles))
963 return(0);
964 for (li = 0; ndx >= ab->lat[li].nphis; li++)
965 ndx -= ab->lat[li].nphis;
966 theta1 = PI/180. * ab->lat[li+1].tmin;
967 if (ab->lat[li].nphis == 1) { /* special case */
968 if (ab->lat[li].tmin > FTINY)
969 error(USER, "unsupported BSDF coordinate system");
970 return(2.*PI*(1. - cos(theta1)));
971 }
972 theta = PI/180. * ab->lat[li].tmin;
973 return(2.*PI*(cos(theta) - cos(theta1))/(double)ab->lat[li].nphis);
974 }
975
976
977 static int
978 ab_getvecR( /* get reverse vector for this angle basis index */
979 FVECT v,
980 int ndx,
981 void *p
982 )
983 {
984 if (!ab_getvec(v, ndx, p))
985 return(0);
986
987 v[0] = -v[0];
988 v[1] = -v[1];
989 v[2] = -v[2];
990
991 return(1);
992 }
993
994
995 static int
996 ab_getndxR( /* get index corresponding to the reverse vector */
997 FVECT v,
998 void *p
999 )
1000 {
1001 FVECT v2;
1002
1003 v2[0] = -v[0];
1004 v2[1] = -v[1];
1005 v2[2] = -v[2];
1006
1007 return ab_getndx(v2, p);
1008 }
1009
1010
1011 static void
1012 load_angle_basis( /* load custom BSDF angle basis */
1013 ezxml_t wab
1014 )
1015 {
1016 char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
1017 ezxml_t wbb;
1018 int i;
1019
1020 if (!abname || !*abname)
1021 return;
1022 for (i = nabases; i--; )
1023 if (!strcasecmp(abname, abase_list[i].name))
1024 return; /* assume it's the same */
1025 if (nabases >= MAXABASES)
1026 error(INTERNAL, "too many angle bases");
1027 strcpy(abase_list[nabases].name, abname);
1028 abase_list[nabases].nangles = 0;
1029 for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
1030 wbb != NULL; i++, wbb = wbb->next) {
1031 if (i >= MAXLATS)
1032 error(INTERNAL, "too many latitudes in custom basis");
1033 abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
1034 ezxml_child(ezxml_child(wbb,
1035 "ThetaBounds"), "UpperTheta")));
1036 if (!i)
1037 abase_list[nabases].lat[i].tmin =
1038 -abase_list[nabases].lat[i+1].tmin;
1039 else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
1040 "ThetaBounds"), "LowerTheta"))),
1041 abase_list[nabases].lat[i].tmin))
1042 error(WARNING, "theta values disagree in custom basis");
1043 abase_list[nabases].nangles +=
1044 abase_list[nabases].lat[i].nphis =
1045 atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
1046 }
1047 abase_list[nabases++].lat[i].nphis = 0;
1048 }
1049
1050
1051 static void
1052 load_geometry( /* load geometric dimensions and description (if any) */
1053 struct BSDF_data *dp,
1054 ezxml_t wdb
1055 )
1056 {
1057 ezxml_t geom;
1058 double cfact;
1059 const char *fmt, *mgfstr;
1060
1061 dp->dim[0] = dp->dim[1] = dp->dim[2] = 0;
1062 dp->mgf = NULL;
1063 if ((geom = ezxml_child(wdb, "Width")) != NULL)
1064 dp->dim[0] = atof(ezxml_txt(geom)) *
1065 to_meters(ezxml_attr(geom, "unit"));
1066 if ((geom = ezxml_child(wdb, "Height")) != NULL)
1067 dp->dim[1] = atof(ezxml_txt(geom)) *
1068 to_meters(ezxml_attr(geom, "unit"));
1069 if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
1070 dp->dim[2] = atof(ezxml_txt(geom)) *
1071 to_meters(ezxml_attr(geom, "unit"));
