ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.20
Committed: Mon Apr 11 03:47:46 2011 UTC (13 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.19: +8 -4 lines
Log Message:
Final fix to Klems angles -- I hope

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf.c,v 2.19 2011/04/09 15:39:16 greg Exp $";
3 #endif
4 /*
5 * bsdf.c
6 *
7 * Definitions for bidirectional scattering distribution functions.
8 *
9 * Created by Greg Ward on 1/10/11.
10 *
11 */
12
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <math.h>
16 #include "ezxml.h"
17 #include "hilbert.h"
18 #include "bsdf.h"
19 #include "bsdf_m.h"
20 #include "bsdf_t.h"
21
22 /* English ASCII strings corresponding to ennumerated errors */
23 const char *SDerrorEnglish[] = {
24 "No error",
25 "Memory error",
26 "File input/output error",
27 "File format error",
28 "Illegal argument",
29 "Invalid data",
30 "Unsupported feature",
31 "Internal program error",
32 "Unknown error"
33 };
34
35 /* Additional information on last error (ASCII English) */
36 char SDerrorDetail[256];
37
38 /* Cache of loaded BSDFs */
39 struct SDCache_s *SDcacheList = NULL;
40
41 /* Retain BSDFs in cache list */
42 int SDretainSet = SDretainNone;
43
44 /* Report any error to the indicated stream (in English) */
45 SDError
46 SDreportEnglish(SDError ec, FILE *fp)
47 {
48 if (fp == NULL)
49 return ec;
50 if (!ec)
51 return SDEnone;
52 fputs(SDerrorEnglish[ec], fp);
53 if (SDerrorDetail[0]) {
54 fputs(": ", fp);
55 fputs(SDerrorDetail, fp);
56 }
57 fputc('\n', fp);
58 if (fp != stderr)
59 fflush(fp);
60 return ec;
61 }
62
63 static double
64 to_meters( /* return factor to convert given unit to meters */
65 const char *unit
66 )
67 {
68 if (unit == NULL) return(1.); /* safe assumption? */
69 if (!strcasecmp(unit, "Meter")) return(1.);
70 if (!strcasecmp(unit, "Foot")) return(.3048);
71 if (!strcasecmp(unit, "Inch")) return(.0254);
72 if (!strcasecmp(unit, "Centimeter")) return(.01);
73 if (!strcasecmp(unit, "Millimeter")) return(.001);
74 sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
75 return(-1.);
76 }
77
78 /* Load geometric dimensions and description (if any) */
79 static SDError
80 SDloadGeometry(SDData *sd, ezxml_t wdb)
81 {
82 ezxml_t geom;
83 double cfact;
84 const char *fmt, *mgfstr;
85
86 if (wdb == NULL) /* no geometry section? */
87 return SDEnone;
88 sd->dim[0] = sd->dim[1] = sd->dim[2] = .0;
89 if ((geom = ezxml_child(wdb, "Width")) != NULL)
90 sd->dim[0] = atof(ezxml_txt(geom)) *
91 to_meters(ezxml_attr(geom, "unit"));
92 if ((geom = ezxml_child(wdb, "Height")) != NULL)
93 sd->dim[1] = atof(ezxml_txt(geom)) *
94 to_meters(ezxml_attr(geom, "unit"));
95 if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
96 sd->dim[2] = atof(ezxml_txt(geom)) *
97 to_meters(ezxml_attr(geom, "unit"));
98 if ((sd->dim[0] < .0) | (sd->dim[1] < .0) | (sd->dim[2] < .0)) {
99 sprintf(SDerrorDetail, "Negative size in \"%s\"", sd->name);
100 return SDEdata;
101 }
102 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
103 (mgfstr = ezxml_txt(geom)) == NULL)
104 return SDEnone;
105 if ((fmt = ezxml_attr(geom, "format")) != NULL &&
106 strcasecmp(fmt, "MGF")) {
107 sprintf(SDerrorDetail,
108 "Unrecognized geometry format '%s' in \"%s\"",
109 fmt, sd->name);
110 return SDEsupport;
111 }
112 cfact = to_meters(ezxml_attr(geom, "unit"));
113 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
114 if (sd->mgf == NULL) {
115 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
116 return SDEmemory;
117 }
118 if (cfact < 0.99 || cfact > 1.01)
119 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
120 else
121 strcpy(sd->mgf, mgfstr);
122 return SDEnone;
123 }
124
125 /* Load a BSDF struct from the given file (free first and keep name) */
126 SDError
127 SDloadFile(SDData *sd, const char *fname)
128 {
129 SDError lastErr;
130 ezxml_t fl, wtl;
131
132 if ((sd == NULL) | (fname == NULL || !*fname))
133 return SDEargument;
134 /* free old data, keeping name */
135 SDfreeBSDF(sd);
136 /* parse XML file */
137 fl = ezxml_parse_file(fname);
138 if (fl == NULL) {
139 sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
140 return SDEfile;
141 }
142 if (ezxml_error(fl)[0]) {
143 sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
144 ezxml_free(fl);
145 return SDEformat;
146 }
147 if (strcmp(ezxml_name(fl), "WindowElement")) {
148 sprintf(SDerrorDetail,
149 "BSDF \"%s\": top level node not 'WindowElement'",
150 sd->name);
151 ezxml_free(fl);
152 return SDEformat;
153 }
154 wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
155 if (wtl == NULL) {
156 sprintf(SDerrorDetail, "BSDF \"%s\": no optical layer'",
157 sd->name);
158 ezxml_free(fl);
159 return SDEformat;
160 }
161 /* load geometry if present */
162 lastErr = SDloadGeometry(sd, ezxml_child(wtl, "Material"));
163 if (lastErr)
164 return lastErr;
165 /* try loading variable resolution data */
166 lastErr = SDloadTre(sd, wtl);
167 /* check our result */
168 switch (lastErr) {
169 case SDEformat:
170 case SDEdata:
171 case SDEsupport: /* possibly we just tried the wrong format */
172 lastErr = SDloadMtx(sd, wtl);
173 break;
