ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.15
Committed: Fri Feb 18 00:40:25 2011 UTC (13 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.14: +756 -19 lines
Log Message:
Major code reorg, moving mgflib to common and introducing BSDF material

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf.c,v 2.14 2011/02/11 17:31:25 greg Exp $";
3 #endif
4 /*
5 * bsdf.c
6 *
7 * Definitions for bidirectional scattering distribution functions.
8 *
9 * Created by Greg Ward on 1/10/11.
10 *
11 */
12
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <math.h>
16 #include "ezxml.h"
17 #include "hilbert.h"
18 #include "bsdf.h"
19 #include "bsdf_m.h"
20 #include "bsdf_t.h"
21
22 /* English ASCII strings corresponding to ennumerated errors */
23 const char *SDerrorEnglish[] = {
24 "No error",
25 "Memory error",
26 "File input/output error",
27 "File format error",
28 "Illegal argument",
29 "Invalid data",
30 "Unsupported feature",
31 "Internal program error",
32 "Unknown error"
33 };
34
35 /* Additional information on last error (ASCII English) */
36 char SDerrorDetail[256];
37
38 /* Cache of loaded BSDFs */
39 struct SDCache_s *SDcacheList = NULL;
40
41 /* Retain BSDFs in cache list */
42 int SDretainSet = SDretainNone;
43
44 /* Report any error to the indicated stream (in English) */
45 SDError
46 SDreportEnglish(SDError ec, FILE *fp)
47 {
48 if (fp == NULL)
49 return ec;
50 if (!ec)
51 return SDEnone;
52 fputs(SDerrorEnglish[ec], fp);
53 if (SDerrorDetail[0]) {
54 fputs(": ", fp);
55 fputs(SDerrorDetail, fp);
56 }
57 fputc('\n', fp);
58 if (fp != stderr)
59 fflush(fp);
60 return ec;
61 }
62
63 static double
64 to_meters( /* return factor to convert given unit to meters */
65 const char *unit
66 )
67 {
68 if (unit == NULL) return(1.); /* safe assumption? */
69 if (!strcasecmp(unit, "Meter")) return(1.);
70 if (!strcasecmp(unit, "Foot")) return(.3048);
71 if (!strcasecmp(unit, "Inch")) return(.0254);
72 if (!strcasecmp(unit, "Centimeter")) return(.01);
73 if (!strcasecmp(unit, "Millimeter")) return(.001);
74 sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
75 return(-1.);
76 }
77
78 /* Load geometric dimensions and description (if any) */
79 static SDError
80 SDloadGeometry(SDData *dp, ezxml_t wdb)
81 {
82 ezxml_t geom;
83 double cfact;
84 const char *fmt, *mgfstr;
85
86 sprintf(SDerrorDetail, "Negative size in \"%s\"", dp->name);
87 dp->dim[0] = dp->dim[1] = dp->dim[2] = .0;
88 if ((geom = ezxml_child(wdb, "Width")) != NULL)
89 dp->dim[0] = atof(ezxml_txt(geom)) *
90 to_meters(ezxml_attr(geom, "unit"));
91 if ((geom = ezxml_child(wdb, "Height")) != NULL)
92 dp->dim[1] = atof(ezxml_txt(geom)) *
93 to_meters(ezxml_attr(geom, "unit"));
94 if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
95 dp->dim[2] = atof(ezxml_txt(geom)) *
96 to_meters(ezxml_attr(geom, "unit"));
97 if ((dp->dim[0] < .0) | (dp->dim[1] < .0) | (dp->dim[2] < .0))
98 return SDEdata;
99 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
100 (mgfstr = ezxml_txt(geom)) == NULL)
101 return SDEnone;
102 if ((fmt = ezxml_attr(geom, "format")) != NULL &&
103 strcasecmp(fmt, "MGF")) {
104 sprintf(SDerrorDetail,
105 "Unrecognized geometry format '%s' in \"%s\"",
106 fmt, dp->name);
107 return SDEsupport;
108 }
109 cfact = to_meters(ezxml_attr(geom, "unit"));
110 dp->mgf = (char *)malloc(strlen(mgfstr)+32);
111 if (dp->mgf == NULL) {
112 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
113 return SDEmemory;
114 }
115 if (cfact < 0.99 || cfact > 1.01)
116 sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
117 else
118 strcpy(dp->mgf, mgfstr);
119 return SDEnone;
120 }
121
122
123 /* Load a BSDF struct from the given file (free first and keep name) */
124 SDError
125 SDloadFile(SDData *sd, const char *fname)
126 {
127 SDError lastErr;
128 ezxml_t fl;
129
130 if ((sd == NULL) | (fname == NULL || !*fname))
131 return SDEargument;
132 /* free old data, keeping name */
133 SDfreeBSDF(sd);
134 /* parse XML file */
135 fl = ezxml_parse_file(fname);
136 if (fl == NULL) {
137 sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
138 return SDEfile;
139 }
140 if (ezxml_error(fl)[0]) {
141 sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
142 ezxml_free(fl);
143 return SDEformat;
144 }
145 /* load geometry if present */
146 if ((lastErr = SDloadGeometry(sd, fl)))
147 return lastErr;
148 /* try loading variable resolution data */
149 lastErr = SDloadTre(sd, fl);
150 /* check our result */
151 switch (lastErr) {
152 case SDEformat:
153 case SDEdata:
154 case SDEsupport: /* possibly we just tried the wrong format */
155 lastErr = SDloadMtx(sd, fl);
156 break;
157 default: /* variable res. OK else serious error */
158 break;
159 }
160 /* done with XML file */
161 ezxml_free(fl);
162 /* return success or failure */
163 return lastErr;
164 }
165
166 /* Allocate new spectral distribution function */
167 SDSpectralDF *
168 SDnewSpectralDF(int nc)
169 {
170 SDSpectralDF *df;
171
172 if (nc <= 0) {
173 strcpy(SDerrorDetail, "Zero component spectral DF request");
174 return NULL;
175 }
176 df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
177 (nc-1)*sizeof(SDComponent));
178 if (df == NULL) {
179 sprintf(SDerrorDetail,
180 "Cannot allocate %d component spectral DF", nc);
181 return NULL;
182 }
183 df->minProjSA = .0;
184 df->maxHemi = .0;
185 df->ncomp = nc;
186 memset(df->comp, 0, nc*sizeof(SDComponent));
187 return df;
188 }
189
190 /* Free cached cumulative distributions for BSDF component */
191 void
192 SDfreeCumulativeCache(SDSpectralDF *df)
193 {
194 int n;
195 SDCDst *cdp;
196
197 if (df == NULL)
198 return;
199 for (n = df->ncomp; n-- > 0; )
200 while ((cdp = df->comp[n].cdList) != NULL) {
201 df->comp[n].cdList = cdp->next;
202 free(cdp);
203 }
204 }
205
206 /* Free a spectral distribution function */
207 void
208 SDfreeSpectralDF(SDSpectralDF *df)
209 {
210 int n;
211
212 if (df == NULL)
213 return;
214 SDfreeCumulativeCache(df);
215 for (n = df->ncomp; n-- > 0; )
216 (*df->comp[n].func->freeSC)(df->comp[n].dist);
217 free(df);
218 }
219
220 /* Shorten file path to useable BSDF name, removing suffix */
221 void
222 SDclipName(char res[SDnameLn], const char *fname)
223 {
224 const char *cp, *dot = NULL;
225
226 for (cp = fname; *cp; cp++)
227 if (*cp == '.')
