ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.22
Committed: Tue Apr 19 21:31:22 2011 UTC (13 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.21: +9 -8 lines
Log Message:
Fixed interface for determining BSDF solid angles

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf.c,v 2.21 2011/04/17 17:45:13 greg Exp $";
3 #endif
4 /*
5 * bsdf.c
6 *
7 * Definitions for bidirectional scattering distribution functions.
8 *
9 * Created by Greg Ward on 1/10/11.
10 *
11 */
12
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <math.h>
16 #include "ezxml.h"
17 #include "hilbert.h"
18 #include "bsdf.h"
19 #include "bsdf_m.h"
20 #include "bsdf_t.h"
21
22 /* English ASCII strings corresponding to ennumerated errors */
23 const char *SDerrorEnglish[] = {
24 "No error",
25 "Memory error",
26 "File input/output error",
27 "File format error",
28 "Illegal argument",
29 "Invalid data",
30 "Unsupported feature",
31 "Internal program error",
32 "Unknown error"
33 };
34
35 /* Additional information on last error (ASCII English) */
36 char SDerrorDetail[256];
37
38 /* Cache of loaded BSDFs */
39 struct SDCache_s *SDcacheList = NULL;
40
41 /* Retain BSDFs in cache list */
42 int SDretainSet = SDretainNone;
43
44 /* Report any error to the indicated stream (in English) */
45 SDError
46 SDreportEnglish(SDError ec, FILE *fp)
47 {
48 if (!ec)
49 return SDEnone;
50 if ((ec < SDEnone) | (ec > SDEunknown)) {
51 SDerrorDetail[0] = '\0';
52 ec = SDEunknown;
53 }
54 if (fp == NULL)
55 return ec;
56 fputs(SDerrorEnglish[ec], fp);
57 if (SDerrorDetail[0]) {
58 fputs(": ", fp);
59 fputs(SDerrorDetail, fp);
60 }
61 fputc('\n', fp);
62 if (fp != stderr)
63 fflush(fp);
64 return ec;
65 }
66
67 static double
68 to_meters( /* return factor to convert given unit to meters */
69 const char *unit
70 )
71 {
72 if (unit == NULL) return(1.); /* safe assumption? */
73 if (!strcasecmp(unit, "Meter")) return(1.);
74 if (!strcasecmp(unit, "Foot")) return(.3048);
75 if (!strcasecmp(unit, "Inch")) return(.0254);
76 if (!strcasecmp(unit, "Centimeter")) return(.01);
77 if (!strcasecmp(unit, "Millimeter")) return(.001);
78 sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
79 return(-1.);
80 }
81
82 /* Load geometric dimensions and description (if any) */
83 static SDError
84 SDloadGeometry(SDData *sd, ezxml_t wdb)
85 {
86 ezxml_t geom;
87 double cfact;
88 const char *fmt, *mgfstr;
89
90 if (wdb == NULL) /* no geometry section? */
91 return SDEnone;
92 sd->dim[0] = sd->dim[1] = sd->dim[2] = .0;
93 if ((geom = ezxml_child(wdb, "Width")) != NULL)
94 sd->dim[0] = atof(ezxml_txt(geom)) *
95 to_meters(ezxml_attr(geom, "unit"));
96 if ((geom = ezxml_child(wdb, "Height")) != NULL)
97 sd->dim[1] = atof(ezxml_txt(geom)) *
98 to_meters(ezxml_attr(geom, "unit"));
99 if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
100 sd->dim[2] = atof(ezxml_txt(geom)) *
101 to_meters(ezxml_attr(geom, "unit"));
102 if ((sd->dim[0] < .0) | (sd->dim[1] < .0) | (sd->dim[2] < .0)) {
103 sprintf(SDerrorDetail, "Negative size in \"%s\"", sd->name);
104 return SDEdata;
105 }
106 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
107 (mgfstr = ezxml_txt(geom)) == NULL)
108 return SDEnone;
109 if ((fmt = ezxml_attr(geom, "format")) != NULL &&
110 strcasecmp(fmt, "MGF")) {
111 sprintf(SDerrorDetail,
112 "Unrecognized geometry format '%s' in \"%s\"",
113 fmt, sd->name);
114 return SDEsupport;
115 }
116 cfact = to_meters(ezxml_attr(geom, "unit"));
117 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
118 if (sd->mgf == NULL) {
119 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
120 return SDEmemory;
121 }
122 if (cfact < 0.99 || cfact > 1.01)
123 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
124 else
125 strcpy(sd->mgf, mgfstr);
126 return SDEnone;
127 }
128
129 /* Load a BSDF struct from the given file (free first and keep name) */
130 SDError
131 SDloadFile(SDData *sd, const char *fname)
132 {
133 SDError lastErr;
134 ezxml_t fl, wtl;
135
136 if ((sd == NULL) | (fname == NULL || !*fname))
137 return SDEargument;
138 /* free old data, keeping name */
139 SDfreeBSDF(sd);
140 /* parse XML file */
141 fl = ezxml_parse_file(fname);
142 if (fl == NULL) {
143 sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
144 return SDEfile;
145 }
146 if (ezxml_error(fl)[0]) {
147 sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
148 ezxml_free(fl);
149 return SDEformat;
150 }
151 if (strcmp(ezxml_name(fl), "WindowElement")) {
152 sprintf(SDerrorDetail,
153 "BSDF \"%s\": top level node not 'WindowElement'",
154 sd->name);
155 ezxml_free(fl);
156 return SDEformat;
157 }
158 wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
159 if (wtl == NULL) {
160 sprintf(SDerrorDetail, "BSDF \"%s\": no optical layer'",
161 sd->name);
162 ezxml_free(fl);
163 return SDEformat;
164 }
165 /* load geometry if present */
166 lastErr = SDloadGeometry(sd, ezxml_child(wtl, "Material"));
167 if (lastErr)
168 return lastErr;
169 /* try loading variable resolution data */
170 lastErr = SDloadTre(sd, wtl);
171 /* check our result */
172 switch (lastErr) {
173 case SDEformat:
174 case SDEdata:
175 case SDEsupport: /* possibly we just tried the wrong format */
176 lastErr = SDloadMtx(sd, wtl);
177 break;
178 default: /* variable res. OK else serious error */
179 break;
180 }
181 /* done with XML file */
182 ezxml_free(fl);
183
184 if (lastErr) { /* was there a load error? */
185 SDfreeBSDF(sd);
186 return lastErr;
187 }
188 /* remove any insignificant components */
189 if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
190 SDfreeSpectralDF(sd->rf); sd->rf = NULL;
191 }
192 if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
193 SDfreeSpectralDF(sd->rb); sd->rb = NULL;
194 }
195 if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
196 SDfreeSpectralDF(sd->tf); sd->tf = NULL;
197 }
198 /* return success */
199 return SDEnone;
200 }
201
202 /* Allocate new spectral distribution function */
203 SDSpectralDF *
204 SDnewSpectralDF(int nc)
205 {
206 SDSpectralDF *df;
207
208 if (nc <= 0) {
209 strcpy(SDerrorDetail, "Zero component spectral DF request");
210 return NULL;
211 }
212 df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
213 (nc-1)*sizeof(SDComponent));
214 if (df == NULL) {
215 sprintf(SDerrorDetail,
216 "Cannot allocate %d component spectral DF", nc);
217 return NULL;
218 }
219 df->minProjSA = .0;
220 df->maxHemi = .0;
221 df->ncomp = nc;
222 memset(df->comp, 0, nc*sizeof(SDComponent));
223 return df;
224 }
225
226 /* Free cached cumulative distributions for BSDF component */
227 void
228 SDfreeCumulativeCache(SDSpectralDF *df)
229 {
230 int n;
231 SDCDst *cdp;
232
233 if (df == NULL)
234 return;
235 for (n = df->ncomp; n-- > 0; )
236 while ((cdp = df->comp[n].cdList) != NULL) {
237 df->comp[n].cdList = cdp->next;
238 free(cdp);
239 }
240 }
241
242 /* Free a spectral distribution function */
243 void
244 SDfreeSpectralDF(SDSpectralDF *df)
245 {
246 int n;
247
248 if (df == NULL)
249 return;
250 SDfreeCumulativeCache(df);
251 for (n = df->ncomp; n-- > 0; )
252 (*df->comp[n].func->freeSC)(df->comp[n].dist);
253 free(df);
254 }
255
256 /* Shorten file path to useable BSDF name, removing suffix */
257 void
258 SDclipName(char *res, const char *fname)
259 {
260 const char *cp, *dot = NULL;
261
262 for (cp = fname; *cp; cp++)
263 if (*cp == '.')
264 dot = cp;
265 if ((dot == NULL) | (dot < fname+2))
266 dot = cp;
267 if (dot - fname >= SDnameLn)
268 fname = dot - SDnameLn + 1;
269 while (fname < dot)
270 *res++ = *fname++;
271 *res = '\0';
272 }
273
274 /* Initialize an unused BSDF struct (simply clears to zeroes) */
275 void
276 SDclearBSDF(SDData *sd, const char *fname)
277 {
278 if (sd == NULL)
279 return;
280 memset(sd, 0, sizeof(SDData));
281 if (fname == NULL)
282 return;
283 SDclipName(sd->name, fname);
284 }
285
286 /* Free data associated with BSDF struct */
287 void
288 SDfreeBSDF(SDData *sd)
289 {
290 if (sd == NULL)
291 return;
292 if (sd->mgf != NULL) {
293 free(sd->mgf);
294 sd->mgf = NULL;
295 }
296 if (sd->rf != NULL) {
297 SDfreeSpectralDF(sd->rf);
298 sd->rf = NULL;
299 }
300 if (sd->rb != NULL) {
301 SDfreeSpectralDF(sd->rb);
302 sd->rb = NULL;
303 }
304 if (sd->tf != NULL) {
305 SDfreeSpectralDF(sd->tf);
306 sd->tf = NULL;
307 }
308 sd->rLambFront.cieY = .0;
309 sd->rLambFront.spec.flags = 0;
310 sd->rLambBack.cieY = .0;
311 sd->rLambBack.spec.flags = 0;
312 sd->tLamb.cieY = .0;
313 sd->tLamb.spec.flags = 0;
314 }
315
316 /* Find writeable BSDF by name, or allocate new cache entry if absent */
317 SDData *
318 SDgetCache(const char *bname)
319 {
320 struct SDCache_s *sdl;
321 char sdnam[SDnameLn];
322
323 if (bname == NULL)
324 return NULL;
325
326 SDclipName(sdnam, bname);
327 for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
328 if (!strcmp(sdl->bsdf.name, sdnam)) {
329 sdl->refcnt++;
330 return &sdl->bsdf;
331 }
332
333 sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
334 if (sdl == NULL)
335 return NULL;
336
337 strcpy(sdl->bsdf.name, sdnam);
338 sdl->next = SDcacheList;
339 SDcacheList = sdl;
340
341 sdl->refcnt = 1;
342 return &sdl->bsdf;
343 }
344
345 /* Get loaded BSDF from cache (or load and cache it on first call) */
346 /* Report any problem to stderr and return NULL on failure */
347 const SDData *
348 SDcacheFile(const char *fname)
349 {
350 SDData *sd;
351 SDError ec;
352
353 if (fname == NULL || !*fname)
354 return NULL;
355 SDerrorDetail[0] = '\0';
356 if ((sd = SDgetCache(fname)) == NULL) {
357 SDreportEnglish(SDEmemory, stderr);
358 return NULL;
359 }
360 if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
361 SDreportEnglish(ec, stderr);
362 SDfreeCache(sd);
363 return NULL;
364 }
365 return sd;
366 }
367
368 /* Free a BSDF from our cache (clear all if NULL) */
369 void
370 SDfreeCache(const SDData *sd)
371 {
372 struct SDCache_s *sdl, *sdLast = NULL;
373
374 if (sd == NULL) { /* free entire list */
375 while ((sdl = SDcacheList) != NULL) {
376 SDcacheList = sdl->next;
377 SDfreeBSDF(&sdl->bsdf);
378 free(sdl);
379 }
380 return;
381 }
382 for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
383 if (&sdl->bsdf == sd)
384 break;
385 if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
386 return; /* missing or still in use */
387 /* keep unreferenced data? */