174 default: /* variable res. OK else serious error */
175 break;
176 }
177 /* done with XML file */
178 ezxml_free(fl);
179
180 if (lastErr) { /* was there a load error? */
181 SDfreeBSDF(sd);
182 return lastErr;
183 }
184 /* remove any insignificant components */
185 if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
186 SDfreeSpectralDF(sd->rf); sd->rf = NULL;
187 }
188 if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
189 SDfreeSpectralDF(sd->rb); sd->rb = NULL;
190 }
191 if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
192 SDfreeSpectralDF(sd->tf); sd->tf = NULL;
193 }
194 /* return success */
195 return SDEnone;
196 }
197
198 /* Allocate new spectral distribution function */
199 SDSpectralDF *
200 SDnewSpectralDF(int nc)
201 {
202 SDSpectralDF *df;
203
204 if (nc <= 0) {
205 strcpy(SDerrorDetail, "Zero component spectral DF request");
206 return NULL;
207 }
208 df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
209 (nc-1)*sizeof(SDComponent));
210 if (df == NULL) {
211 sprintf(SDerrorDetail,
212 "Cannot allocate %d component spectral DF", nc);
213 return NULL;
214 }
215 df->minProjSA = .0;
216 df->maxHemi = .0;
217 df->ncomp = nc;
218 memset(df->comp, 0, nc*sizeof(SDComponent));
219 return df;
220 }
221
222 /* Free cached cumulative distributions for BSDF component */
223 void
224 SDfreeCumulativeCache(SDSpectralDF *df)
225 {
226 int n;
227 SDCDst *cdp;
228
229 if (df == NULL)
230 return;
231 for (n = df->ncomp; n-- > 0; )
232 while ((cdp = df->comp[n].cdList) != NULL) {
233 df->comp[n].cdList = cdp->next;
234 free(cdp);
235 }
236 }
237
238 /* Free a spectral distribution function */
239 void
240 SDfreeSpectralDF(SDSpectralDF *df)
241 {
242 int n;
243
244 if (df == NULL)
245 return;
246 SDfreeCumulativeCache(df);
247 for (n = df->ncomp; n-- > 0; )
248 (*df->comp[n].func->freeSC)(df->comp[n].dist);
249 free(df);
250 }
251
252 /* Shorten file path to useable BSDF name, removing suffix */
253 void
254 SDclipName(char *res, const char *fname)
255 {
256 const char *cp, *dot = NULL;
257
258 for (cp = fname; *cp; cp++)
259 if (*cp == '.')
260 dot = cp;
261 if ((dot == NULL) | (dot < fname+2))
262 dot = cp;
263 if (dot - fname >= SDnameLn)
264 fname = dot - SDnameLn + 1;
265 while (fname < dot)
266 *res++ = *fname++;
267 *res = '\0';
268 }
269
270 /* Initialize an unused BSDF struct (simply clears to zeroes) */
271 void
272 SDclearBSDF(SDData *sd, const char *fname)
273 {
274 if (sd == NULL)
275 return;
276 memset(sd, 0, sizeof(SDData));
277 if (fname == NULL)
278 return;
279 SDclipName(sd->name, fname);
280 }
281
282 /* Free data associated with BSDF struct */
283 void
284 SDfreeBSDF(SDData *sd)
285 {
286 if (sd == NULL)
287 return;
288 if (sd->mgf != NULL) {
289 free(sd->mgf);
290 sd->mgf = NULL;
291 }
292 if (sd->rf != NULL) {
293 SDfreeSpectralDF(sd->rf);
294 sd->rf = NULL;
295 }
296 if (sd->rb != NULL) {
297 SDfreeSpectralDF(sd->rb);
298 sd->rb = NULL;
299 }
300 if (sd->tf != NULL) {
301 SDfreeSpectralDF(sd->tf);
302 sd->tf = NULL;
303 }
304 sd->rLambFront.cieY = .0;
305 sd->rLambFront.spec.flags = 0;
306 sd->rLambBack.cieY = .0;
307 sd->rLambBack.spec.flags = 0;
308 sd->tLamb.cieY = .0;
309 sd->tLamb.spec.flags = 0;
310 }
311
312 /* Find writeable BSDF by name, or allocate new cache entry if absent */
313 SDData *
314 SDgetCache(const char *bname)
315 {
316 struct SDCache_s *sdl;
317 char sdnam[SDnameLn];
318
319 if (bname == NULL)
320 return NULL;
321
322 SDclipName(sdnam, bname);
323 for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
324 if (!strcmp(sdl->bsdf.name, sdnam)) {
325 sdl->refcnt++;
326 return &sdl->bsdf;
327 }
328
329 sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
330 if (sdl == NULL)
331 return NULL;
332
333 strcpy(sdl->bsdf.name, sdnam);
334 sdl->next = SDcacheList;
335 SDcacheList = sdl;
336
337 sdl->refcnt++;
338 return &sdl->bsdf;
339 }
340
341 /* Get loaded BSDF from cache (or load and cache it on first call) */
342 /* Report any problem to stderr and return NULL on failure */
343 const SDData *
344 SDcacheFile(const char *fname)
345 {
346 SDData *sd;
347 SDError ec;
348
349 if (fname == NULL || !*fname)
350 return NULL;
351 SDerrorDetail[0] = '\0';
352 if ((sd = SDgetCache(fname)) == NULL) {
353 SDreportEnglish(SDEmemory, stderr);
354 return NULL;
355 }
356 if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
357 SDreportEnglish(ec, stderr);
358 SDfreeCache(sd);
359 return NULL;
360 }
361 return sd;
362 }
363
364 /* Free a BSDF from our cache (clear all if NULL) */
365 void
366 SDfreeCache(const SDData *sd)
367 {
368 struct SDCache_s *sdl, *sdLast = NULL;
369
370 if (sd == NULL) { /* free entire list */
371 while ((sdl = SDcacheList) != NULL) {
372 SDcacheList = sdl->next;
373 SDfreeBSDF(&sdl->bsdf);
374 free(sdl);
375 }
376 return;
377 }
378 for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
379 if (&sdl->bsdf == sd)
380 break;
381 if (sdl == NULL || --sdl->refcnt)
382 return; /* missing or still in use */
383 /* keep unreferenced data? */
384 if (SDisLoaded(sd) && SDretainSet) {
385 if (SDretainSet == SDretainAll)
386 return; /* keep everything */