228 dot = cp;
229 if ((dot == NULL) | (dot < fname+2))
230 dot = cp;
231 if (dot - fname >= SDnameLn)
232 fname = dot - SDnameLn + 1;
233 while (fname < dot)
234 *res++ = *fname++;
235 *res = '\0';
236 }
237
238 /* Initialize an unused BSDF struct (simply clears to zeroes) */
239 void
240 SDclearBSDF(SDData *sd)
241 {
242 if (sd != NULL)
243 memset(sd, 0, sizeof(SDData));
244 }
245
246 /* Free data associated with BSDF struct */
247 void
248 SDfreeBSDF(SDData *sd)
249 {
250 if (sd == NULL)
251 return;
252 if (sd->mgf != NULL) {
253 free(sd->mgf);
254 sd->mgf = NULL;
255 }
256 if (sd->rf != NULL) {
257 SDfreeSpectralDF(sd->rf);
258 sd->rf = NULL;
259 }
260 if (sd->rb != NULL) {
261 SDfreeSpectralDF(sd->rb);
262 sd->rb = NULL;
263 }
264 if (sd->tf != NULL) {
265 SDfreeSpectralDF(sd->tf);
266 sd->tf = NULL;
267 }
268 sd->rLambFront.cieY = .0;
269 sd->rLambFront.spec.clock = 0;
270 sd->rLambBack.cieY = .0;
271 sd->rLambBack.spec.clock = 0;
272 sd->tLamb.cieY = .0;
273 sd->tLamb.spec.clock = 0;
274 }
275
276 /* Find writeable BSDF by name, or allocate new cache entry if absent */
277 SDData *
278 SDgetCache(const char *bname)
279 {
280 struct SDCache_s *sdl;
281 char sdnam[SDnameLn];
282
283 if (bname == NULL)
284 return NULL;
285
286 SDclipName(sdnam, bname);
287 for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
288 if (!strcmp(sdl->bsdf.name, sdnam)) {
289 sdl->refcnt++;
290 return &sdl->bsdf;
291 }
292
293 sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
294 if (sdl == NULL)
295 return NULL;
296
297 strcpy(sdl->bsdf.name, sdnam);
298 sdl->next = SDcacheList;
299 SDcacheList = sdl;
300
301 sdl->refcnt++;
302 return &sdl->bsdf;
303 }
304
305 /* Get loaded BSDF from cache (or load and cache it on first call) */
306 /* Report any problem to stderr and return NULL on failure */
307 const SDData *
308 SDcacheFile(const char *fname)
309 {
310 SDData *sd;
311 SDError ec;
312
313 if (fname == NULL || !*fname)
314 return NULL;
315 SDerrorDetail[0] = '\0';
316 if ((sd = SDgetCache(fname)) == NULL) {
317 SDreportEnglish(SDEmemory, stderr);
318 return NULL;
319 }
320 if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
321 SDreportEnglish(ec, stderr);
322 SDfreeCache(sd);
323 return NULL;
324 }
325 return sd;
326 }
327
328 /* Free a BSDF from our cache (clear all if NULL) */
329 void
330 SDfreeCache(const SDData *sd)
331 {
332 struct SDCache_s *sdl, *sdLast = NULL;
333
334 if (sd == NULL) { /* free entire list */
335 while ((sdl = SDcacheList) != NULL) {
336 SDcacheList = sdl->next;
337 SDfreeBSDF(&sdl->bsdf);
338 free(sdl);
339 }
340 return;
341 }
342 for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
343 if (&sdl->bsdf == sd)
344 break;
345 if (sdl == NULL || --sdl->refcnt)
346 return; /* missing or still in use */
347 /* keep unreferenced data? */
348 if (SDisLoaded(sd) && SDretainSet) {
349 if (SDretainSet == SDretainAll)
350 return; /* keep everything */
351 /* else free cumulative data */
352 SDfreeCumulativeCache(sd->rf);
353 SDfreeCumulativeCache(sd->rb);
354 SDfreeCumulativeCache(sd->tf);
355 return;
356 }
357 /* remove from list and free */
358 if (sdLast == NULL)
359 SDcacheList = sdl->next;
360 else
361 sdLast->next = sdl->next;
362 SDfreeBSDF(&sdl->bsdf);
363 free(sdl);
364 }
365
366 /* Sample an individual BSDF component */
367 SDError
368 SDsampComponent(SDValue *sv, FVECT outVec, const FVECT inVec,
369 double randX, SDComponent *sdc)
370 {
371 float coef[SDmaxCh];
372 SDError ec;
373 const SDCDst *cd;
374 double d;
375 int n;
376 /* check arguments */
377 if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL))
378 return SDEargument;
379 /* get cumulative distribution */
380 cd = (*sdc->func->getCDist)(inVec, sdc);
381 if (cd == NULL)
382 return SDEmemory;
383 if (cd->cTotal <= 1e-7) { /* anything to sample? */
384 sv->spec = c_dfcolor;
385 sv->cieY = .0;
386 memset(outVec, 0, 3*sizeof(double));
387 return SDEnone;
388 }
389 sv->cieY = cd->cTotal;
390 /* compute sample direction */
391 ec = (*sdc->func->sampCDist)(outVec, randX, cd);
392 if (ec)
393 return ec;
394 /* get BSDF color */
395 n = (*sdc->func->getBSDFs)(coef, outVec, inVec, sdc->dist);
396 if (n <= 0) {
397 strcpy(SDerrorDetail, "BSDF sample value error");
398 return SDEinternal;
399 }
400 sv->spec = sdc->cspec[0];
401 d = coef[0];
402 while (--n) {
403 c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
404 d += coef[n];
405 }
406 /* make sure everything is set */
407 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
408 return SDEnone;
409 }
410
411 #define MS_MAXDIM 15
412
413 /* Convert 1-dimensional random variable to N-dimensional */
414 void
415 SDmultiSamp(double t[], int n, double randX)
416 {
417 unsigned nBits;
418 double scale;
419 bitmask_t ndx, coord[MS_MAXDIM];
420
421 while (n > MS_MAXDIM) /* punt for higher dimensions */
422 t[--n] = drand48();
423 nBits = (8*sizeof(bitmask_t) - 1) / n;