388 if (SDisLoaded(sd) && SDretainSet) {
389 if (SDretainSet == SDretainAll)
390 return; /* keep everything */
391 /* else free cumulative data */
392 SDfreeCumulativeCache(sd->rf);
393 SDfreeCumulativeCache(sd->rb);
394 SDfreeCumulativeCache(sd->tf);
395 return;
396 }
397 /* remove from list and free */
398 if (sdLast == NULL)
399 SDcacheList = sdl->next;
400 else
401 sdLast->next = sdl->next;
402 SDfreeBSDF(&sdl->bsdf);
403 free(sdl);
404 }
405
406 /* Sample an individual BSDF component */
407 SDError
408 SDsampComponent(SDValue *sv, FVECT outVec, const FVECT inVec,
409 double randX, SDComponent *sdc)
410 {
411 float coef[SDmaxCh];
412 SDError ec;
413 const SDCDst *cd;
414 double d;
415 int n;
416 /* check arguments */
417 if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL))
418 return SDEargument;
419 /* get cumulative distribution */
420 cd = (*sdc->func->getCDist)(inVec, sdc);
421 if (cd == NULL)
422 return SDEmemory;
423 if (cd->cTotal <= 1e-7) { /* anything to sample? */
424 sv->spec = c_dfcolor;
425 sv->cieY = .0;
426 memset(outVec, 0, 3*sizeof(double));
427 return SDEnone;
428 }
429 sv->cieY = cd->cTotal;
430 /* compute sample direction */
431 ec = (*sdc->func->sampCDist)(outVec, randX, cd);
432 if (ec)
433 return ec;
434 /* get BSDF color */
435 n = (*sdc->func->getBSDFs)(coef, outVec, inVec, sdc->dist);
436 if (n <= 0) {
437 strcpy(SDerrorDetail, "BSDF sample value error");
438 return SDEinternal;
439 }
440 sv->spec = sdc->cspec[0];
441 d = coef[0];
442 while (--n) {
443 c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
444 d += coef[n];
445 }
446 /* make sure everything is set */
447 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
448 return SDEnone;
449 }
450
451 #define MS_MAXDIM 15
452
453 /* Convert 1-dimensional random variable to N-dimensional */
454 void
455 SDmultiSamp(double t[], int n, double randX)
456 {
457 unsigned nBits;
458 double scale;
459 bitmask_t ndx, coord[MS_MAXDIM];
460
461 while (n > MS_MAXDIM) /* punt for higher dimensions */
462 t[--n] = rand()*(1./(RAND_MAX+.5));
463 nBits = (8*sizeof(bitmask_t) - 1) / n;
464 ndx = randX * (double)((bitmask_t)1 << (nBits*n));
465 /* get coordinate on Hilbert curve */
466 hilbert_i2c(n, nBits, ndx, coord);
467 /* convert back to [0,1) range */
468 scale = 1. / (double)((bitmask_t)1 << nBits);
469 while (n--)
470 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
471 }
472
473 #undef MS_MAXDIM
474
475 /* Generate diffuse hemispherical sample */
476 static void
477 SDdiffuseSamp(FVECT outVec, int outFront, double randX)
478 {
479 /* convert to position on hemisphere */
480 SDmultiSamp(outVec, 2, randX);
481 SDsquare2disk(outVec, outVec[0], outVec[1]);
482 outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
483 if (outVec[2] > .0) /* a bit of paranoia */
484 outVec[2] = sqrt(outVec[2]);
485 if (!outFront) /* going out back? */
486 outVec[2] = -outVec[2];
487 }
488
489 /* Query projected solid angle coverage for non-diffuse BSDF direction */
490 SDError
491 SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2,
492 int qflags, const SDData *sd)
493 {
494 SDSpectralDF *rdf;
495 SDError ec;
496 int i;
497 /* check arguments */
498 if ((projSA == NULL) | (v1 == NULL))
499 return SDEargument;
500 /* initialize extrema */
501 switch (qflags) {
502 case SDqueryMax:
503 projSA[0] = .0;
504 break;
505 case SDqueryMin+SDqueryMax:
506 projSA[1] = .0;
507 /* fall through */
508 case SDqueryMin:
509 projSA[0] = 10.;
510 break;
511 case 0:
512 return SDEargument;
513 }
514 if (v1[2] > .0) /* front surface query? */
515 rdf = sd->rf;
516 else
517 rdf = sd->rb;
518 ec = SDEdata; /* run through components */
519 for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
520 ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2,
521 qflags, rdf->comp[i].dist);
522 if (ec)
523 return ec;
524 }
525 for (i = (sd->tf==NULL) ? 0 : sd->tf->ncomp; i--; ) {
526 ec = (*sd->tf->comp[i].func->queryProjSA)(projSA, v1, v2,
527 qflags, sd->tf->comp[i].dist);
528 if (ec)
529 return ec;
530 }
531 if (ec) { /* all diffuse? */
532 projSA[0] = M_PI;
533 if (qflags == SDqueryMin+SDqueryMax)
534 projSA[1] = M_PI;
535 }
536 return SDEnone;
537 }
538
539 /* Return BSDF for the given incident and scattered ray vectors */
540 SDError
541 SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
542 {
543 int inFront, outFront;
544 SDSpectralDF *sdf;
545 float coef[SDmaxCh];
546 int nch, i;
547 /* check arguments */
548 if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
549 return SDEargument;
550 /* whose side are we on? */
551 inFront = (inVec[2] > .0);
552 outFront = (outVec[2] > .0);
553 /* start with diffuse portion */
554 if (inFront & outFront) {
555 *sv = sd->rLambFront;
556 sdf = sd->rf;
557 } else if (!(inFront | outFront)) {
558 *sv = sd->rLambBack;
559 sdf = sd->rb;
560 } else /* inFront ^ outFront */ {
561 *sv = sd->tLamb;
562 sdf = sd->tf;
563 }
564 sv->cieY *= 1./M_PI;
565 /* add non-diffuse components */
566 i = (sdf != NULL) ? sdf->ncomp : 0;
567 while (i-- > 0) {
568 nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
569 sdf->comp[i].dist);