1072 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
1073 (mgfstr = ezxml_txt(geom)) == NULL)
1074 return;
1075 if ((fmt = ezxml_attr(geom, "format")) != NULL &&
1076 strcasecmp(fmt, "MGF")) {
1077 sprintf(errmsg, "unrecognized geometry format '%s'", fmt);
1078 error(WARNING, errmsg);
1079 return;
1080 }
1081 cfact = to_meters(ezxml_attr(geom, "unit"));
1082 dp->mgf = (char *)malloc(strlen(mgfstr)+32);
1083 if (dp->mgf == NULL)
1084 error(SYSTEM, "out of memory in load_geometry");
1085 if (cfact < 0.99 || cfact > 1.01)
1086 sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
1087 else
1088 strcpy(dp->mgf, mgfstr);
1089 }
1090
1091
1092 static void
1093 load_bsdf_data( /* load BSDF distribution for this wavelength */
1094 struct BSDF_data *dp,
1095 ezxml_t wdb
1096 )
1097 {
1098 char *cbasis = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
1099 char *rbasis = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
1100 char *sdata;
1101 int i;
1102
1103 if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) {
1104 error(WARNING, "missing column/row basis for BSDF");
1105 return;
1106 }
1107 for (i = nabases; i--; )
1108 if (!strcasecmp(cbasis, abase_list[i].name)) {
1109 dp->ninc = abase_list[i].nangles;
1110 dp->ib_priv = (void *)&abase_list[i];
1111 dp->ib_vec = ab_getvecR;
1112 dp->ib_ndx = ab_getndxR;
1113 dp->ib_ohm = ab_getohm;
1114 break;
1115 }
1116 if (i < 0) {
1117 sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis);
1118 error(WARNING, errmsg);
1119 return;
1120 }
1121 for (i = nabases; i--; )
1122 if (!strcasecmp(rbasis, abase_list[i].name)) {
1123 dp->nout = abase_list[i].nangles;
1124 dp->ob_priv = (void *)&abase_list[i];
1125 dp->ob_vec = ab_getvec;
1126 dp->ob_ndx = ab_getndx;
1127 dp->ob_ohm = ab_getohm;
1128 break;
1129 }
1130 if (i < 0) {
1131 sprintf(errmsg, "undefined RowAngleBasis '%s'", rbasis);
1132 error(WARNING, errmsg);
1133 return;
1134 }
1135 /* read BSDF data */
1136 sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
1137 if (!sdata || !*sdata) {
1138 error(WARNING, "missing BSDF ScatteringData");
1139 return;
1140 }
1141 dp->bsdf = (float *)malloc(sizeof(float)*dp->ninc*dp->nout);
1142 if (dp->bsdf == NULL)
1143 error(SYSTEM, "out of memory in load_bsdf_data");
1144 for (i = 0; i < dp->ninc*dp->nout; i++) {
1145 char *sdnext = fskip(sdata);
1146 if (sdnext == NULL) {
1147 error(WARNING, "bad/missing BSDF ScatteringData");
1148 free(dp->bsdf); dp->bsdf = NULL;
1149 return;
1150 }
1151 while (*sdnext && isspace(*sdnext))
1152 sdnext++;
1153 if (*sdnext == ',') sdnext++;
1154 dp->bsdf[i] = atof(sdata);
1155 sdata = sdnext;
1156 }
1157 while (isspace(*sdata))
1158 sdata++;
1159 if (*sdata) {
1160 sprintf(errmsg, "%d extra characters after BSDF ScatteringData",
1161 (int)strlen(sdata));
1162 error(WARNING, errmsg);
1163 }
1164 }
1165
1166
1167 static int
1168 check_bsdf_data( /* check that BSDF data is sane */
1169 struct BSDF_data *dp
1170 )
1171 {
1172 double *omega_iarr, *omega_oarr;