424 ndx = randX * (double)((bitmask_t)1 << (nBits*n));
425 /* get coordinate on Hilbert curve */
426 hilbert_i2c(n, nBits, ndx, coord);
427 /* convert back to [0,1) range */
428 scale = 1. / (double)((bitmask_t)1 << nBits);
429 while (n--)
430 t[n] = scale * ((double)coord[n] + drand48());
431 }
432
433 #undef MS_MAXDIM
434
435 /* Generate diffuse hemispherical sample */
436 static void
437 SDdiffuseSamp(FVECT outVec, int outFront, double randX)
438 {
439 /* convert to position on hemisphere */
440 SDmultiSamp(outVec, 2, randX);
441 SDsquare2disk(outVec, outVec[0], outVec[1]);
442 outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
443 if (outVec[2] > .0) /* a bit of paranoia */
444 outVec[2] = sqrt(outVec[2]);
445 if (!outFront) /* going out back? */
446 outVec[2] = -outVec[2];
447 }
448
449 /* Query projected solid angle coverage for non-diffuse BSDF direction */
450 SDError
451 SDsizeBSDF(double *projSA, const FVECT vec, int qflags, const SDData *sd)
452 {
453 SDSpectralDF *rdf;
454 SDError ec;
455 int i;
456 /* check arguments */
457 if ((projSA == NULL) | (vec == NULL) | (sd == NULL))
458 return SDEargument;
459 /* initialize extrema */
460 switch (qflags & SDqueryMin+SDqueryMax) {
461 case SDqueryMax:
462 projSA[0] = .0;
463 break;
464 case SDqueryMin+SDqueryMax:
465 projSA[1] = .0;
466 /* fall through */
467 case SDqueryMin:
468 projSA[0] = 10.;
469 break;
470 case 0:
471 return SDEargument;
472 }
473 if (vec[2] > .0) /* front surface query? */
474 rdf = sd->rf;
475 else
476 rdf = sd->rb;
477 ec = SDEdata; /* run through components */
478 for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
479 ec = (*rdf->comp[i].func->queryProjSA)(projSA, vec, qflags,
480 rdf->comp[i].dist);
481 if (ec)
482 return ec;
483 }
484 for (i = (sd->tf==NULL) ? 0 : sd->tf->ncomp; i--; ) {
485 ec = (*sd->tf->comp[i].func->queryProjSA)(projSA, vec, qflags,
486 sd->tf->comp[i].dist);
487 if (ec)
488 return ec;
489 }
490 return ec;
491 }
492
493 /* Return BSDF for the given incident and scattered ray vectors */
494 SDError
495 SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
496 {
497 int inFront, outFront;
498 SDSpectralDF *sdf;
499 float coef[SDmaxCh];
500 int nch, i;
501 /* check arguments */
502 if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
503 return SDEargument;
504 /* whose side are we on? */
505 inFront = (inVec[2] > .0);
506 outFront = (outVec[2] > .0);
507 /* start with diffuse portion */
508 if (inFront & outFront) {
509 *sv = sd->rLambFront;
510 sdf = sd->rf;
511 } else if (!(inFront | outFront)) {
512 *sv = sd->rLambBack;
513 sdf = sd->rb;
514 } else /* inFront ^ outFront */ {
515 *sv = sd->tLamb;
516 sdf = sd->tf;
517 }
518 sv->cieY *= 1./M_PI;
519 /* add non-diffuse components */
520 i = (sdf != NULL) ? sdf->ncomp : 0;
521 while (i-- > 0) {
522 nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
523 sdf->comp[i].dist);
524 while (nch-- > 0) {
525 c_cmix(&sv->spec, sv->cieY, &sv->spec,
526 coef[nch], &sdf->comp[i].cspec[nch]);
527 sv->cieY += coef[nch];
528 }
529 }
530 /* make sure everything is set */
531 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
532 return SDEnone;
533 }
534
535 /* Compute directional hemispherical scattering at this incident angle */
536 double
537 SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
538 {
539 double hsum;
540 SDSpectralDF *rdf;
541 const SDCDst *cd;
542 int i;
543 /* check arguments */
544 if ((inVec == NULL) | (sd == NULL))
545 return .0;
546 /* gather diffuse components */
547 if (inVec[2] > .0) {
548 hsum = sd->rLambFront.cieY;
549 rdf = sd->rf;
550 } else /* !inFront */ {
551 hsum = sd->rLambBack.cieY;
552 rdf = sd->rb;
553 }
554 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
555 hsum = .0;
556 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
557 hsum += sd->tLamb.cieY;
558 /* gather non-diffuse components */
559 i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
560 rdf != NULL) ? rdf->ncomp : 0;
561 while (i-- > 0) { /* non-diffuse reflection */
562 cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
563 if (cd != NULL)
564 hsum += cd->cTotal;
565 }
566 i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
567 sd->tf != NULL) ? sd->tf->ncomp : 0;
568 while (i-- > 0) { /* non-diffuse transmission */
569 cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]);
570 if (cd != NULL)
571 hsum += cd->cTotal;
572 }
573 return hsum;
574 }
575
576 /* Sample BSDF direction based on the given random variable */
577 SDError
578 SDsampBSDF(SDValue *sv, FVECT outVec, const FVECT inVec,
579 double randX, int sflags, const SDData *sd)
580 {
581 SDError ec;
582 int inFront;
583 SDSpectralDF *rdf;
584 double rdiff;
585 float coef[SDmaxCh];
586 int i, j, n, nr;
587 SDComponent *sdc;
588 const SDCDst **cdarr = NULL;
589 /* check arguments */
590 if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL) |
591 (randX < .0) | (randX >= 1.))