570 while (nch-- > 0) {
571 c_cmix(&sv->spec, sv->cieY, &sv->spec,
572 coef[nch], &sdf->comp[i].cspec[nch]);
573 sv->cieY += coef[nch];
574 }
575 }
576 /* make sure everything is set */
577 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
578 return SDEnone;
579 }
580
581 /* Compute directional hemispherical scattering at this incident angle */
582 double
583 SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
584 {
585 double hsum;
586 SDSpectralDF *rdf;
587 const SDCDst *cd;
588 int i;
589 /* check arguments */
590 if ((inVec == NULL) | (sd == NULL))
591 return .0;
592 /* gather diffuse components */
593 if (inVec[2] > .0) {
594 hsum = sd->rLambFront.cieY;
595 rdf = sd->rf;
596 } else /* !inFront */ {
597 hsum = sd->rLambBack.cieY;
598 rdf = sd->rb;
599 }
600 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
601 hsum = .0;
602 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
603 hsum += sd->tLamb.cieY;
604 /* gather non-diffuse components */
605 i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
606 rdf != NULL) ? rdf->ncomp : 0;
607 while (i-- > 0) { /* non-diffuse reflection */
608 cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
609 if (cd != NULL)
610 hsum += cd->cTotal;
611 }
612 i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
613 sd->tf != NULL) ? sd->tf->ncomp : 0;
614 while (i-- > 0) { /* non-diffuse transmission */
615 cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]);
616 if (cd != NULL)
617 hsum += cd->cTotal;
618 }
619 return hsum;
620 }
621
622 /* Sample BSDF direction based on the given random variable */
623 SDError
624 SDsampBSDF(SDValue *sv, FVECT outVec, const FVECT inVec,
625 double randX, int sflags, const SDData *sd)
626 {
627 SDError ec;
628 int inFront;
629 SDSpectralDF *rdf;
630 double rdiff;
631 float coef[SDmaxCh];
632 int i, j, n, nr;
633 SDComponent *sdc;
634 const SDCDst **cdarr = NULL;
635 /* check arguments */
636 if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL) |
637 (randX < .0) | (randX >= 1.))
638 return SDEargument;
639 /* whose side are we on? */
640 inFront = (inVec[2] > .0);
641 /* remember diffuse portions */
642 if (inFront) {
643 *sv = sd->rLambFront;
644 rdf = sd->rf;
645 } else /* !inFront */ {
646 *sv = sd->rLambBack;
647 rdf = sd->rb;
648 }
649 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
650 sv->cieY = .0;
651 rdiff = sv->cieY;
652 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
653 sv->cieY += sd->tLamb.cieY;
654 /* gather non-diffuse components */
655 i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
656 rdf != NULL) ? rdf->ncomp : 0;
657 j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
658 sd->tf != NULL) ? sd->tf->ncomp : 0;
659 n = i + j;
660 if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
661 return SDEmemory;
662 while (j-- > 0) { /* non-diffuse transmission */
663 cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]);
664 if (cdarr[i+j] == NULL) {
665 free(cdarr);
666 return SDEmemory;
667 }
668 sv->cieY += cdarr[i+j]->cTotal;
669 }
670 while (i-- > 0) { /* non-diffuse reflection */
671 cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
672 if (cdarr[i] == NULL) {
673 free(cdarr);
674 return SDEmemory;
675 }
676 sv->cieY += cdarr[i]->cTotal;
677 }
678 if (sv->cieY <= 1e-7) { /* anything to sample? */
679 sv->cieY = .0;
680 memset(outVec, 0, 3*sizeof(double));
681 return SDEnone;
682 }
683 /* scale random variable */
684 randX *= sv->cieY;
685 /* diffuse reflection? */
686 if (randX < rdiff) {
687 SDdiffuseSamp(outVec, inFront, randX/rdiff);
688 goto done;
689 }
690 randX -= rdiff;
691 /* diffuse transmission? */
692 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
693 if (randX < sd->tLamb.cieY) {
694 sv->spec = sd->tLamb.spec;
695 SDdiffuseSamp(outVec, !inFront, randX/sd->tLamb.cieY);
696 goto done;
697 }
698 randX -= sd->tLamb.cieY;
699 }
700 /* else one of cumulative dist. */
701 for (i = 0; i < n && randX < cdarr[i]->cTotal; i++)
702 randX -= cdarr[i]->cTotal;
703 if (i >= n)
704 return SDEinternal;
705 /* compute sample direction */
706 sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr];
707 ec = (*sdc->func->sampCDist)(outVec, randX/cdarr[i]->cTotal, cdarr[i]);
708 if (ec)
709 return ec;
710 /* compute color */
711 j = (*sdc->func->getBSDFs)(coef, outVec, inVec, sdc->dist);
712 if (j <= 0) {
713 sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
714 sd->name);
715 return SDEinternal;
716 }
717 sv->spec = sdc->cspec[0];
718 rdiff = coef[0];
719 while (--j) {
720 c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
721 rdiff += coef[j];
722 }
723 done:
724 if (cdarr != NULL)
725 free(cdarr);
726 /* make sure everything is set */
727 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
728 return SDEnone;
729 }
730
731 /* Compute World->BSDF transform from surface normal and up (Y) vector */
732 SDError
733 SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
734 {
735 if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
736 return SDEargument;
737 VCOPY(vMtx[2], sNrm);
738 if (normalize(vMtx[2]) == .0)
739 return SDEargument;
740 fcross(vMtx[0], uVec, vMtx[2]);