1173 double dom, contrib, hemi_total, full_total;
1174 int nneg;
1175 FVECT v;
1176 int i, o;
1177
1178 if (dp == NULL || dp->bsdf == NULL)
1179 return(0);
1180 omega_iarr = (double *)calloc(dp->ninc, sizeof(double));
1181 omega_oarr = (double *)calloc(dp->nout, sizeof(double));
1182 if ((omega_iarr == NULL) | (omega_oarr == NULL))
1183 error(SYSTEM, "out of memory in check_bsdf_data");
1184 /* incoming projected solid angles */
1185 hemi_total = .0;
1186 for (i = dp->ninc; i--; ) {
1187 dom = getBSDF_incohm(dp,i);
1188 if (dom <= 0) {
1189 error(WARNING, "zero/negative incoming solid angle");
1190 continue;
1191 }
1192 if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) {
1193 error(WARNING, "illegal incoming BSDF direction");
1194 free(omega_iarr); free(omega_oarr);
1195 return(0);
1196 }
1197 hemi_total += omega_iarr[i] = dom * -v[2];
1198 }
1199 if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1200 sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%",
1201 100.*(hemi_total/PI - 1.));
1202 error(WARNING, errmsg);
1203 }
1204 dom = PI / hemi_total; /* fix normalization */
1205 for (i = dp->ninc; i--; )
1206 omega_iarr[i] *= dom;
1207 /* outgoing projected solid angles */
1208 hemi_total = .0;
1209 for (o = dp->nout; o--; ) {
1210 dom = getBSDF_outohm(dp,o);
1211 if (dom <= 0) {
1212 error(WARNING, "zero/negative outgoing solid angle");
1213 continue;
1214 }
1215 if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) {
1216 error(WARNING, "illegal outgoing BSDF direction");
1217 free(omega_iarr); free(omega_oarr);
1218 return(0);
1219 }
1220 hemi_total += omega_oarr[o] = dom * v[2];
1221 }
1222 if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1223 sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%",
1224 100.*(hemi_total/PI - 1.));
1225 error(WARNING, errmsg);
1226 }
1227 dom = PI / hemi_total; /* fix normalization */
1228 for (o = dp->nout; o--; )
1229 omega_oarr[o] *= dom;
1230 nneg = 0; /* check outgoing totals */
1231 for (i = 0; i < dp->ninc; i++) {
1232 hemi_total = .0;
1233 for (o = dp->nout; o--; ) {
1234 double f = BSDF_value(dp,i,o);
1235 if (f >= 0)
1236 hemi_total += f*omega_oarr[o];
1237 else {
1238 nneg += (f < -FTINY);
1239 BSDF_value(dp,i,o) = .0f;
1240 }
1241 }
1242 if (hemi_total > 1.01) {
1243 sprintf(errmsg,
1244 "incoming BSDF direction %d passes %.1f%% of light",
1245 i, 100.*hemi_total);
1246 error(WARNING, errmsg);
1247 }
1248 }
1249 if (nneg) {
1250 sprintf(errmsg, "%d negative BSDF values (ignored)", nneg);
1251 error(WARNING, errmsg);
1252 }
1253 full_total = .0; /* reverse roles and check again */
1254 for (o = 0; o < dp->nout; o++) {
1255 hemi_total = .0;
1256 for (i = dp->ninc; i--; )
1257 hemi_total += BSDF_value(dp,i,o) * omega_iarr[i];
1258
1259 if (hemi_total > 1.01) {
1260 sprintf(errmsg,
1261 "outgoing BSDF direction %d collects %.1f%% of light",
1262 o, 100.*hemi_total);
1263 error(WARNING, errmsg);
1264 }
1265 full_total += hemi_total*omega_oarr[o];
1266 }
1267 full_total /= PI;
1268 if (full_total > 1.00001) {