592 return SDEargument;
593 /* whose side are we on? */
594 inFront = (inVec[2] > .0);
595 /* remember diffuse portions */
596 if (inFront) {
597 *sv = sd->rLambFront;
598 rdf = sd->rf;
599 } else /* !inFront */ {
600 *sv = sd->rLambBack;
601 rdf = sd->rb;
602 }
603 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
604 sv->cieY = .0;
605 rdiff = sv->cieY;
606 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
607 sv->cieY += sd->tLamb.cieY;
608 /* gather non-diffuse components */
609 i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
610 rdf != NULL) ? rdf->ncomp : 0;
611 j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
612 sd->tf != NULL) ? sd->tf->ncomp : 0;
613 n = i + j;
614 if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
615 return SDEmemory;
616 while (j-- > 0) { /* non-diffuse transmission */
617 cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]);
618 if (cdarr[i+j] == NULL) {
619 free(cdarr);
620 return SDEmemory;
621 }
622 sv->cieY += cdarr[i+j]->cTotal;
623 }
624 while (i-- > 0) { /* non-diffuse reflection */
625 cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
626 if (cdarr[i] == NULL) {
627 free(cdarr);
628 return SDEmemory;
629 }
630 sv->cieY += cdarr[i]->cTotal;
631 }
632 if (sv->cieY <= 1e-7) { /* anything to sample? */
633 sv->cieY = .0;
634 memset(outVec, 0, 3*sizeof(double));
635 return SDEnone;
636 }
637 /* scale random variable */
638 randX *= sv->cieY;
639 /* diffuse reflection? */
640 if (randX < rdiff) {
641 SDdiffuseSamp(outVec, inFront, randX/rdiff);
642 goto done;
643 }
644 randX -= rdiff;
645 /* diffuse transmission? */
646 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
647 if (randX < sd->tLamb.cieY) {
648 sv->spec = sd->tLamb.spec;
649 SDdiffuseSamp(outVec, !inFront, randX/sd->tLamb.cieY);
650 goto done;
651 }
652 randX -= sd->tLamb.cieY;
653 }
654 /* else one of cumulative dist. */
655 for (i = 0; i < n && randX < cdarr[i]->cTotal; i++)
656 randX -= cdarr[i]->cTotal;
657 if (i >= n)
658 return SDEinternal;
659 /* compute sample direction */
660 sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr];
661 ec = (*sdc->func->sampCDist)(outVec, randX/cdarr[i]->cTotal, cdarr[i]);
662 if (ec)
663 return ec;
664 /* compute color */
665 j = (*sdc->func->getBSDFs)(coef, outVec, inVec, sdc->dist);
666 if (j <= 0) {
667 sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
668 sd->name);
669 return SDEinternal;
670 }
671 sv->spec = sdc->cspec[0];
672 rdiff = coef[0];
673 while (--j) {
674 c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
675 rdiff += coef[j];
676 }
677 done:
678 if (cdarr != NULL)
679 free(cdarr);
680 /* make sure everything is set */
681 c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
682 return SDEnone;
683 }
684
685 /* Compute World->BSDF transform from surface normal and up (Y) vector */
686 SDError
687 SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
688 {
689 if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
690 return SDEargument;
691 VCOPY(vMtx[2], sNrm);
692 if (normalize(vMtx[2]) == .0)
693 return SDEargument;
694 fcross(vMtx[0], uVec, vMtx[2]);
695 if (normalize(vMtx[0]) == .0)
696 return SDEargument;
697 fcross(vMtx[1], vMtx[2], vMtx[0]);
698 return SDEnone;
699 }
700
701 /* Compute inverse transform */
702 SDError
703 SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
704 {
705 RREAL mTmp[3][3];
706 double d;
707
708 if ((iMtx == NULL) | (vMtx == NULL))
709 return SDEargument;
710 /* compute determinant */
711 mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
712 mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
713 mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
714 d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
715 if (d == .0) {
716 strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
717 return SDEargument;
718 }
719 d = 1./d; /* invert matrix */
720 mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
721 mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
722 mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
723 mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
724 mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
725 mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
726 mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
727 memcpy(iMtx, mTmp, sizeof(mTmp));
728 return SDEnone;
729 }
730
731 /* Transform and normalize direction (column) vector */
732 SDError
733 SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
734 {
735 FVECT vTmp;
736
737 if ((resVec == NULL) | (inpVec == NULL))
738 return SDEargument;
739 if (vMtx == NULL) { /* assume they just want to normalize */
740 if (resVec != inpVec)
741 VCOPY(resVec, inpVec);