387 /* else free cumulative data */
388 SDfreeCumulativeCache(sd->rf);
389 SDfreeCumulativeCache(sd->rb);
390 SDfreeCumulativeCache(sd->tf);
391 return;
392 }
393 /* remove from list and free */
394 if (sdLast == NULL)
395 SDcacheList = sdl->next;
396 else
397 sdLast->next = sdl->next;
398 SDfreeBSDF(&sdl->bsdf);
399 free(sdl);
400 }
401
402 /* Sample an individual BSDF component */
403 SDError
404 SDsampComponent(SDValue *sv, FVECT outVec, const FVECT inVec,
405 double randX, SDComponent *sdc)
406 {
407 float coef[SDmaxCh];
408 SDError ec;
409 const SDCDst *cd;
410 double d;
411 int n;
412 /* check arguments */
413 if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL))
414 return SDEargument;
415 /* get cumulative distribution */
416 cd = (*sdc->func->getCDist)(inVec, sdc);
417 if (cd == NULL)
418 return SDEmemory;
419 if (cd->cTotal <= 1e-7) { /* anything to sample? */
420 sv->spec = c_dfcolor;
421 sv->cieY = .0;
422 memset(outVec, 0, 3*sizeof(double));
423 return SDEnone;
424 }
425 sv->cieY = cd->cTotal;
426 /* compute sample direction */
427 ec = (*sdc->func->sampCDist)(outVec, randX, cd);
428 if (ec)
429 return ec;
430 /* get BSDF color */
431 n = (*sdc->func->getBSDFs)(coef, outVec, inVec, sdc->dist);
432 if (n <= 0) {
433 strcpy(SDerrorDetail, "BSDF sample value error");
434 return SDEinternal;
435 }
436 sv->spec = sdc->cspec[0];
437 d = coef[0];
438 while (--n) {
439 c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
440 d += coef[n];
441 }
442 /* make sure everything is set */
443 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
444 return SDEnone;
445 }
446
447 #define MS_MAXDIM 15
448
449 /* Convert 1-dimensional random variable to N-dimensional */
450 void
451 SDmultiSamp(double t[], int n, double randX)
452 {
453 unsigned nBits;
454 double scale;
455 bitmask_t ndx, coord[MS_MAXDIM];
456
457 while (n > MS_MAXDIM) /* punt for higher dimensions */
458 t[--n] = rand()*(1./(RAND_MAX+.5));
459 nBits = (8*sizeof(bitmask_t) - 1) / n;
460 ndx = randX * (double)((bitmask_t)1 << (nBits*n));
461 /* get coordinate on Hilbert curve */
462 hilbert_i2c(n, nBits, ndx, coord);
463 /* convert back to [0,1) range */
464 scale = 1. / (double)((bitmask_t)1 << nBits);
465 while (n--)
466 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
467 }
468
469 #undef MS_MAXDIM
470
471 /* Generate diffuse hemispherical sample */
472 static void
473 SDdiffuseSamp(FVECT outVec, int outFront, double randX)
474 {
475 /* convert to position on hemisphere */
476 SDmultiSamp(outVec, 2, randX);
477 SDsquare2disk(outVec, outVec[0], outVec[1]);
478 outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
479 if (outVec[2] > .0) /* a bit of paranoia */
480 outVec[2] = sqrt(outVec[2]);
481 if (!outFront) /* going out back? */
482 outVec[2] = -outVec[2];
483 }
484
485 /* Query projected solid angle coverage for non-diffuse BSDF direction */
486 SDError
487 SDsizeBSDF(double *projSA, const FVECT vec, int qflags, const SDData *sd)
488 {
489 SDSpectralDF *rdf;
490 SDError ec;
491 int i;
492 /* check arguments */
493 if ((projSA == NULL) | (vec == NULL) | (sd == NULL))
494 return SDEargument;
495 /* initialize extrema */
496 switch (qflags) {
497 case SDqueryMax:
498 projSA[0] = .0;
499 break;
500 case SDqueryMin+SDqueryMax:
501 projSA[1] = .0;
502 /* fall through */
503 case SDqueryMin:
504 projSA[0] = 10.;
505 break;
506 case 0:
507 return SDEargument;
508 }
509 if (vec[2] > .0) /* front surface query? */
510 rdf = sd->rf;
511 else
512 rdf = sd->rb;
513 ec = SDEdata; /* run through components */
514 for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
515 ec = (*rdf->comp[i].func->queryProjSA)(projSA, vec, qflags,
516 rdf->comp[i].dist);
517 if (ec)
518 return ec;
519 }
520 for (i = (sd->tf==NULL) ? 0 : sd->tf->ncomp; i--; ) {
521 ec = (*sd->tf->comp[i].func->queryProjSA)(projSA, vec, qflags,
522 sd->tf->comp[i].dist);
523 if (ec)
524 return ec;
525 }
526 if (ec) { /* all diffuse? */
527 projSA[0] = M_PI;
528 if (qflags == SDqueryMin+SDqueryMax)
529 projSA[1] = M_PI;
530 }
531 return SDEnone;
532 }
533
534 /* Return BSDF for the given incident and scattered ray vectors */
535 SDError
536 SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
537 {
538 int inFront, outFront;
539 SDSpectralDF *sdf;
540 float coef[SDmaxCh];
541 int nch, i;
542 /* check arguments */
543 if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
544 return SDEargument;
545 /* whose side are we on? */
546 inFront = (inVec[2] > .0);
547 outFront = (outVec[2] > .0);
548 /* start with diffuse portion */
549 if (inFront & outFront) {
550 *sv = sd->rLambFront;
551 sdf = sd->rf;
552 } else if (!(inFront | outFront)) {
553 *sv = sd->rLambBack;
554 sdf = sd->rb;
555 } else /* inFront ^ outFront */ {
556 *sv = sd->tLamb;
557 sdf = sd->tf;
558 }
559 sv->cieY *= 1./M_PI;
560 /* add non-diffuse components */
561 i = (sdf != NULL) ? sdf->ncomp : 0;
562 while (i-- > 0) {
563 nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
564 sdf->comp[i].dist);
565 while (nch-- > 0) {
566 c_cmix(&sv->spec, sv->cieY, &sv->spec,
567 coef[nch], &sdf->comp[i].cspec[nch]);