1269 sprintf(errmsg, "BSDF transfers %.4f%% of light",
1270 100.*full_total);
1271 error(WARNING, errmsg);
1272 }
1273 free(omega_iarr); free(omega_oarr);
1274 return(1);
1275 }
1276
1277
1278 struct BSDF_data *
1279 load_BSDF( /* load BSDF data from file */
1280 char *fname
1281 )
1282 {
1283 char *path;
1284 ezxml_t fl, wtl, wld, wdb;
1285 struct BSDF_data *dp;
1286
1287 path = getpath(fname, getrlibpath(), R_OK);
1288 if (path == NULL) {
1289 sprintf(errmsg, "cannot find BSDF file \"%s\"", fname);
1290 error(WARNING, errmsg);
1291 return(NULL);
1292 }
1293 fl = ezxml_parse_file(path);
1294 if (fl == NULL) {
1295 sprintf(errmsg, "cannot open BSDF \"%s\"", path);
1296 error(WARNING, errmsg);
1297 return(NULL);
1298 }
1299 if (ezxml_error(fl)[0]) {
1300 sprintf(errmsg, "BSDF \"%s\" %s", path, ezxml_error(fl));
1301 error(WARNING, errmsg);
1302 ezxml_free(fl);
1303 return(NULL);
1304 }
1305 if (strcmp(ezxml_name(fl), "WindowElement")) {
1306 sprintf(errmsg,
1307 "BSDF \"%s\": top level node not 'WindowElement'",
1308 path);
1309 error(WARNING, errmsg);
1310 ezxml_free(fl);
1311 return(NULL);
1312 }
1313 wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
1314 if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl,
1315 "DataDefinition"), "IncidentDataStructure")),
1316 "Columns")) {
1317 sprintf(errmsg,
1318 "BSDF \"%s\": unsupported IncidentDataStructure",
1319 path);
1320 error(WARNING, errmsg);
1321 ezxml_free(fl);
1322 return(NULL);
1323 }
1324 load_angle_basis(ezxml_child(ezxml_child(wtl,
1325 "DataDefinition"), "AngleBasis"));
1326 dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data));
1327 load_geometry(dp, ezxml_child(wtl, "Material"));
1328 for (wld = ezxml_child(wtl, "WavelengthData");
1329 wld != NULL; wld = wld->next) {
1330 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1331 "Visible"))
1332 continue;
1333 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1334 wdb != NULL; wdb = wdb->next)
1335 if (!strcasecmp(ezxml_txt(ezxml_child(wdb,
1336 "WavelengthDataDirection")),
1337 "Transmission Front"))
1338 break;
1339 if (wdb != NULL) { /* load front BTDF */
1340 load_bsdf_data(dp, wdb);
1341 break; /* ignore the rest */
1342 }
1343 }
1344 ezxml_free(fl); /* done with XML file */
1345 if (!check_bsdf_data(dp)) {
1346 sprintf(errmsg, "bad/missing BTDF data in \"%s\"", path);
1347 error(WARNING, errmsg);
1348 free_BSDF(dp);
1349 dp = NULL;
1350 }
1351 return(dp);
1352 }
1353
1354
1355 void
1356 free_BSDF( /* free BSDF data structure */
1357 struct BSDF_data *b
1358 )
1359 {
1360 if (b == NULL)
1361 return;
1362 if (b->mgf != NULL)
1363 free(b->mgf);
1364 if (b->bsdf != NULL)
1365 free(b->bsdf);
1366 free(b);
1367 }
1368
1369
1370 int
1371 r_BSDF_incvec( /* compute random input vector at given location */
1372 FVECT v,
1373 struct BSDF_data *b,
1374 int i,
1375 double rv,
1376 MAT4 xm
1377 )
1378 {
1379 FVECT pert;
1380 double rad;
1381 int j;
1382
1383 if (!getBSDF_incvec(v, b, i))
1384 return(0);
1385 rad = sqrt(getBSDF_incohm(b, i) / PI);