742 return (normalize(resVec) > .0) ? SDEnone : SDEargument;
743 }
744 vTmp[0] = DOT(vMtx[0], inpVec);
745 vTmp[1] = DOT(vMtx[1], inpVec);
746 vTmp[2] = DOT(vMtx[2], inpVec);
747 if (normalize(vTmp) == .0)
748 return SDEargument;
749 VCOPY(resVec, vTmp);
750 return SDEnone;
751 }
752
753 /*################################################################*/
754 /*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/
755
756 /*
757 * Routines for handling BSDF data
758 */
759
760 #include "standard.h"
761 #include "paths.h"
762 #include <ctype.h>
763
764 #define MAXLATS 46 /* maximum number of latitudes */
765
766 /* BSDF angle specification */
767 typedef struct {
768 char name[64]; /* basis name */
769 int nangles; /* total number of directions */
770 struct {
771 float tmin; /* starting theta */
772 short nphis; /* number of phis (0 term) */
773 } lat[MAXLATS+1]; /* latitudes */
774 } ANGLE_BASIS;
775
776 #define MAXABASES 7 /* limit on defined bases */
777
778 static ANGLE_BASIS abase_list[MAXABASES] = {
779 {
780 "LBNL/Klems Full", 145,
781 { {-5., 1},
782 {5., 8},
783 {15., 16},
784 {25., 20},
785 {35., 24},
786 {45., 24},
787 {55., 24},
788 {65., 16},
789 {75., 12},
790 {90., 0} }
791 }, {
792 "LBNL/Klems Half", 73,
793 { {-6.5, 1},
794 {6.5, 8},
795 {19.5, 12},
796 {32.5, 16},
797 {46.5, 20},
798 {61.5, 12},
799 {76.5, 4},
800 {90., 0} }
801 }, {
802 "LBNL/Klems Quarter", 41,
803 { {-9., 1},
804 {9., 8},
805 {27., 12},
806 {46., 12},
807 {66., 8},
808 {90., 0} }
809 }
810 };
811
812 static int nabases = 3; /* current number of defined bases */
813
814 #define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6)
815
816 static int
817 fequal(double a, double b)
818 {
819 if (b != .0)
820 a = a/b - 1.;
821 return((a <= 1e-6) & (a >= -1e-6));
822 }
823
824 /* Returns the name of the given tag */
825 #ifdef ezxml_name
826 #undef ezxml_name
827 static char *
828 ezxml_name(ezxml_t xml)
829 {
830 if (xml == NULL)
831 return(NULL);
832 return(xml->name);
833 }
834 #endif
835
836 /* Returns the given tag's character content or empty string if none */
837 #ifdef ezxml_txt
838 #undef ezxml_txt
839 static char *
840 ezxml_txt(ezxml_t xml)
841 {
842 if (xml == NULL)
843 return("");
844 return(xml->txt);
845 }
846 #endif
847
848
849 static int
850 ab_getvec( /* get vector for this angle basis index */
851 FVECT v,
852 int ndx,
853 void *p
854 )
855 {
856 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
857 int li;
858 double pol, azi, d;
859
860 if ((ndx < 0) | (ndx >= ab->nangles))
861 return(0);
862 for (li = 0; ndx >= ab->lat[li].nphis; li++)
863 ndx -= ab->lat[li].nphis;
864 pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin);
865 azi = 2.*PI*ndx/ab->lat[li].nphis;
866 v[2] = d = cos(pol);
867 d = sqrt(1. - d*d); /* sin(pol) */
868 v[0] = cos(azi)*d;
869 v[1] = sin(azi)*d;
870 return(1);
871 }
872
873
874 static int
875 ab_getndx( /* get index corresponding to the given vector */
876 FVECT v,
877 void *p
878 )
879 {
880 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
881 int li, ndx;
882 double pol, azi, d;
883
884 if ((v[2] < -1.0) | (v[2] > 1.0))
885 return(-1);
886 pol = 180.0/PI*acos(v[2]);
887 azi = 180.0/PI*atan2(v[1], v[0]);
888 if (azi < 0.0) azi += 360.0;
889 for (li = 1; ab->lat[li].tmin <= pol; li++)
890 if (!ab->lat[li].nphis)
891 return(-1);
892 --li;
893 ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
894 if (ndx >= ab->lat[li].nphis) ndx = 0;
895 while (li--)
896 ndx += ab->lat[li].nphis;
897 return(ndx);
898 }
899
900
901 static double
902 ab_getohm( /* get solid angle for this angle basis index */
903 int ndx,
904 void *p
905 )
906 {
907 ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
908 int li;
909 double theta, theta1;
910
911 if ((ndx < 0) | (ndx >= ab->nangles))
912 return(0);
913 for (li = 0; ndx >= ab->lat[li].nphis; li++)
914 ndx -= ab->lat[li].nphis;
915 theta1 = PI/180. * ab->lat[li+1].tmin;
916 if (ab->lat[li].nphis == 1) { /* special case */
917 if (ab->lat[li].tmin > FTINY)
918 error(USER, "unsupported BSDF coordinate system");
919 return(2.*PI*(1. - cos(theta1)));
920 }
921 theta = PI/180. * ab->lat[li].tmin;
922 return(2.*PI*(cos(theta) - cos(theta1))/(double)ab->lat[li].nphis);
923 }
924
925
926 static int
927 ab_getvecR( /* get reverse vector for this angle basis index */
928 FVECT v,
929 int ndx,
930 void *p
931 )
932 {
933 if (!ab_getvec(v, ndx, p))
934 return(0);
935
936 v[0] = -v[0];
937 v[1] = -v[1];
938 v[2] = -v[2];
939
940 return(1);
941 }
942
943
944 static int
945 ab_getndxR( /* get index corresponding to the reverse vector */
946 FVECT v,
947 void *p
948 )
949 {
950 FVECT v2;
951
952 v2[0] = -v[0];
953 v2[1] = -v[1];
954 v2[2] = -v[2];
955
956 return ab_getndx(v2, p);