741 if (normalize(vMtx[0]) == .0)
742 return SDEargument;
743 fcross(vMtx[1], vMtx[2], vMtx[0]);
744 return SDEnone;
745 }
746
747 /* Compute inverse transform */
748 SDError
749 SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
750 {
751 RREAL mTmp[3][3];
752 double d;
753
754 if ((iMtx == NULL) | (vMtx == NULL))
755 return SDEargument;
756 /* compute determinant */
757 mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
758 mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
759 mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
760 d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
761 if (d == .0) {
762 strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
763 return SDEargument;
764 }
765 d = 1./d; /* invert matrix */
766 mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
767 mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
768 mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
769 mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
770 mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
771 mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
772 mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
773 memcpy(iMtx, mTmp, sizeof(mTmp));
774 return SDEnone;
775 }
776
777 /* Transform and normalize direction (column) vector */
778 SDError
779 SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
780 {
781 FVECT vTmp;
782
783 if ((resVec == NULL) | (inpVec == NULL))
784 return SDEargument;
785 if (vMtx == NULL) { /* assume they just want to normalize */
786 if (resVec != inpVec)
787 VCOPY(resVec, inpVec);
788 return (normalize(resVec) > .0) ? SDEnone : SDEargument;
789 }
790 vTmp[0] = DOT(vMtx[0], inpVec);
791 vTmp[1] = DOT(vMtx[1], inpVec);
792 vTmp[2] = DOT(vMtx[2], inpVec);
793 if (normalize(vTmp) == .0)
794 return SDEargument;
795 VCOPY(resVec, vTmp);
796 return SDEnone;
797 }
798
799 /*################################################################*/
800 /*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/
801
802 /*
803 * Routines for handling BSDF data
804 */
805
806 #include "standard.h"
807 #include "paths.h"
808 #include <ctype.h>
809
810 #define MAXLATS 46 /* maximum number of latitudes */
811
812 /* BSDF angle specification */
813 typedef struct {
814 char name[64]; /* basis name */
815 int nangles; /* total number of directions */
816 struct {
817 float tmin; /* starting theta */
818 short nphis; /* number of phis (0 term) */
819 } lat[MAXLATS+1]; /* latitudes */
820 } ANGLE_BASIS;
821
822 #define MAXABASES 7 /* limit on defined bases */
823
824 static ANGLE_BASIS abase_list[MAXABASES] = {
825 {
826 "LBNL/Klems Full", 145,
827 { {-5., 1},
828 {5., 8},
829 {15., 16},
830 {25., 20},
831 {35., 24},
832 {45., 24},
833 {55., 24},
834 {65., 16},
835 {75., 12},
836 {90., 0} }
837 }, {
838 "LBNL/Klems Half", 73,
839 { {-6.5, 1},
840 {6.5, 8},
841 {19.5, 12},
842 {32.5, 16},
843 {46.5, 20},
844 {61.5, 12},
845 {76.5, 4},
846 {90., 0} }
847 }, {
848 "LBNL/Klems Quarter", 41,
849 { {-9., 1},
850 {9., 8},
851 {27., 12},
852 {46., 12},
853 {66., 8},
854 {90., 0} }
855 }
856 };
857
858 static int nabases = 3; /* current number of defined bases */
859
860 #define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6)
861
862 static int
863 fequal(double a, double b)
864 {
865 if (b != .0)
866 a = a/b - 1.;
867 return((a <= 1e-6) & (a >= -1e-6));
868 }
869
870 /* Returns the name of the given tag */
871 #ifdef ezxml_name
872 #undef ezxml_name
873 static char *
874 ezxml_name(ezxml_t xml)
875 {
876 if (xml == NULL)
877 return(NULL);
878 return(xml->name);
879 }
880 #endif
881
882 /* Returns the given tag's character content or empty string if none */
883 #ifdef ezxml_txt
884 #undef ezxml_txt
885 static char *
886 ezxml_txt(ezxml_t xml)
887 {
888 if (xml == NULL)
889 return("");
890 return(xml->txt);
891 }
892 #endif
893
894
895 static int
896 ab_getvec( /* get vector for this angle basis index */
897 FVECT v,
898 int ndx,
899 void *p
900 )
901 {
902 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
903 int li;
904 double pol, azi, d;
905
906 if ((ndx < 0) | (ndx >= ab->nangles))
907 return(0);
908 for (li = 0; ndx >= ab->lat[li].nphis; li++)
909 ndx -= ab->lat[li].nphis;
910 pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin);
911 azi = 2.*PI*ndx/ab->lat[li].nphis;
912 v[2] = d = cos(pol);
913 d = sqrt(1. - d*d); /* sin(pol) */
914 v[0] = cos(azi)*d;
915 v[1] = sin(azi)*d;
916 return(1);
917 }
918
919
920 static int
921 ab_getndx( /* get index corresponding to the given vector */
922 FVECT v,
923 void *p
924 )
925 {
926 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
927 int li, ndx;
928 double pol, azi, d;
929
930 if ((v[2] < -1.0) | (v[2] > 1.0))
931 return(-1);
932 pol = 180.0/PI*acos(v[2]);
933 azi = 180.0/PI*atan2(v[1], v[0]);
934 if (azi < 0.0) azi += 360.0;
935 for (li = 1; ab->lat[li].tmin <= pol; li++)
936 if (!ab->lat[li].nphis)
937 return(-1);
938 --li;
939 ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
940 if (ndx >= ab->lat[li].nphis) ndx = 0;
941 while (li--)
942 ndx += ab->lat[li].nphis;
943 return(ndx);
944 }
945
946
947 static double
