--- ray/src/common/bsdf.c 2011/01/06 04:40:22 2.12 +++ ray/src/common/bsdf.c 2012/09/02 15:33:15 2.42 @@ -1,15 +1,888 @@ #ifndef lint -static const char RCSid[] = "$Id: bsdf.c,v 2.12 2011/01/06 04:40:22 greg Exp $"; +static const char RCSid[] = "$Id: bsdf.c,v 2.42 2012/09/02 15:33:15 greg Exp $"; #endif /* + * bsdf.c + * + * Definitions for bidirectional scattering distribution functions. + * + * Created by Greg Ward on 1/10/11. + * + */ + +#define _USE_MATH_DEFINES +#include +#include +#include +#include +#include +#include "ezxml.h" +#include "hilbert.h" +#include "bsdf.h" +#include "bsdf_m.h" +#include "bsdf_t.h" + +/* English ASCII strings corresponding to ennumerated errors */ +const char *SDerrorEnglish[] = { + "No error", + "Memory error", + "File input/output error", + "File format error", + "Illegal argument", + "Invalid data", + "Unsupported feature", + "Internal program error", + "Unknown error" + }; + +/* Additional information on last error (ASCII English) */ +char SDerrorDetail[256]; + +/* Empty distribution for getCDist() calls that fail for some reason */ +const SDCDst SDemptyCD; + +/* Cache of loaded BSDFs */ +struct SDCache_s *SDcacheList = NULL; + +/* Retain BSDFs in cache list */ +int SDretainSet = SDretainNone; + +/* Report any error to the indicated stream (in English) */ +SDError +SDreportEnglish(SDError ec, FILE *fp) +{ + if (!ec) + return SDEnone; + if ((ec < SDEnone) | (ec > SDEunknown)) { + SDerrorDetail[0] = '\0'; + ec = SDEunknown; + } + if (fp == NULL) + return ec; + fputs(SDerrorEnglish[ec], fp); + if (SDerrorDetail[0]) { + fputs(": ", fp); + fputs(SDerrorDetail, fp); + } + fputc('\n', fp); + if (fp != stderr) + fflush(fp); + return ec; +} + +static double +to_meters( /* return factor to convert given unit to meters */ + const char *unit +) +{ + if (unit == NULL) return(1.); /* safe assumption? */ + if (!strcasecmp(unit, "Meter")) return(1.); + if (!strcasecmp(unit, "Foot")) return(.3048); + if (!strcasecmp(unit, "Inch")) return(.0254); + if (!strcasecmp(unit, "Centimeter")) return(.01); + if (!strcasecmp(unit, "Millimeter")) return(.001); + sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit); + return(-1.); +} + +/* Load geometric dimensions and description (if any) */ +static SDError +SDloadGeometry(SDData *sd, ezxml_t wdb) +{ + ezxml_t geom; + double cfact; + const char *fmt, *mgfstr; + + if (wdb == NULL) /* no geometry section? */ + return SDEnone; + if ((geom = ezxml_child(wdb, "Name")) != NULL) { + strncpy(sd->matn, ezxml_txt(geom), SDnameLn); + if (sd->matn[SDnameLn-1]) + strcpy(sd->matn+(SDnameLn-4), "..."); + } + if ((geom = ezxml_child(wdb, "Manufacturer")) != NULL) { + strncpy(sd->makr, ezxml_txt(geom), SDnameLn); + if (sd->makr[SDnameLn-1]) + strcpy(sd->makr+(SDnameLn-4), "..."); + } + sd->dim[0] = sd->dim[1] = sd->dim[2] = .0; + SDerrorDetail[0] = '\0'; + if ((geom = ezxml_child(wdb, "Width")) != NULL) + sd->dim[0] = atof(ezxml_txt(geom)) * + to_meters(ezxml_attr(geom, "unit")); + if ((geom = ezxml_child(wdb, "Height")) != NULL) + sd->dim[1] = atof(ezxml_txt(geom)) * + to_meters(ezxml_attr(geom, "unit")); + if ((geom = ezxml_child(wdb, "Thickness")) != NULL) + sd->dim[2] = atof(ezxml_txt(geom)) * + to_meters(ezxml_attr(geom, "unit")); + if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) { + if (!SDerrorDetail[0]) + sprintf(SDerrorDetail, "Negative dimension in \"%s\"", + sd->name); + return SDEdata; + } + if ((geom = ezxml_child(wdb, "Geometry")) == NULL || + (mgfstr = ezxml_txt(geom)) == NULL) + return SDEnone; + while (isspace(*mgfstr)) + ++mgfstr; + if (!