568 sv->cieY += coef[nch];
569 }
570 }
571 /* make sure everything is set */
572 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
573 return SDEnone;
574 }
575
576 /* Compute directional hemispherical scattering at this incident angle */
577 double
578 SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
579 {
580 double hsum;
581 SDSpectralDF *rdf;
582 const SDCDst *cd;
583 int i;
584 /* check arguments */
585 if ((inVec == NULL) | (sd == NULL))
586 return .0;
587 /* gather diffuse components */
588 if (inVec[2] > .0) {
589 hsum = sd->rLambFront.cieY;
590 rdf = sd->rf;
591 } else /* !inFront */ {
592 hsum = sd->rLambBack.cieY;
593 rdf = sd->rb;
594 }
595 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
596 hsum = .0;
597 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
598 hsum += sd->tLamb.cieY;
599 /* gather non-diffuse components */
600 i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
601 rdf != NULL) ? rdf->ncomp : 0;
602 while (i-- > 0) { /* non-diffuse reflection */
603 cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
604 if (cd != NULL)
605 hsum += cd->cTotal;
606 }
607 i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
608 sd->tf != NULL) ? sd->tf->ncomp : 0;
609 while (i-- > 0) { /* non-diffuse transmission */
610 cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]);
611 if (cd != NULL)
612 hsum += cd->cTotal;
613 }
614 return hsum;
615 }
616
617 /* Sample BSDF direction based on the given random variable */
618 SDError
619 SDsampBSDF(SDValue *sv, FVECT outVec, const FVECT inVec,
620 double randX, int sflags, const SDData *sd)
621 {
622 SDError ec;
623 int inFront;
624 SDSpectralDF *rdf;
625 double rdiff;
626 float coef[SDmaxCh];
627 int i, j, n, nr;
628 SDComponent *sdc;
629 const SDCDst **cdarr = NULL;
630 /* check arguments */
631 if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL) |
632 (randX < .0) | (randX >= 1.))
633 return SDEargument;
634 /* whose side are we on? */
635 inFront = (inVec[2] > .0);
636 /* remember diffuse portions */
637 if (inFront) {
638 *sv = sd->rLambFront;
639 rdf = sd->rf;
640 } else /* !inFront */ {
641 *sv = sd->rLambBack;
642 rdf = sd->rb;
643 }
644 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
645 sv->cieY = .0;
646 rdiff = sv->cieY;
647 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
648 sv->cieY += sd->tLamb.cieY;
649 /* gather non-diffuse components */
650 i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
651 rdf != NULL) ? rdf->ncomp : 0;
652 j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
653 sd->tf != NULL) ? sd->tf->ncomp : 0;
654 n = i + j;
655 if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
656 return SDEmemory;
657 while (j-- > 0) { /* non-diffuse transmission */
658 cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]);
659 if (cdarr[i+j] == NULL) {
660 free(cdarr);
661 return SDEmemory;
662 }
663 sv->cieY += cdarr[i+j]->cTotal;
664 }
665 while (i-- > 0) { /* non-diffuse reflection */
666 cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
667 if (cdarr[i] == NULL) {
668 free(cdarr);
669 return SDEmemory;
670 }
671 sv->cieY += cdarr[i]->cTotal;
672 }
673 if (sv->cieY <= 1e-7) { /* anything to sample? */
674 sv->cieY = .0;
675 memset(outVec, 0, 3*sizeof(double));
676 return SDEnone;
677 }
678 /* scale random variable */
679 randX *= sv->cieY;
680 /* diffuse reflection? */
681 if (randX < rdiff) {
682 SDdiffuseSamp(outVec, inFront, randX/rdiff);
683 goto done;
684 }
685 randX -= rdiff;
686 /* diffuse transmission? */
687 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
688 if (randX < sd->tLamb.cieY) {
689 sv->spec = sd->tLamb.spec;
690 SDdiffuseSamp(outVec, !inFront, randX/sd->tLamb.cieY);
691 goto done;
692 }
693 randX -= sd->tLamb.cieY;
694 }
695 /* else one of cumulative dist. */
696 for (i = 0; i < n && randX < cdarr[i]->cTotal; i++)
697 randX -= cdarr[i]->cTotal;
698 if (i >= n)
699 return SDEinternal;
700 /* compute sample direction */
701 sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr];
702 ec = (*sdc->func->sampCDist)(outVec, randX/cdarr[i]->cTotal, cdarr[i]);
703 if (ec)
704 return ec;
705 /* compute color */
706 j = (*sdc->func->getBSDFs)(coef, outVec, inVec, sdc->dist);
707 if (j <= 0) {
708 sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
709 sd->name);
710 return SDEinternal;
711 }
712 sv->spec = sdc->cspec[0];
713 rdiff = coef[0];
714 while (--j) {
715 c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
716 rdiff += coef[j];
717 }
718 done:
719 if (cdarr != NULL)
720 free(cdarr);
721 /* make sure everything is set */
722 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
723 return SDEnone;
724 }
725
726 /* Compute World->BSDF transform from surface normal and up (Y) vector */
727 SDError
728 SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
729 {
730 if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
731 return SDEargument;
732 VCOPY(vMtx[2], sNrm);
733 if (normalize(vMtx[2]) == .0)
734 return SDEargument;
735 fcross(vMtx[0], uVec, vMtx[2]);
736 if (normalize(vMtx[0]) == .0)
737 return SDEargument;