948 ab_getohm( /* get solid angle for this angle basis index */
949 int ndx,
950 void *p
951 )
952 {
953 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
954 int li;
955 double theta, theta1;
956
957 if ((ndx < 0) | (ndx >= ab->nangles))
958 return(0);
959 for (li = 0; ndx >= ab->lat[li].nphis; li++)
960 ndx -= ab->lat[li].nphis;
961 theta1 = PI/180. * ab->lat[li+1].tmin;
962 if (ab->lat[li].nphis == 1) { /* special case */
963 if (ab->lat[li].tmin > FTINY)
964 error(USER, "unsupported BSDF coordinate system");
965 return(2.*PI*(1. - cos(theta1)));
966 }
967 theta = PI/180. * ab->lat[li].tmin;
968 return(2.*PI*(cos(theta) - cos(theta1))/(double)ab->lat[li].nphis);
969 }
970
971
972 static int
973 ab_getvecR( /* get reverse vector for this angle basis index */
974 FVECT v,
975 int ndx,
976 void *p
977 )
978 {
979 if (!ab_getvec(v, ndx, p))
980 return(0);
981
982 v[0] = -v[0];
983 v[1] = -v[1];
984 v[2] = -v[2];
985
986 return(1);
987 }
988
989
990 static int
991 ab_getndxR( /* get index corresponding to the reverse vector */
992 FVECT v,
993 void *p
994 )
995 {
996 FVECT v2;
997
998 v2[0] = -v[0];
999 v2[1] = -v[1];
1000 v2[2] = -v[2];
1001
1002 return ab_getndx(v2, p);
1003 }
1004
1005
1006 static void
1007 load_angle_basis( /* load custom BSDF angle basis */
1008 ezxml_t wab
1009 )
1010 {
1011 char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
1012 ezxml_t wbb;
1013 int i;
1014
1015 if (!abname || !*abname)
1016 return;
1017 for (i = nabases; i--; )
1018 if (!strcasecmp(abname, abase_list[i].name))
1019 return; /* assume it's the same */
1020 if (nabases >= MAXABASES)
1021 error(INTERNAL, "too many angle bases");
1022 strcpy(abase_list[nabases].name, abname);
1023 abase_list[nabases].nangles = 0;
1024 for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
1025 wbb != NULL; i++, wbb = wbb->next) {
1026 if (i >= MAXLATS)
1027 error(INTERNAL, "too many latitudes in custom basis");
1028 abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
1029 ezxml_child(ezxml_child(wbb,
1030 "ThetaBounds"), "UpperTheta")));
1031 if (!i)
1032 abase_list[nabases].lat[i].tmin =
1033 -abase_list[nabases].lat[i+1].tmin;
1034 else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
1035 "ThetaBounds"), "LowerTheta"))),
1036 abase_list[nabases].lat[i].tmin))
1037 error(WARNING, "theta values disagree in custom basis");
1038 abase_list[nabases].nangles +=
1039 abase_list[nabases].lat[i].nphis =
1040 atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
1041 }
1042 abase_list[nabases++].lat[i].nphis = 0;
1043 }
1044
1045
1046 static void
1047 load_geometry( /* load geometric dimensions and description (if any) */
1048 struct BSDF_data *dp,
1049 ezxml_t wdb
1050 )
1051 {
1052 ezxml_t geom;
1053 double cfact;
1054 const char *fmt, *mgfstr;
1055
1056 dp->dim[0] = dp->dim[1] = dp->dim[2] = 0;
1057 dp->mgf = NULL;
1058 if ((geom = ezxml_child(wdb, "Width")) != NULL)
1059 dp->dim[0] = atof(ezxml_txt(geom)) *
1060 to_meters(ezxml_attr(geom, "unit"));
1061 if ((geom = ezxml_child(wdb, "Height")) != NULL)
1062 dp->dim[1] = atof(ezxml_txt(geom)) *
1063 to_meters(ezxml_attr(geom, "unit"));
1064 if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
1065 dp->dim[2] = atof(ezxml_txt(geom)) *
1066 to_meters(ezxml_attr(geom, "unit"));
1067 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
1068 (mgfstr = ezxml_txt(geom)) == NULL)
1069 return;
1070 if ((fmt = ezxml_attr(geom, "format")) != NULL &&
1071 strcasecmp(fmt, "MGF")) {
1072 sprintf(errmsg, "unrecognized geometry format '%s'", fmt);
1073 error(WARNING, errmsg);
1074 return;
1075 }
1076 cfact = to_meters(ezxml_attr(geom, "unit"));
1077 dp->mgf = (char *)malloc(strlen(mgfstr)+32);
1078 if (dp->mgf == NULL)
1079 error(SYSTEM, "out of memory in load_geometry");
1080 if (cfact < 0.99 || cfact > 1.01)
1081 sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
1082 else
1083 strcpy(dp->mgf, mgfstr);
1084 }
1085
1086
1087 static void
1088 load_bsdf_data( /* load BSDF distribution for this wavelength */
1089 struct BSDF_data *dp,
1090 ezxml_t wdb
1091 )
1092 {
1093 char *cbasis = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
1094 char *rbasis = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
1095 char *sdata;
1096 int i;
1097
1098 if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) {
1099 error(WARNING, "missing column/row basis for BSDF");
1100 return;
1101 }
1102 for (i = nabases; i--; )
1103 if (!strcasecmp(cbasis, abase_list[i].name)) {
1104 dp->ninc = abase_list[i].nangles;
1105 dp->ib_priv = (void *)&abase_list[i];
1106 dp->ib_vec = ab_getvecR;
1107 dp->ib_ndx = ab_getndxR;
1108 dp->ib_ohm = ab_getohm;
1109 break;
1110 }
1111 if (i < 0) {
1112 sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis);
1113 error(WARNING, errmsg);
1114 return;
1115 }
1116 for (i = nabases; i--; )
1117 if (!strcasecmp(rbasis, abase_list[i].name)) {
1118 dp->nout = abase_list[i].nangles;
1119 dp->ob_priv = (void *)&abase_list[i];
1120 dp->ob_vec = ab_getvec;
1121 dp->ob_ndx = ab_getndx;
1122 dp->ob_ohm = ab_getohm;
1123 break;
1124 }
1125 if (i < 0) {
1126 sprintf(errmsg, "undefined RowAngleBasis '%s'", rbasis);