*mgfstr) + return SDEnone; + if ((fmt = ezxml_attr(geom, "format")) != NULL && + strcasecmp(fmt, "MGF")) { + sprintf(SDerrorDetail, + "Unrecognized geometry format '%s' in \"%s\"", + fmt, sd->name); + return SDEsupport; + } + cfact = to_meters(ezxml_attr(geom, "unit")); + if (cfact <= 0) + return SDEformat; + sd->mgf = (char *)malloc(strlen(mgfstr)+32); + if (sd->mgf == NULL) { + strcpy(SDerrorDetail, "Out of memory in SDloadGeometry"); + return SDEmemory; + } + if (cfact < 0.99 || cfact > 1.01) + sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr); + else + strcpy(sd->mgf, mgfstr); + return SDEnone; +} + +/* Load a BSDF struct from the given file (free first and keep name) */ +SDError +SDloadFile(SDData *sd, const char *fname) +{ + SDError lastErr; + ezxml_t fl, wtl; + + if ((sd == NULL) | (fname == NULL || !*fname)) + return SDEargument; + /* free old data, keeping name */ + SDfreeBSDF(sd); + /* parse XML file */ + fl = ezxml_parse_file(fname); + if (fl == NULL) { + sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname); + return SDEfile; + } + if (ezxml_error(fl)[0]) { + sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl)); + ezxml_free(fl); + return SDEformat; + } + if (strcmp(ezxml_name(fl), "WindowElement")) { + sprintf(SDerrorDetail, + "BSDF \"%s\": top level node not 'WindowElement'", + sd->name); + ezxml_free(fl); + return SDEformat; + } + wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer"); + if (wtl == NULL) { + sprintf(SDerrorDetail, "BSDF \"%s\": no optical layers'", + sd->name); + ezxml_free(fl); + return SDEformat; + } + /* load geometry if present */ + lastErr = SDloadGeometry(sd, ezxml_child(wtl, "Material")); + if (lastErr) { + ezxml_free(fl); + return lastErr; + } + /* try loading variable resolution data */ + lastErr = SDloadTre(sd, wtl); + /* check our result */ + if (lastErr == SDEsupport) /* try matrix BSDF if not tree data */ + lastErr = SDloadMtx(sd, wtl); + + /* done with XML file */ + ezxml_free(fl); + + if (lastErr) { /* was there a load error? */ + SDfreeBSDF(sd); + return lastErr; + } + /* remove any insignificant components */ + if (sd->rf != NULL && sd->rf->maxHemi <= .001) { + SDfreeSpectralDF(sd->rf); sd->rf = NULL; + } + if (sd->rb != NULL && sd->rb->maxHemi <= .001) { + SDfreeSpectralDF(sd->rb); sd->rb = NULL; + } + if (sd->tf != NULL && sd->tf->maxHemi <= .001) { + SDfreeSpectralDF(sd->tf); sd->tf = NULL; + } + if (sd->tb != NULL && sd->tb->maxHemi <= .001) { + SDfreeSpectralDF(sd->tb); sd->tb = NULL; + } + /* return success */ + return SDEnone; +} + +/* Allocate new spectral distribution function */ +SDSpectralDF * +SDnewSpectralDF(int nc) +{ + SDSpectralDF *df; + + if (nc <= 0) { + strcpy(SDerrorDetail, "Zero component spectral DF request"); + return NULL; + } + df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) + + (nc-1)*sizeof(SDComponent)); + if (df == NULL) { + sprintf(SDerrorDetail, + "Cannot allocate %d component spectral DF", nc); + return NULL; + } + df->minProjSA = .0; + df->maxHemi = .0; + df->ncomp = nc; + memset(df->comp, 0, nc*sizeof(SDComponent)); + return df; +} + +/* Add component(s) to spectral distribution function */ +SDSpectralDF * +SDaddComponent(SDSpectralDF *odf, int nadd) +{ + SDSpectralDF *df; + + if (odf == NULL) + return SDnewSpectralDF(nadd); + if (nadd <= 0) + return odf; + df = (SDSpectralDF *)realloc(odf, sizeof(SDSpectralDF) + + (odf->ncomp+nadd-1)*sizeof(SDComponent)); + if (df == NULL) { + sprintf(SDerrorDetail, + "Cannot add %d component(s) to spectral