738 fcross(vMtx[1], vMtx[2], vMtx[0]);
739 return SDEnone;
740 }
741
742 /* Compute inverse transform */
743 SDError
744 SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
745 {
746 RREAL mTmp[3][3];
747 double d;
748
749 if ((iMtx == NULL) | (vMtx == NULL))
750 return SDEargument;
751 /* compute determinant */
752 mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
753 mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
754 mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
755 d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
756 if (d == .0) {
757 strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
758 return SDEargument;
759 }
760 d = 1./d; /* invert matrix */
761 mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
762 mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
763 mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
764 mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
765 mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
766 mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
767 mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
768 memcpy(iMtx, mTmp, sizeof(mTmp));
769 return SDEnone;
770 }
771
772 /* Transform and normalize direction (column) vector */
773 SDError
774 SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
775 {
776 FVECT vTmp;
777
778 if ((resVec == NULL) | (inpVec == NULL))
779 return SDEargument;
780 if (vMtx == NULL) { /* assume they just want to normalize */
781 if (resVec != inpVec)
782 VCOPY(resVec, inpVec);
783 return (normalize(resVec) > .0) ? SDEnone : SDEargument;
784 }
785 vTmp[0] = DOT(vMtx[0], inpVec);
786 vTmp[1] = DOT(vMtx[1], inpVec);
787 vTmp[2] = DOT(vMtx[2], inpVec);
788 if (normalize(vTmp) == .0)
789 return SDEargument;
790 VCOPY(resVec, vTmp);
791 return SDEnone;
792 }
793
794 /*################################################################*/
795 /*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/
796
797 /*
798 * Routines for handling BSDF data
799 */
800
801 #include "standard.h"
802 #include "paths.h"
803 #include <ctype.h>
804
805 #define MAXLATS 46 /* maximum number of latitudes */
806
807 /* BSDF angle specification */
808 typedef struct {
809 char name[64]; /* basis name */
810 int nangles; /* total number of directions */
811 struct {
812 float tmin; /* starting theta */
813 short nphis; /* number of phis (0 term) */
814 } lat[MAXLATS+1]; /* latitudes */
815 } ANGLE_BASIS;
816
817 #define MAXABASES 7 /* limit on defined bases */
818
819 static ANGLE_BASIS abase_list[MAXABASES] = {
820 {
821 "LBNL/Klems Full", 145,
822 { {-5., 1},
823 {5., 8},
824 {15., 16},
825 {25., 20},
826 {35., 24},
827 {45., 24},
828 {55., 24},
829 {65., 16},
830 {75., 12},
831 {90., 0} }
832 }, {
833 "LBNL/Klems Half", 73,
834 { {-6.5, 1},
835 {6.5, 8},
836 {19.5, 12},
837 {32.5, 16},
838 {46.5, 20},
839 {61.5, 12},
840 {76.5, 4},
841 {90., 0} }
842 }, {
843 "LBNL/Klems Quarter", 41,
844 { {-9., 1},
845 {9., 8},
846 {27., 12},
847 {46., 12},
848 {66., 8},
849 {90., 0} }
850 }
851 };
852
853 static int nabases = 3; /* current number of defined bases */
854
855 #define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6)
856
857 static int
858 fequal(double a, double b)
859 {
860 if (b != .0)
861 a = a/b - 1.;
862 return((a <= 1e-6) & (a >= -1e-6));
863 }
864
865 /* Returns the name of the given tag */
866 #ifdef ezxml_name
867 #undef ezxml_name
868 static char *
869 ezxml_name(ezxml_t xml)
870 {
871 if (xml == NULL)
872 return(NULL);
873 return(xml->name);
874 }
875 #endif
876
877 /* Returns the given tag's character content or empty string if none */
878 #ifdef ezxml_txt
879 #undef ezxml_txt
880 static char *
881 ezxml_txt(ezxml_t xml)
882 {
883 if (xml == NULL)
884 return("");
885 return(xml->txt);
886 }
887 #endif
888
889
890 static int
891 ab_getvec( /* get vector for this angle basis index */
892 FVECT v,
893 int ndx,
894 void *p
895 )
896 {
897 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
898 int li;
899 double pol, azi, d;
900
901 if ((ndx < 0) | (ndx >= ab->nangles))
902 return(0);
903 for (li = 0; ndx >= ab->lat[li].nphis; li++)
904 ndx -= ab->lat[li].nphis;
905 pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin);
906 azi = 2.*PI*ndx/ab->lat[li].nphis;
907 v[2] = d = cos(pol);
908 d = sqrt(1. - d*d); /* sin(pol) */
909 v[0] = cos(azi)*d;
910 v[1] = sin(azi)*d;
911 return(1);
912 }
913
914
915 static int
916 ab_getndx( /* get index corresponding to the given vector */
917 FVECT v,
918 void *p
919 )
920 {
921 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
922 int li, ndx;
923 double pol, azi, d;
924
925 if ((v[2] < -1.0) | (v[2] > 1.0))
926 return(-1);
927 pol = 180.0/PI*acos(v[2]);
928 azi = 180.0/PI*atan2(v[1], v[0]);
929 if (azi < 0.0) azi += 360.0;
930 for (li = 1; ab->lat[li].tmin <= pol; li++)
931 if (!ab->lat[li].nphis)
932 return(-1);
933 --li;
934 ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
935 if (ndx >= ab->lat[li].nphis) ndx = 0;
936 while (li--)
937 ndx += ab->lat[li].nphis;
938 return(ndx);
939 }
940
941
942 static double
943 ab_getohm( /* get solid angle for this angle basis index */