1127 error(WARNING, errmsg);
1128 return;
1129 }
1130 /* read BSDF data */
1131 sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
1132 if (!sdata || !*sdata) {
1133 error(WARNING, "missing BSDF ScatteringData");
1134 return;
1135 }
1136 dp->bsdf = (float *)malloc(sizeof(float)*dp->ninc*dp->nout);
1137 if (dp->bsdf == NULL)
1138 error(SYSTEM, "out of memory in load_bsdf_data");
1139 for (i = 0; i < dp->ninc*dp->nout; i++) {
1140 char *sdnext = fskip(sdata);
1141 if (sdnext == NULL) {
1142 error(WARNING, "bad/missing BSDF ScatteringData");
1143 free(dp->bsdf); dp->bsdf = NULL;
1144 return;
1145 }
1146 while (*sdnext && isspace(*sdnext))
1147 sdnext++;
1148 if (*sdnext == ',') sdnext++;
1149 dp->bsdf[i] = atof(sdata);
1150 sdata = sdnext;
1151 }
1152 while (isspace(*sdata))
1153 sdata++;
1154 if (*sdata) {
1155 sprintf(errmsg, "%d extra characters after BSDF ScatteringData",
1156 (int)strlen(sdata));
1157 error(WARNING, errmsg);
1158 }
1159 }
1160
1161
1162 static int
1163 check_bsdf_data( /* check that BSDF data is sane */
1164 struct BSDF_data *dp
1165 )
1166 {
1167 double *omega_iarr, *omega_oarr;
1168 double dom, contrib, hemi_total, full_total;
1169 int nneg;
1170 FVECT v;
1171 int i, o;
1172
1173 if (dp == NULL || dp->bsdf == NULL)
1174 return(0);
1175 omega_iarr = (double *)calloc(dp->ninc, sizeof(double));
1176 omega_oarr = (double *)calloc(dp->nout, sizeof(double));
1177 if ((omega_iarr == NULL) | (omega_oarr == NULL))
1178 error(SYSTEM, "out of memory in check_bsdf_data");
1179 /* incoming projected solid angles */
1180 hemi_total = .0;
1181 for (i = dp->ninc; i--; ) {
1182 dom = getBSDF_incohm(dp,i);
1183 if (dom <= .0) {
1184 error(WARNING, "zero/negative incoming solid angle");
1185 continue;
1186 }
1187 if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) {
1188 error(WARNING, "illegal incoming BSDF direction");
1189 free(omega_iarr); free(omega_oarr);
1190 return(0);
1191 }
1192 hemi_total += omega_iarr[i] = dom * -v[2];
1193 }
1194 if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1195 sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%",
1196 100.*(hemi_total/PI - 1.));
1197 error(WARNING, errmsg);
1198 }
1199 dom = PI / hemi_total; /* fix normalization */
1200 for (i = dp->ninc; i--; )
1201 omega_iarr[i] *= dom;
1202 /* outgoing projected solid angles */
1203 hemi_total = .0;
1204 for (o = dp->nout; o--; ) {
1205 dom = getBSDF_outohm(dp,o);
1206 if (dom <= .0) {
1207 error(WARNING, "zero/negative outgoing solid angle");
1208 continue;
1209 }
1210 if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) {
1211 error(WARNING, "illegal outgoing BSDF direction");
1212 free(omega_iarr); free(omega_oarr);
1213 return(0);
1214 }
1215 hemi_total += omega_oarr[o] = dom * v[2];
1216 }
1217 if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1218 sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%",
1219 100.*(hemi_total/PI - 1.));
1220 error(WARNING, errmsg);
1221 }
1222 dom = PI / hemi_total; /* fix normalization */
1223 for (o = dp->nout; o--; )
1224 omega_oarr[o] *= dom;
1225 nneg = 0; /* check outgoing totals */
1226 for (i = 0; i < dp->ninc; i++) {
1227 hemi_total = .0;
1228 for (o = dp->nout; o--; ) {
1229 double f = BSDF_value(dp,i,o);
1230 if (f >= .0)
1231 hemi_total += f*omega_oarr[o];
1232 else {
1233 nneg += (f < -FTINY);
1234 BSDF_value(dp,i,o) = .0f;
1235 }
1236 }
1237 if (hemi_total > 1.01) {
1238 sprintf(errmsg,
1239 "incoming BSDF direction %d passes %.1f%% of light",
1240 i, 100.*hemi_total);
1241 error(WARNING, errmsg);
1242 }
1243 }
1244 if (nneg) {
1245 sprintf(errmsg, "%d negative BSDF values (ignored)", nneg);
1246 error(WARNING, errmsg);
1247 }
1248 full_total = .0; /* reverse roles and check again */
1249 for (o = 0; o < dp->nout; o++) {
1250 hemi_total = .0;
1251 for (i = dp->ninc; i--; )
1252 hemi_total += BSDF_value(dp,i,o) * omega_iarr[i];
1253
1254 if (hemi_total > 1.01) {
1255 sprintf(errmsg,
1256 "outgoing BSDF direction %d collects %.1f%% of light",
1257 o, 100.*hemi_total);
1258 error(WARNING, errmsg);
1259 }
1260 full_total += hemi_total*omega_oarr[o];
1261 }
1262 full_total /= PI;
1263 if (full_total > 1.00001) {
1264 sprintf(errmsg, "BSDF transfers %.4f%% of light",
1265 100.*full_total);
1266 error(WARNING, errmsg);
1267 }
1268 free(omega_iarr); free(omega_oarr);
1269 return(1);
1270 }
1271
1272
1273 struct BSDF_data *
1274 load_BSDF( /* load BSDF data from file */
1275 char *fname
1276 )
1277 {
1278 char *path;
1279 ezxml_t fl, wtl, wld, wdb;
1280 struct BSDF_data *dp;
1281
1282 path = getpath(fname, getrlibpath(), R_OK);
1283 if (path == NULL) {
1284 sprintf(errmsg, "cannot find BSDF file \"%s\"", fname);
1285 error(WARNING, errmsg);
1286 return(NULL);
1287 }
1288 fl = ezxml_parse_file(path);
1289 if (fl == NULL) {
1290 sprintf(errmsg, "cannot open BSDF \"%s\"", path);
1291 error(WARNING, errmsg);
1292 return(NULL);
1293 }
1294 if (ezxml_error(fl)[0]) {
1295 sprintf(errmsg, "BSDF \"%s\" %s", path, ezxml_error(fl));
1296 error(WARNING, errmsg);
1297 ezxml_free(fl);
1298 return(NULL);
1299 }
1300 if (strcmp(ezxml_name(fl), "WindowElement")) {