1386 multisamp(pert, 3, rv);
1387 for (j = 0; j < 3; j++)
1388 v[j] += rad*(2.*pert[j] - 1.);
1389 if (xm != NULL)
1390 multv3(v, v, xm);
1391 return(normalize(v) != 0.0);
1392 }
1393
1394
1395 int
1396 r_BSDF_outvec( /* compute random output vector at given location */
1397 FVECT v,
1398 struct BSDF_data *b,
1399 int o,
1400 double rv,
1401 MAT4 xm
1402 )
1403 {
1404 FVECT pert;
1405 double rad;
1406 int j;
1407
1408 if (!getBSDF_outvec(v, b, o))
1409 return(0);
1410 rad = sqrt(getBSDF_outohm(b, o) / PI);
1411 multisamp(pert, 3, rv);
1412 for (j = 0; j < 3; j++)
1413 v[j] += rad*(2.*pert[j] - 1.);
1414 if (xm != NULL)
1415 multv3(v, v, xm);
1416 return(normalize(v) != 0.0);
1417 }
1418
1419
1420 static int
1421 addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */
1422 char *xfarg[],
1423 FVECT xp,
1424 FVECT yp,
1425 FVECT zp
1426 )
1427 {
1428 static char bufs[3][16];
1429 int bn = 0;
1430 char **xfp = xfarg;
1431 double theta;
1432
1433 if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
1434 /* Special case for X' along Z-axis */
1435 theta = -atan2(yp[0], yp[1]);
1436 *xfp++ = "-ry";
1437 *xfp++ = xp[2] < 0.0 ? "90" : "-90";
1438 *xfp++ = "-rz";
1439 sprintf(bufs[bn], "%f", theta*(180./PI));
1440 *xfp++ = bufs[bn++];
1441 return(xfp - xfarg);
1442 }
1443 theta = atan2(yp[2], zp[2]);
1444 if (!FEQ(theta,0.0)) {
1445 *xfp++ = "-rx";
1446 sprintf(bufs[bn], "%f", theta*(180./PI));
1447 *xfp++ = bufs[bn++];
1448 }
1449 theta = asin(-xp[2]);
1450 if (!FEQ(theta,0.0)) {
1451 *xfp++ = "-ry";
1452 sprintf(bufs[bn], " %f", theta*(180./PI));
1453 *xfp++ = bufs[bn++];
1454 }
1455 theta = atan2(xp[1], xp[0]);
1456 if (!FEQ(theta,0.0)) {
1457 *xfp++ = "-rz";
1458 sprintf(bufs[bn], "%f", theta*(180./PI));
1459 *xfp++ = bufs[bn++];
1460 }
1461 *xfp = NULL;
1462 return(xfp - xfarg);
1463 }
1464
1465
1466 int
1467 getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */
1468 MAT4 xm,
1469 FVECT nrm,
1470 UpDir ud,
1471 char *xfbuf
1472 )
1473 {
1474 char *xfargs[7];
1475 XF myxf;
1476 FVECT updir, xdest, ydest;
1477 int i;
1478
1479 updir[0] = updir[1] = updir[2] = 0.;
1480 switch (ud) {
1481 case UDzneg:
1482 updir[2] = -1.;
1483 break;
1484 case UDyneg:
1485 updir[1] = -1.;
1486 break;
1487 case UDxneg:
1488 updir[0] = -1.;
1489 break;
1490 case UDxpos:
1491 updir[0] = 1.;
1492 break;
1493 case UDypos:
1494 updir[1] = 1.;
1495 break;
1496 case UDzpos:
1497 updir[2] = 1.;
1498 break;
1499 case UDunknown:
1500 return(0);
1501 }
1502 fcross(xdest, updir, nrm);
1503 if (normalize(xdest) == 0.0)
1504 return(0);
1505 fcross(ydest, nrm, xdest);
1506 xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs);
1507 copymat4(xm, myxf.xfm);
1508 if (xfbuf == NULL)
1509 return(1);
1510 /* return xf arguments as well */
1511 for (i = 0; xfargs[i] != NULL; i++) {
1512 *xfbuf++ = ' ';
1513 strcpy(xfbuf, xfargs[i]);
1514 while (*xfbuf) ++xfbuf;
1515 }
1516 return(1);
1517 }
1518
1519 /*######### END DEPRECATED ROUTINES #######*/
1520 /*################################################################*/