957 }
958
959
960 static void
961 load_angle_basis( /* load custom BSDF angle basis */
962 ezxml_t wab
963 )
964 {
965 char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
966 ezxml_t wbb;
967 int i;
968
969 if (!abname || !*abname)
970 return;
971 for (i = nabases; i--; )
972 if (!strcasecmp(abname, abase_list[i].name))
973 return; /* assume it's the same */
974 if (nabases >= MAXABASES)
975 error(INTERNAL, "too many angle bases");
976 strcpy(abase_list[nabases].name, abname);
977 abase_list[nabases].nangles = 0;
978 for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
979 wbb != NULL; i++, wbb = wbb->next) {
980 if (i >= MAXLATS)
981 error(INTERNAL, "too many latitudes in custom basis");
982 abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
983 ezxml_child(ezxml_child(wbb,
984 "ThetaBounds"), "UpperTheta")));
985 if (!i)
986 abase_list[nabases].lat[i].tmin =
987 -abase_list[nabases].lat[i+1].tmin;
988 else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
989 "ThetaBounds"), "LowerTheta"))),
990 abase_list[nabases].lat[i].tmin))
991 error(WARNING, "theta values disagree in custom basis");
992 abase_list[nabases].nangles +=
993 abase_list[nabases].lat[i].nphis =
994 atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
995 }
996 abase_list[nabases++].lat[i].nphis = 0;
997 }
998
999
1000 static void
1001 load_geometry( /* load geometric dimensions and description (if any) */
1002 struct BSDF_data *dp,
1003 ezxml_t wdb
1004 )
1005 {
1006 ezxml_t geom;
1007 double cfact;
1008 const char *fmt, *mgfstr;
1009
1010 dp->dim[0] = dp->dim[1] = dp->dim[2] = 0;
1011 dp->mgf = NULL;
1012 if ((geom = ezxml_child(wdb, "Width")) != NULL)
1013 dp->dim[0] = atof(ezxml_txt(geom)) *
1014 to_meters(ezxml_attr(geom, "unit"));
1015 if ((geom = ezxml_child(wdb, "Height")) != NULL)
1016 dp->dim[1] = atof(ezxml_txt(geom)) *
1017 to_meters(ezxml_attr(geom, "unit"));
1018 if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
1019 dp->dim[2] = atof(ezxml_txt(geom)) *
1020 to_meters(ezxml_attr(geom, "unit"));
1021 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
1022 (mgfstr = ezxml_txt(geom)) == NULL)
1023 return;
1024 if ((fmt = ezxml_attr(geom, "format")) != NULL &&
1025 strcasecmp(fmt, "MGF")) {
1026 sprintf(errmsg, "unrecognized geometry format '%s'", fmt);
1027 error(WARNING, errmsg);
1028 return;
1029 }
1030 cfact = to_meters(ezxml_attr(geom, "unit"));
1031 dp->mgf = (char *)malloc(strlen(mgfstr)+32);
1032 if (dp->mgf == NULL)
1033 error(SYSTEM, "out of memory in load_geometry");
1034 if (cfact < 0.99 || cfact > 1.01)
1035 sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
1036 else
1037 strcpy(dp->mgf, mgfstr);
1038 }
1039
1040
1041 static void
1042 load_bsdf_data( /* load BSDF distribution for this wavelength */
1043 struct BSDF_data *dp,
1044 ezxml_t wdb
1045 )
1046 {
1047 char *cbasis = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
1048 char *rbasis = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
1049 char *sdata;
1050 int i;
1051
1052 if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) {
1053 error(WARNING, "missing column/row basis for BSDF");
1054 return;
1055 }
1056 for (i = nabases; i--; )
1057 if (!strcasecmp(cbasis, abase_list[i].name)) {
1058 dp->ninc = abase_list[i].nangles;
1059 dp->ib_priv = (void *)&abase_list[i];
1060 dp->ib_vec = ab_getvecR;
1061 dp->ib_ndx = ab_getndxR;
1062 dp->ib_ohm = ab_getohm;
1063 break;
1064 }
1065 if (i < 0) {
1066 sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis);
1067 error(WARNING, errmsg);
1068 return;
1069 }
1070 for (i = nabases; i--; )
1071 if (!strcasecmp(rbasis, abase_list[i].name)) {
1072 dp->nout = abase_list[i].nangles;
1073 dp->ob_priv = (void *)&abase_list[i];
1074 dp->ob_vec = ab_getvec;
1075 dp->ob_ndx = ab_getndx;
1076 dp->ob_ohm = ab_getohm;
1077 break;
1078 }
1079 if (i < 0) {
1080 sprintf(errmsg, "undefined RowAngleBasis '%s'", cbasis);
1081 error(WARNING, errmsg);
1082 return;
1083 }
1084 /* read BSDF data */
1085 sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
1086 if (!sdata || !*sdata) {
1087 error(WARNING, "missing BSDF ScatteringData");
1088 return;
1089 }
1090 dp->bsdf = (float *)malloc(sizeof(float)*dp->ninc*dp->nout);
1091 if (dp->bsdf == NULL)
1092 error(SYSTEM, "out of memory in load_bsdf_data");
1093 for (i = 0; i < dp->ninc*dp->nout; i++) {
1094 char *sdnext = fskip(sdata);
1095 if (sdnext == NULL) {
1096 error(WARNING, "bad/missing BSDF ScatteringData");
1097 free(dp->bsdf); dp->bsdf = NULL;
1098 return;
1099 }
1100 while (*sdnext && isspace(*sdnext))
1101 sdnext++;
1102 if (*sdnext == ',') sdnext++;
1103 dp->bsdf[i] = atof(sdata);
1104 sdata = sdnext;
1105 }
1106 while (isspace(*sdata))
1107 sdata++;