1301 sprintf(errmsg,
1302 "BSDF \"%s\": top level node not 'WindowElement'",
1303 path);
1304 error(WARNING, errmsg);
1305 ezxml_free(fl);
1306 return(NULL);
1307 }
1308 wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
1309 if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl,
1310 "DataDefinition"), "IncidentDataStructure")),
1311 "Columns")) {
1312 sprintf(errmsg,
1313 "BSDF \"%s\": unsupported IncidentDataStructure",
1314 path);
1315 error(WARNING, errmsg);
1316 ezxml_free(fl);
1317 return(NULL);
1318 }
1319 load_angle_basis(ezxml_child(ezxml_child(wtl,
1320 "DataDefinition"), "AngleBasis"));
1321 dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data));
1322 load_geometry(dp, ezxml_child(wtl, "Material"));
1323 for (wld = ezxml_child(wtl, "WavelengthData");
1324 wld != NULL; wld = wld->next) {
1325 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1326 "Visible"))
1327 continue;
1328 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1329 wdb != NULL; wdb = wdb->next)
1330 if (!strcasecmp(ezxml_txt(ezxml_child(wdb,
1331 "WavelengthDataDirection")),
1332 "Transmission Front"))
1333 break;
1334 if (wdb != NULL) { /* load front BTDF */
1335 load_bsdf_data(dp, wdb);
1336 break; /* ignore the rest */
1337 }
1338 }
1339 ezxml_free(fl); /* done with XML file */
1340 if (!check_bsdf_data(dp)) {
1341 sprintf(errmsg, "bad/missing BTDF data in \"%s\"", path);
1342 error(WARNING, errmsg);
1343 free_BSDF(dp);
1344 dp = NULL;
1345 }
1346 return(dp);
1347 }
1348
1349
1350 void
1351 free_BSDF( /* free BSDF data structure */
1352 struct BSDF_data *b
1353 )
1354 {
1355 if (b == NULL)
1356 return;
1357 if (b->mgf != NULL)
1358 free(b->mgf);
1359 if (b->bsdf != NULL)
1360 free(b->bsdf);
1361 free(b);
1362 }
1363
1364
1365 int
1366 r_BSDF_incvec( /* compute random input vector at given location */
1367 FVECT v,
1368 struct BSDF_data *b,
1369 int i,
1370 double rv,
1371 MAT4 xm
1372 )
1373 {
1374 FVECT pert;
1375 double rad;
1376 int j;
1377
1378 if (!getBSDF_incvec(v, b, i))
1379 return(0);
1380 rad = sqrt(getBSDF_incohm(b, i) / PI);
1381 multisamp(pert, 3, rv);
1382 for (j = 0; j < 3; j++)
1383 v[j] += rad*(2.*pert[j] - 1.);
1384 if (xm != NULL)
1385 multv3(v, v, xm);
1386 return(normalize(v) != 0.0);
1387 }
1388
1389
1390 int
1391 r_BSDF_outvec( /* compute random output vector at given location */
1392 FVECT v,
1393 struct BSDF_data *b,
1394 int o,
1395 double rv,
1396 MAT4 xm
1397 )
1398 {
1399 FVECT pert;
1400 double rad;
1401 int j;
1402
1403 if (!getBSDF_outvec(v, b, o))
1404 return(0);
1405 rad = sqrt(getBSDF_outohm(b, o) / PI);
1406 multisamp(pert, 3, rv);
1407 for (j = 0; j < 3; j++)
1408 v[j] += rad*(2.*pert[j] - 1.);
1409 if (xm != NULL)
1410 multv3(v, v, xm);
1411 return(normalize(v) != 0.0);
1412 }
1413
1414
1415 static int
1416 addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */
1417 char *xfarg[],
1418 FVECT xp,
1419 FVECT yp,
1420 FVECT zp
1421 )
1422 {
1423 static char bufs[3][16];
1424 int bn = 0;
1425 char **xfp = xfarg;
1426 double theta;
1427
1428 if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
1429 /* Special case for X' along Z-axis */
1430 theta = -atan2(yp[0], yp[1]);
1431 *xfp++ = "-ry";
1432 *xfp++ = xp[2] < 0.0 ? "90" : "-90";
1433 *xfp++ = "-rz";
1434 sprintf(bufs[bn], "%f", theta*(180./PI));
1435 *xfp++ = bufs[bn++];
1436 return(xfp - xfarg);
1437 }
1438 theta = atan2(yp[2], zp[2]);
1439 if (!FEQ(theta,0.0)) {
1440 *xfp++ = "-rx";
1441 sprintf(bufs[bn], "%f", theta*(180./PI));
1442 *xfp++ = bufs[bn++];
1443 }
1444 theta = asin(-xp[2]);
1445 if (!FEQ(theta,0.0)) {
1446 *xfp++ = "-ry";
1447 sprintf(bufs[bn], " %f", theta*(180./PI));
1448 *xfp++ = bufs[bn++];
1449 }
1450 theta = atan2(xp[1], xp[0]);
1451 if (!FEQ(theta,0.0)) {
1452 *xfp++ = "-rz";
1453 sprintf(bufs[bn], "%f", theta*(180./PI));
1454 *xfp++ = bufs[bn++];
1455 }
1456 *xfp = NULL;
1457 return(xfp - xfarg);
1458 }
1459
1460
1461 int
1462 getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */
1463 MAT4 xm,
1464 FVECT nrm,
1465 UpDir ud,
1466 char *xfbuf
1467 )
1468 {
1469 char *xfargs[7];
1470 XF myxf;
1471 FVECT updir, xdest, ydest;
1472 int i;
1473
1474 updir[0] = updir[1] = updir[2] = 0.;
1475 switch (ud) {
1476 case UDzneg:
1477 updir[2] = -1.;
1478 break;
1479 case UDyneg:
1480 updir[1] = -1.;
1481 break;
1482 case UDxneg:
1483 updir[0] = -1.;
1484 break;
1485 case UDxpos:
1486 updir[0] = 1.;
1487 break;
1488 case UDypos:
1489 updir[1] = 1.;
1490 break;
1491 case UDzpos:
1492 updir[2] = 1.;
1493 break;
1494 case UDunknown:
1495 return(0);
1496 }
1497 fcross(xdest, updir, nrm);
1498 if (normalize(xdest) == 0.0)
1499 return(0);
1500 fcross(ydest, nrm, xdest);
1501 xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs);
1502 copymat4(xm, myxf.xfm);
1503 if (xfbuf == NULL)
1504 return(1);
1505 /* return xf arguments as well */
1506 for (i = 0; xfargs[i] != NULL; i++) {
1507 *xfbuf++ = ' ';
1508 strcpy(xfbuf, xfargs[i]);
1509 while (*xfbuf) ++xfbuf;
1510 }
1511 return(1);
1512 }
1513
1514 /*######### END DEPRECATED ROUTINES #######*/
1515 /*################################################################*/