944 int ndx,
945 void *p
946 )
947 {
948 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
949 int li;
950 double theta, theta1;
951
952 if ((ndx < 0) | (ndx >= ab->nangles))
953 return(0);
954 for (li = 0; ndx >= ab->lat[li].nphis; li++)
955 ndx -= ab->lat[li].nphis;
956 theta1 = PI/180. * ab->lat[li+1].tmin;
957 if (ab->lat[li].nphis == 1) { /* special case */
958 if (ab->lat[li].tmin > FTINY)
959 error(USER, "unsupported BSDF coordinate system");
960 return(2.*PI*(1. - cos(theta1)));
961 }
962 theta = PI/180. * ab->lat[li].tmin;
963 return(2.*PI*(cos(theta) - cos(theta1))/(double)ab->lat[li].nphis);
964 }
965
966
967 static int
968 ab_getvecR( /* get reverse vector for this angle basis index */
969 FVECT v,
970 int ndx,
971 void *p
972 )
973 {
974 if (!ab_getvec(v, ndx, p))
975 return(0);
976
977 v[0] = -v[0];
978 v[1] = -v[1];
979 v[2] = -v[2];
980
981 return(1);
982 }
983
984
985 static int
986 ab_getndxR( /* get index corresponding to the reverse vector */
987 FVECT v,
988 void *p
989 )
990 {
991 FVECT v2;
992
993 v2[0] = -v[0];
994 v2[1] = -v[1];
995 v2[2] = -v[2];
996
997 return ab_getndx(v2, p);
998 }
999
1000
1001 static void
1002 load_angle_basis( /* load custom BSDF angle basis */
1003 ezxml_t wab
1004 )
1005 {
1006 char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
1007 ezxml_t wbb;
1008 int i;
1009
1010 if (!abname || !*abname)
1011 return;
1012 for (i = nabases; i--; )
1013 if (!strcasecmp(abname, abase_list[i].name))
1014 return; /* assume it's the same */
1015 if (nabases >= MAXABASES)
1016 error(INTERNAL, "too many angle bases");
1017 strcpy(abase_list[nabases].name, abname);
1018 abase_list[nabases].nangles = 0;
1019 for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
1020 wbb != NULL; i++, wbb = wbb->next) {
1021 if (i >= MAXLATS)
1022 error(INTERNAL, "too many latitudes in custom basis");
1023 abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
1024 ezxml_child(ezxml_child(wbb,
1025 "ThetaBounds"), "UpperTheta")));
1026 if (!i)
1027 abase_list[nabases].lat[i].tmin =
1028 -abase_list[nabases].lat[i+1].tmin;
1029 else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
1030 "ThetaBounds"), "LowerTheta"))),
1031 abase_list[nabases].lat[i].tmin))
1032 error(WARNING, "theta values disagree in custom basis");
1033 abase_list[nabases].nangles +=
1034 abase_list[nabases].lat[i].nphis =
1035 atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
1036 }
1037 abase_list[nabases++].lat[i].nphis = 0;
1038 }
1039
1040
1041 static void
1042 load_geometry( /* load geometric dimensions and description (if any) */
1043 struct BSDF_data *dp,
1044 ezxml_t wdb
1045 )
1046 {
1047 ezxml_t geom;
1048 double cfact;
1049 const char *fmt, *mgfstr;
1050
1051 dp->dim[0] = dp->dim[1] = dp->dim[2] = 0;
1052 dp->mgf = NULL;
1053 if ((geom = ezxml_child(wdb, "Width")) != NULL)
1054 dp->dim[0] = atof(ezxml_txt(geom)) *
1055 to_meters(ezxml_attr(geom, "unit"));
1056 if ((geom = ezxml_child(wdb, "Height")) != NULL)
1057 dp->dim[1] = atof(ezxml_txt(geom)) *
1058 to_meters(ezxml_attr(geom, "unit"));
1059 if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
1060 dp->dim[2] = atof(ezxml_txt(geom)) *
1061 to_meters(ezxml_attr(geom, "unit"));
1062 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
1063 (mgfstr = ezxml_txt(geom)) == NULL)
1064 return;
1065 if ((fmt = ezxml_attr(geom, "format")) != NULL &&
1066 strcasecmp(fmt, "MGF")) {
1067 sprintf(errmsg, "unrecognized geometry format '%s'", fmt);
1068 error(WARNING, errmsg);
1069 return;
1070 }
1071 cfact = to_meters(ezxml_attr(geom, "unit"));
1072 dp->mgf = (char *)malloc(strlen(mgfstr)+32);
1073 if (dp->mgf == NULL)
1074 error(SYSTEM, "out of memory in load_geometry");
1075 if (cfact < 0.99 || cfact > 1.01)
1076 sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
1077 else
1078 strcpy(dp->mgf, mgfstr);
1079 }
1080
1081
1082 static void
1083 load_bsdf_data( /* load BSDF distribution for this wavelength */
1084 struct BSDF_data *dp,
1085 ezxml_t wdb
1086 )
1087 {
1088 char *cbasis = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
1089 char *rbasis = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
1090 char *sdata;
1091 int i;
1092
1093 if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) {
1094 error(WARNING, "missing column/row basis for BSDF");
1095 return;
1096 }
1097 for (i = nabases; i--; )
1098 if (!strcasecmp(cbasis, abase_list[i].name)) {
1099 dp->ninc = abase_list[i].nangles;
1100 dp->ib_priv = (void *)&abase_list[i];
1101 dp->ib_vec = ab_getvecR;
1102 dp->ib_ndx = ab_getndxR;
1103 dp->ib_ohm = ab_getohm;
1104 break;
1105 }
1106 if (i < 0) {
1107 sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis);
1108 error(WARNING, errmsg);
1109 return;
1110 }
1111 for (i = nabases; i--; )
1112 if (!strcasecmp(rbasis, abase_list[i].name)) {
1113 dp->nout = abase_list[i].nangles;
1114 dp->ob_priv = (void *)&abase_list[i];
1115 dp->ob_vec = ab_getvec;
1116 dp->ob_ndx = ab_getndx;
1117 dp->ob_ohm = ab_getohm;
1118 break;
1119 }
1120 if (i < 0) {
1121 sprintf(errmsg, "undefined RowAngleBasis '%s'", rbasis);