1108 if (*sdata) {
1109 sprintf(errmsg, "%d extra characters after BSDF ScatteringData",
1110 (int)strlen(sdata));
1111 error(WARNING, errmsg);
1112 }
1113 }
1114
1115
1116 static int
1117 check_bsdf_data( /* check that BSDF data is sane */
1118 struct BSDF_data *dp
1119 )
1120 {
1121 double *omega_iarr, *omega_oarr;
1122 double dom, contrib, hemi_total, full_total;
1123 int nneg;
1124 FVECT v;
1125 int i, o;
1126
1127 if (dp == NULL || dp->bsdf == NULL)
1128 return(0);
1129 omega_iarr = (double *)calloc(dp->ninc, sizeof(double));
1130 omega_oarr = (double *)calloc(dp->nout, sizeof(double));
1131 if ((omega_iarr == NULL) | (omega_oarr == NULL))
1132 error(SYSTEM, "out of memory in check_bsdf_data");
1133 /* incoming projected solid angles */
1134 hemi_total = .0;
1135 for (i = dp->ninc; i--; ) {
1136 dom = getBSDF_incohm(dp,i);
1137 if (dom <= .0) {
1138 error(WARNING, "zero/negative incoming solid angle");
1139 continue;
1140 }
1141 if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) {
1142 error(WARNING, "illegal incoming BSDF direction");
1143 free(omega_iarr); free(omega_oarr);
1144 return(0);
1145 }
1146 hemi_total += omega_iarr[i] = dom * -v[2];
1147 }
1148 if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1149 sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%",
1150 100.*(hemi_total/PI - 1.));
1151 error(WARNING, errmsg);
1152 }
1153 dom = PI / hemi_total; /* fix normalization */
1154 for (i = dp->ninc; i--; )
1155 omega_iarr[i] *= dom;
1156 /* outgoing projected solid angles */
1157 hemi_total = .0;
1158 for (o = dp->nout; o--; ) {
1159 dom = getBSDF_outohm(dp,o);
1160 if (dom <= .0) {
1161 error(WARNING, "zero/negative outgoing solid angle");
1162 continue;
1163 }
1164 if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) {
1165 error(WARNING, "illegal outgoing BSDF direction");
1166 free(omega_iarr); free(omega_oarr);
1167 return(0);
1168 }
1169 hemi_total += omega_oarr[o] = dom * v[2];
1170 }
1171 if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1172 sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%",
1173 100.*(hemi_total/PI - 1.));
1174 error(WARNING, errmsg);
1175 }
1176 dom = PI / hemi_total; /* fix normalization */
1177 for (o = dp->nout; o--; )
1178 omega_oarr[o] *= dom;
1179 nneg = 0; /* check outgoing totals */
1180 for (i = 0; i < dp->ninc; i++) {
1181 hemi_total = .0;
1182 for (o = dp->nout; o--; ) {
1183 double f = BSDF_value(dp,i,o);
1184 if (f >= .0)
1185 hemi_total += f*omega_oarr[o];
1186 else {
1187 nneg += (f < -FTINY);
1188 BSDF_value(dp,i,o) = .0f;
1189 }
1190 }
1191 if (hemi_total > 1.01) {
1192 sprintf(errmsg,
1193 "incoming BSDF direction %d passes %.1f%% of light",
1194 i, 100.*hemi_total);
1195 error(WARNING, errmsg);
1196 }
1197 }
1198 if (nneg) {
1199 sprintf(errmsg, "%d negative BSDF values (ignored)", nneg);
1200 error(WARNING, errmsg);
1201 }
1202 full_total = .0; /* reverse roles and check again */
1203 for (o = 0; o < dp->nout; o++) {
1204 hemi_total = .0;
1205 for (i = dp->ninc; i--; )
1206 hemi_total += BSDF_value(dp,i,o) * omega_iarr[i];
1207
1208 if (hemi_total > 1.01) {
1209 sprintf(errmsg,
1210 "outgoing BSDF direction %d collects %.1f%% of light",
1211 o, 100.*hemi_total);
1212 error(WARNING, errmsg);
1213 }
1214 full_total += hemi_total*omega_oarr[o];
1215 }
1216 full_total /= PI;
1217 if (full_total > 1.00001) {
1218 sprintf(errmsg, "BSDF transfers %.4f%% of light",
1219 100.*full_total);
1220 error(WARNING, errmsg);
1221 }
1222 free(omega_iarr); free(omega_oarr);
1223 return(1);
1224 }
1225
1226
1227 struct BSDF_data *
1228 load_BSDF( /* load BSDF data from file */
1229 char *fname
1230 )
1231 {
1232 char *path;
1233 ezxml_t fl, wtl, wld, wdb;
1234 struct BSDF_data *dp;
1235
1236 path = getpath(fname, getrlibpath(), R_OK);
1237 if (path == NULL) {
1238 sprintf(errmsg, "cannot find BSDF file \"%s\"", fname);
1239 error(WARNING, errmsg);
1240 return(NULL);
1241 }
1242 fl = ezxml_parse_file(path);
1243 if (fl == NULL) {
1244 sprintf(errmsg, "cannot open BSDF \"%s\"", path);
1245 error(WARNING, errmsg);
1246 return(NULL);
1247 }
1248 if (ezxml_error(fl)[0]) {
1249 sprintf(errmsg, "BSDF \"%s\" %s", path, ezxml_error(fl));
1250 error(WARNING, errmsg);
1251 ezxml_free(fl);
1252 return(NULL);
1253 }
1254 if (strcmp(ezxml_name(fl), "WindowElement")) {
1255 sprintf(errmsg,
1256 "BSDF \"%s\": top level node not 'WindowElement'",
1257 path);
1258 error(WARNING, errmsg);
1259 ezxml_free(fl);
1260 return(NULL);
1261 }
1262 wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
1263 if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl,
1264 "DataDefinition"), "IncidentDataStructure")),
1265 "Columns")) {
1266 sprintf(errmsg,
1267 "BSDF \"%s\": unsupported IncidentDataStructure",
1268 path);
1269 error(WARNING, errmsg);
1270 ezxml_free(fl);
1271 return(NULL);
1272 }
1273 load_angle_basis(ezxml_child(ezxml_child(wtl,
1274 "DataDefinition"), "AngleBasis"));
1275 dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data));
1276 load_geometry(dp, ezxml_child(wtl, "Material"));
1277 for (wld = ezxml_child(wtl, "WavelengthData");
1278 wld != NULL; wld = wld->next) {
1279 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1280 "Visible"))
1281 continue;
1282 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1283 wdb != NULL; wdb = wdb->next)
1284 if (!strcasecmp(ezxml_txt(ezxml_child(wdb,
1285 "WavelengthDataDirection")),
1286 "Transmission Front"))
1287 break;
1288 if (wdb != NULL) { /* load front BTDF */
1289 load_bsdf_data(dp, wdb);
1290 break; /* ignore the rest */
1291 }
1292 }
1293 ezxml_free(fl); /* done with XML file */
1294 if (!check_bsdf_data(dp)) {
1295 sprintf(errmsg, "bad/missing BTDF data in \"%s\"", path);
1296 error(WARNING, errmsg);
1297 free_BSDF(dp);
1298 dp = NULL;
1299 }
1300 return(dp);
1301 }
1302
1303
1304 void
1305 free_BSDF( /* free BSDF data structure */
1306 struct BSDF_data *b
1307 )
1308 {
1309 if (b == NULL)
1310 return;
1311 if (b->mgf != NULL)
1312 free(b->mgf);
1313 if (b->bsdf != NULL)
1314 free(b->bsdf);
1315 free(b);
1316 }
1317
1318
1319 int
1320 r_BSDF_incvec( /* compute random input vector at given location */
1321 FVECT v,
1322 struct BSDF_data *b,
1323 int i,
1324 double rv,
1325 MAT4 xm
1326 )
1327 {
1328 FVECT pert;
1329 double rad;
1330 int j;
1331
1332 if (!getBSDF_incvec(v, b, i))
1333 return(0);
1334 rad = sqrt(getBSDF_incohm(b, i) / PI);
1335 multisamp(pert, 3, rv);
1336 for (j = 0; j < 3; j++)
1337 v[j] += rad*(2.*pert[j] - 1.);
1338 if (xm != NULL)
1339 multv3(v, v, xm);
1340 return(normalize(v) != 0.0);
1341 }
1342
1343
1344 int
1345 r_BSDF_outvec( /* compute random output vector at given location */
1346 FVECT v,
1347 struct BSDF_data *b,
1348 int o,
1349 double rv,
1350 MAT4 xm
1351 )
1352 {
1353 FVECT pert;
1354 double rad;
1355 int j;
1356
1357 if (!getBSDF_outvec(v, b, o))
1358 return(0);
1359 rad = sqrt(getBSDF_outohm(b, o) / PI);
1360 multisamp(pert, 3, rv);
1361 for (j = 0; j < 3; j++)
1362 v[j] += rad*(2.*pert[j] - 1.);
1363 if (xm != NULL)
1364 multv3(v, v, xm);
1365 return(normalize(v) != 0.0);
1366 }
1367
1368
1369 static int
1370 addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */
1371 char *xfarg[],
1372 FVECT xp,
1373 FVECT yp,
1374 FVECT zp
1375 )
1376 {
1377 static char bufs[3][16];
1378 int bn = 0;
1379 char **xfp = xfarg;
1380 double theta;
1381
1382 if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
1383 /* Special case for X' along Z-axis */
1384 theta = -atan2(yp[0], yp[1]);
1385 *xfp++ = "-ry";
1386 *xfp++ = xp[2] < 0.0 ? "90" : "-90";
1387 *xfp++ = "-rz";
1388 sprintf(bufs[bn], "%f", theta*(180./PI));
1389 *xfp++ = bufs[bn++];
1390 return(xfp - xfarg);
1391 }
1392 theta = atan2(yp[2], zp[2]);
1393 if (!FEQ(theta,0.0)) {
1394 *xfp++ = "-rx";
1395 sprintf(bufs[bn], "%f", theta*(180./PI));
1396 *xfp++ = bufs[bn++];
1397 }
1398 theta = asin(-xp[2]);
1399 if (!FEQ(theta,0.0)) {
1400 *xfp++ = "-ry";
1401 sprintf(bufs[bn], " %f", theta*(180./PI));
1402 *xfp++ = bufs[bn++];
1403 }
1404 theta = atan2(xp[1], xp[0]);
1405 if (!FEQ(theta,0.0)) {
1406 *xfp++ = "-rz";
1407 sprintf(bufs[bn], "%f", theta*(180./PI));
1408 *xfp++ = bufs[bn++];
1409 }
1410 *xfp = NULL;
1411 return(xfp - xfarg);
1412 }
1413
1414
1415 int
1416 getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */
1417 MAT4 xm,
1418 FVECT nrm,
1419 UpDir ud,
1420 char *xfbuf
1421 )
1422 {
1423 char *xfargs[7];
1424 XF myxf;
1425 FVECT updir, xdest, ydest;
1426 int i;
1427
1428 updir[0] = updir[1] = updir[2] = 0.;
1429 switch (ud) {
1430 case UDzneg:
1431 updir[2] = -1.;
1432 break;
1433 case UDyneg:
1434 updir[1] = -1.;
1435 break;
1436 case UDxneg:
1437 updir[0] = -1.;
1438 break;
1439 case UDxpos:
1440 updir[0] = 1.;
1441 break;
1442 case UDypos:
1443 updir[1] = 1.;
1444 break;
1445 case UDzpos:
1446 updir[2] = 1.;
1447 break;
1448 case UDunknown:
1449 return(0);
1450 }
1451 fcross(xdest, updir, nrm);
1452 if (normalize(xdest) == 0.0)
1453 return(0);
1454 fcross(ydest, nrm, xdest);
1455 xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs);
1456 copymat4(xm, myxf.xfm);
1457 if (xfbuf == NULL)
1458 return(1);
1459 /* return xf arguments as well */
1460 for (i = 0; xfargs[i] != NULL; i++) {
1461 *xfbuf++ = ' ';
1462 strcpy(xfbuf, xfargs[i]);
1463 while (*xfbuf) ++xfbuf;
1464 }
1465 return(1);
1466 }
1467
1468 /*######### END DEPRECATED ROUTINES #######*/
1469 /*################################################################*/