1122 error(WARNING, errmsg);
1123 return;
1124 }
1125 /* read BSDF data */
1126 sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
1127 if (!sdata || !*sdata) {
1128 error(WARNING, "missing BSDF ScatteringData");
1129 return;
1130 }
1131 dp->bsdf = (float *)malloc(sizeof(float)*dp->ninc*dp->nout);
1132 if (dp->bsdf == NULL)
1133 error(SYSTEM, "out of memory in load_bsdf_data");
1134 for (i = 0; i < dp->ninc*dp->nout; i++) {
1135 char *sdnext = fskip(sdata);
1136 if (sdnext == NULL) {
1137 error(WARNING, "bad/missing BSDF ScatteringData");
1138 free(dp->bsdf); dp->bsdf = NULL;
1139 return;
1140 }
1141 while (*sdnext && isspace(*sdnext))
1142 sdnext++;
1143 if (*sdnext == ',') sdnext++;
1144 dp->bsdf[i] = atof(sdata);
1145 sdata = sdnext;
1146 }
1147 while (isspace(*sdata))
1148 sdata++;
1149 if (*sdata) {
1150 sprintf(errmsg, "%d extra characters after BSDF ScatteringData",
1151 (int)strlen(sdata));
1152 error(WARNING, errmsg);
1153 }
1154 }
1155
1156
1157 static int
1158 check_bsdf_data( /* check that BSDF data is sane */
1159 struct BSDF_data *dp
1160 )
1161 {
1162 double *omega_iarr, *omega_oarr;
1163 double dom, contrib, hemi_total, full_total;
1164 int nneg;
1165 FVECT v;
1166 int i, o;
1167
1168 if (dp == NULL || dp->bsdf == NULL)
1169 return(0);
1170 omega_iarr = (double *)calloc(dp->ninc, sizeof(double));
1171 omega_oarr = (double *)calloc(dp->nout, sizeof(double));
1172 if ((omega_iarr == NULL) | (omega_oarr == NULL))
1173 error(SYSTEM, "out of memory in check_bsdf_data");
1174 /* incoming projected solid angles */
1175 hemi_total = .0;
1176 for (i = dp->ninc; i--; ) {
1177 dom = getBSDF_incohm(dp,i);
1178 if (dom <= .0) {
1179 error(WARNING, "zero/negative incoming solid angle");
1180 continue;
1181 }
1182 if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) {
1183 error(WARNING, "illegal incoming BSDF direction");
1184 free(omega_iarr); free(omega_oarr);
1185 return(0);
1186 }
1187 hemi_total += omega_iarr[i] = dom * -v[2];
1188 }
1189 if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1190 sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%",
1191 100.*(hemi_total/PI - 1.));
1192 error(WARNING, errmsg);
1193 }
1194 dom = PI / hemi_total; /* fix normalization */
1195 for (i = dp->ninc; i--; )
1196 omega_iarr[i] *= dom;
1197 /* outgoing projected solid angles */
1198 hemi_total = .0;
1199 for (o = dp->nout; o--; ) {
1200 dom = getBSDF_outohm(dp,o);
1201 if (dom <= .0) {
1202 error(WARNING, "zero/negative outgoing solid angle");
1203 continue;
1204 }
1205 if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) {
1206 error(WARNING, "illegal outgoing BSDF direction");
1207 free(omega_iarr); free(omega_oarr);
1208 return(0);
1209 }
1210 hemi_total += omega_oarr[o] = dom * v[2];
1211 }
1212 if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1213 sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%",
1214 100.*(hemi_total/PI - 1.));
1215 error(WARNING, errmsg);
1216 }
1217 dom = PI / hemi_total; /* fix normalization */
1218 for (o = dp->nout; o--; )
1219 omega_oarr[o] *= dom;
1220 nneg = 0; /* check outgoing totals */
1221 for (i = 0; i < dp->ninc; i++) {
1222 hemi_total = .0;
1223 for (o = dp->nout; o--; ) {
1224 double f = BSDF_value(dp,i,o);
1225 if (f >= .0)
1226 hemi_total += f*omega_oarr[o];
1227 else {
1228 nneg += (f < -FTINY);
1229 BSDF_value(dp,i,o) = .0f;
1230 }
1231 }
1232 if (hemi_total > 1.01) {
1233 sprintf(errmsg,
1234 "incoming BSDF direction %d passes %.1f%% of light",
1235 i, 100.*hemi_total);
1236 error(WARNING, errmsg);
1237 }
1238 }
1239 if (nneg) {
1240 sprintf(errmsg, "%d negative BSDF values (ignored)", nneg);
1241 error(WARNING, errmsg);
1242 }
1243 full_total = .0; /* reverse roles and check again */
1244 for (o = 0; o < dp->nout; o++) {
1245 hemi_total = .0;
1246 for (i = dp->ninc; i--; )
1247 hemi_total += BSDF_value(dp,i,o) * omega_iarr[i];
1248
1249 if (hemi_total > 1.01) {
1250 sprintf(errmsg,
1251 "outgoing BSDF direction %d collects %.1f%% of light",
1252 o, 100.*hemi_total);
1253 error(WARNING, errmsg);
1254 }
1255 full_total += hemi_total*omega_oarr[o];
1256 }
1257 full_total /= PI;
1258 if (full_total > 1.00001) {
1259 sprintf(errmsg, "BSDF transfers %.4f%% of light",
1260 100.*full_total);
1261 error(WARNING, errmsg);
1262 }
1263 free(omega_iarr); free(omega_oarr);
1264 return(1);
1265 }
1266
1267
1268 struct BSDF_data *
1269 load_BSDF( /* load BSDF data from file */
1270 char *fname
1271 )
1272 {
1273 char *path;
1274 ezxml_t fl, wtl, wld, wdb;
1275 struct BSDF_data *dp;
1276
1277 path = getpath(fname, getrlibpath(), R_OK);
1278 if (path == NULL) {
1279 sprintf(errmsg, "cannot find BSDF file \"%s\"", fname);
1280 error(WARNING, errmsg);
1281 return(NULL);
1282 }
1283 fl = ezxml_parse_file(path);
1284 if (fl == NULL) {
1285 sprintf(errmsg, "cannot open BSDF \"%s\"", path);
1286 error(WARNING, errmsg);
1287 return(NULL);
1288 }
1289 if (ezxml_error(fl)[0]) {
1290 sprintf(errmsg, "BSDF \"%s\" %s", path, ezxml_error(fl));
1291 error(WARNING, errmsg);
1292 ezxml_free(fl);
1293 return(NULL);
1294 }
1295 if (strcmp(ezxml_name(fl), "WindowElement")) {
1296 sprintf(errmsg,
1297 "BSDF \"%s\": top level node not 'WindowElement'",
1298 path);
1299 error(WARNING, errmsg);
1300 ezxml_free(fl);
1301 return(NULL);
1302 }
1303 wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
1304 if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl,
1305 "DataDefinition"), "IncidentDataStructure")),
1306 "Columns")) {
1307 sprintf(errmsg,
1308 "BSDF \"%s\": unsupported IncidentDataStructure",
1309 path);
1310 error(WARNING, errmsg);
1311 ezxml_free(fl);
1312 return(NULL);
1313 }
1314 load_angle_basis(ezxml_child(ezxml_child(wtl,
1315 "DataDefinition"), "AngleBasis"));
1316 dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data));
1317 load_geometry(dp, ezxml_child(wtl, "Material"));
1318 for (wld = ezxml_child(wtl, "WavelengthData");
1319 wld != NULL; wld = wld->next) {
1320 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1321 "Visible"))
1322 continue;
1323 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1324 wdb != NULL; wdb = wdb->next)
1325 if (!strcasecmp(ezxml_txt(ezxml_child(wdb,
1326 "WavelengthDataDirection")),
1327 "Transmission Front"))
1328 break;
1329 if (wdb != NULL) { /* load front BTDF */
1330 load_bsdf_data(dp, wdb);
1331 break; /* ignore the rest */
1332 }
1333 }
1334 ezxml_free(fl); /* done with XML file */
1335 if (!check_bsdf_data(dp)) {
1336 sprintf(errmsg, "bad/missing BTDF data in \"%s\"", path);
1337 error(WARNING, errmsg);
1338 free_BSDF(dp);
1339 dp = NULL;
1340 }
1341 return(dp);
1342 }
1343
1344
1345 void
1346 free_BSDF( /* free BSDF data structure */
1347 struct BSDF_data *b
1348 )
1349 {
1350 if (b == NULL)
1351 return;
1352 if (b->mgf != NULL)
1353 free(b->mgf);
1354 if (b->bsdf != NULL)
1355 free(b->bsdf);
1356 free(b);
1357 }
1358
1359
1360 int
1361 r_BSDF_incvec( /* compute random input vector at given location */
1362 FVECT v,
1363 struct BSDF_data *b,
1364 int i,
1365 double rv,
1366 MAT4 xm
1367 )
1368 {
1369 FVECT pert;
1370 double rad;
1371 int j;
1372
1373 if (!getBSDF_incvec(v, b, i))
1374 return(0);
1375 rad = sqrt(getBSDF_incohm(b, i) / PI);
1376 multisamp(pert, 3, rv);
1377 for (j = 0; j < 3; j++)
1378 v[j] += rad*(2.*pert[j] - 1.);
1379 if (xm != NULL)
1380 multv3(v, v, xm);
1381 return(normalize(v) != 0.0);
1382 }
1383
1384
1385 int
1386 r_BSDF_outvec( /* compute random output vector at given location */
1387 FVECT v,
1388 struct BSDF_data *b,
1389 int o,
1390 double rv,
1391 MAT4 xm
1392 )
1393 {
1394 FVECT pert;
1395 double rad;
1396 int j;
1397
1398 if (!getBSDF_outvec(v, b, o))
1399 return(0);
1400 rad = sqrt(getBSDF_outohm(b, o) / PI);
1401 multisamp(pert, 3, rv);
1402 for (j = 0; j < 3; j++)
1403 v[j] += rad*(2.*pert[j] - 1.);
1404 if (xm != NULL)
1405 multv3(v, v, xm);
1406 return(normalize(v) != 0.0);
1407 }
1408
1409
1410 static int
1411 addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */
1412 char *xfarg[],
1413 FVECT xp,
1414 FVECT yp,
1415 FVECT zp
1416 )
1417 {
1418 static char bufs[3][16];
1419 int bn = 0;
1420 char **xfp = xfarg;
1421 double theta;
1422
1423 if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
1424 /* Special case for X' along Z-axis */
1425 theta = -atan2(yp[0], yp[1]);
1426 *xfp++ = "-ry";
1427 *xfp++ = xp[2] < 0.0 ? "90" : "-90";
1428 *xfp++ = "-rz";
1429 sprintf(bufs[bn], "%f", theta*(180./PI));
1430 *xfp++ = bufs[bn++];
1431 return(xfp - xfarg);
1432 }
1433 theta = atan2(yp[2], zp[2]);
1434 if (!FEQ(theta,0.0)) {
1435 *xfp++ = "-rx";
1436 sprintf(bufs[bn], "%f", theta*(180./PI));
1437 *xfp++ = bufs[bn++];
1438 }
1439 theta = asin(-xp[2]);
1440 if (!FEQ(theta,0.0)) {
1441 *xfp++ = "-ry";
1442 sprintf(bufs[bn], " %f", theta*(180./PI));
1443 *xfp++ = bufs[bn++];
1444 }
1445 theta = atan2(xp[1], xp[0]);
1446 if (!FEQ(theta,0.0)) {
1447 *xfp++ = "-rz";
1448 sprintf(bufs[bn], "%f", theta*(180./PI));
1449 *xfp++ = bufs[bn++];
1450 }
1451 *xfp = NULL;
1452 return(xfp - xfarg);
1453 }
1454
1455
1456 int
1457 getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */
1458 MAT4 xm,
1459 FVECT nrm,
1460 UpDir ud,
1461 char *xfbuf
1462 )
1463 {
1464 char *xfargs[7];
1465 XF myxf;
1466 FVECT updir, xdest, ydest;
1467 int i;
1468
1469 updir[0] = updir[1] = updir[2] = 0.;
1470 switch (ud) {
1471 case UDzneg:
1472 updir[2] = -1.;
1473 break;
1474 case UDyneg:
1475 updir[1] = -1.;
1476 break;
1477 case UDxneg:
1478 updir[0] = -1.;
1479 break;
1480 case UDxpos:
1481 updir[0] = 1.;
1482 break;
1483 case UDypos:
1484 updir[1] = 1.;
1485 break;
1486 case UDzpos:
1487 updir[2] = 1.;
1488 break;
1489 case UDunknown:
1490 return(0);
1491 }
1492 fcross(xdest, updir, nrm);
1493 if (normalize(xdest) == 0.0)
1494 return(0);
1495 fcross(ydest, nrm, xdest);
1496 xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs);
1497 copymat4(xm, myxf.xfm);
1498 if (xfbuf == NULL)
1499 return(1);
1500 /* return xf arguments as well */
1501 for (i = 0; xfargs[i] != NULL; i++) {
1502 *xfbuf++ = ' ';
1503 strcpy(xfbuf, xfargs[i]);
1504 while (*xfbuf) ++xfbuf;
1505 }
1506 return(1);
1507 }
1508
1509 /*######### END DEPRECATED ROUTINES #######*/
1510 /*################################################################*/