DF", nadd); + SDfreeSpectralDF(odf); + return NULL; + } + memset(df->comp+df->ncomp, 0, nadd*sizeof(SDComponent)); + df->ncomp += nadd; + return df; +} + +/* Free cached cumulative distributions for BSDF component */ +void +SDfreeCumulativeCache(SDSpectralDF *df) +{ + int n; + SDCDst *cdp; + + if (df == NULL) + return; + for (n = df->ncomp; n-- > 0; ) + while ((cdp = df->comp[n].cdList) != NULL) { + df->comp[n].cdList = cdp->next; + free(cdp); + } +} + +/* Free a spectral distribution function */ +void +SDfreeSpectralDF(SDSpectralDF *df) +{ + int n; + + if (df == NULL) + return; + SDfreeCumulativeCache(df); + for (n = df->ncomp; n-- > 0; ) + if (df->comp[n].dist != NULL) + (*df->comp[n].func->freeSC)(df->comp[n].dist); + free(df); +} + +/* Shorten file path to useable BSDF name, removing suffix */ +void +SDclipName(char *res, const char *fname) +{ + const char *cp, *dot = NULL; + + for (cp = fname; *cp; cp++) + if (*cp == '.') + dot = cp; + if ((dot == NULL) | (dot < fname+2)) + dot = cp; + if (dot - fname >= SDnameLn) + fname = dot - SDnameLn + 1; + while (fname < dot) + *res++ = *fname++; + *res = '\0'; +} + +/* Initialize an unused BSDF struct (simply clears to zeroes) */ +void +SDclearBSDF(SDData *sd, const char *fname) +{ + if (sd == NULL) + return; + memset(sd, 0, sizeof(SDData)); + if (fname == NULL) + return; + SDclipName(sd->name, fname); +} + +/* Free data associated with BSDF struct */ +void +SDfreeBSDF(SDData *sd) +{ + if (sd == NULL) + return; + if (sd->mgf != NULL) { + free(sd->mgf); + sd->mgf = NULL; + } + if (sd->rf != NULL) { + SDfreeSpectralDF(sd->rf); + sd->rf = NULL; + } + if (sd->rb != NULL) { + SDfreeSpectralDF(sd->rb); + sd->rb = NULL; + } + if (sd->tf != NULL) { + SDfreeSpectralDF(sd->tf); + sd->tf = NULL; + } + if (sd->tb != NULL) { + SDfreeSpectralDF(sd->tb); + sd->tb = NULL; + } + sd->rLambFront.cieY = .0; + sd->rLambFront.spec.flags = 0; + sd->rLambBack.cieY = .0; + sd->rLambBack.spec.flags = 0; + sd->tLamb.cieY = .0; + sd->tLamb.spec.flags = 0; +} + +/* Find writeable BSDF by name, or allocate new cache entry if absent */ +SDData * +SDgetCache(const char *bname) +{ + struct SDCache_s *sdl; + char sdnam[SDnameLn]; + + if (bname == NULL) + return NULL; + + SDclipName(sdnam, bname); + for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next) + if (!strcmp(sdl->bsdf.name, sdnam)) { + sdl->refcnt++; + return &sdl->bsdf; + } + + sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s)); + if (sdl == NULL) + return NULL; + + strcpy(sdl->bsdf.name, sdnam); + sdl->next = SDcacheList; + SDcacheList = sdl; + + sdl->refcnt = 1; + return &sdl->bsdf; +} + +/* Get loaded BSDF from cache (or load and cache it on first call) */ +/* Report any problem to stderr and return NULL on failure */ +const SDData * +SDcacheFile(const char *fname) +{ + SDData *sd; + SDError ec; + + if (fname == NULL || !*fname) + return NULL; + SDerrorDetail[0] = '\0'; + if ((sd = SDgetCache(fname)) == NULL) { + SDreportEnglish(SDEmemory, stderr); + return NULL; + } + if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) { + SDreportEnglish(ec, stderr); + SDfreeCache(sd); + return NULL; + } + return sd; +} + +/* Free a BSDF from our cache (clear all if NULL) */ +void +SDfreeCache(const SDData *sd) +{ + struct SDCache_s *sdl, *sdLast = NULL; + + if (sd == NULL) { /* free entire list */ + while ((sdl = SDcacheList) != NULL) { + SDcacheList = sdl->next; + SDfreeBSDF(&sdl->bsdf); + free(sdl); + } + return; + } + for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next) + if (&sdl->bsdf == sd) + break; + if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0))) + return; /* missing or still in use */ + /* keep unreferenced data? */ + if (SDisLoaded(sd) && SDretainSet) { + if (SDretainSet == SDretainAll) + return; /* keep everything */ + /* else free cumulative data */ + SDfreeCumulativeCache(sd->rf); + SDfreeCumulativeCache(sd->rb); + SDfreeCumulativeCache(sd->tf); + SDfreeCumulativeCache(sd->tb); + return; + } + /* remove from list and free */ + if (sdLast == NULL) + SDcacheList = sdl->next; + else + sdLast->next = sdl->next; + SDfreeBSDF(&sdl->bsdf); + free(sdl); +} + +/* Sample an individual BSDF component */ +SDError +SDsampComponent(SDValue *sv, FVECT ioVec, double randX, SDComponent *sdc) +{ + float coef[SDmaxCh]; + SDError ec; + FVECT inVec; + const SDCDst *cd; + double d; + int n; + /* check arguments */ + if ((sv == NULL) | (ioVec == NULL) | (sdc == NULL)) + return SDEargument; + /* get cumulative distribution */ + VCOPY(inVec, ioVec); + cd = (*sdc->func->getCDist)(inVec, sdc); + if (cd == NULL) + return SDEmemory; + if (cd->cTotal <= 1e-6) { /* anything to sample? */ + sv->spec = c_dfcolor; + sv->cieY = .0; + memset(ioVec, 0, 3*sizeof(double)); + return SDEnone; + } + sv->cieY = cd->cTotal; + /* compute sample direction */ + ec = (*sdc->func->sampCDist)(ioVec, randX, cd); + if (ec) + return ec; + /* get BSDF color */ + n = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc); + if (n <= 0) { + strcpy(SDerrorDetail, "BSDF sample value error"); + return SDEinternal; + } + sv->spec = sdc->cspec[0]; + d = coef[0]; + while (--n) { + c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]); + d += coef[n]; + } + /* make sure everything is set */ + c_ccvt(&sv->spec, C_CSXY+C_CSSPEC); + return SDEnone; +} + +#define MS_MAXDIM 15 + +/* Convert 1-dimensional random variable to N-dimensional */ +void +SDmultiSamp(double t[], int n, double randX) +{ + unsigned nBits; + double scale; + bitmask_t ndx, coord[MS_MAXDIM]; + + if (n <= 0) /* check corner cases */ + return; + if (randX < 0) randX = 0; + else if (randX >= 1.) randX = 0.999999999999999; + if (n == 1) { + t[0] = randX; + return; + } + while (n > MS_MAXDIM) /* punt for higher dimensions */ + t[--n] = rand()*(1./(RAND_MAX+.5)); + nBits = (8*sizeof(bitmask_t) - 1) / n; + ndx = randX * (double)((bitmask_t)1 << (nBits*n)); + /* get coordinate on Hilbert curve */ + hilbert_i2c(n, nBits, ndx, coord); + /* convert back to [0,1) range */ + scale = 1. / (double)((bitmask_t)1 << nBits); + while (n--) + t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5))); +} + +#undef MS_MAXDIM + +/* Generate diffuse hemispherical sample */ +static void +SDdiffuseSamp(FVECT outVec, int outFront, double randX) +{ + /* convert to position on hemisphere */ + SDmultiSamp(outVec, 2, randX); + SDsquare2disk(outVec, outVec[0], outVec[1]); + outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1]; + if (outVec[2] > 0) /* a bit of paranoia */ + outVec[2] = sqrt(outVec[2]); + if (!outFront) /* going out back? */ + outVec[2] = -outVec[2]; +} + +/* Query projected solid angle coverage for non-diffuse BSDF direction */ +SDError +SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2, + int qflags, const SDData *sd) +{ + SDSpectralDF *rdf, *tdf; + SDError ec; + int i; + /* check arguments */ + if ((projSA == NULL) | (v1 == NULL) | (sd == NULL)) + return SDEargument; + /* initialize extrema */ + switch (qflags) { + case SDqueryMax: + projSA[0] = .0; + break; + case SDqueryMin+SDqueryMax: + projSA[1] = .0; + /* fall through */ + case SDqueryMin: + projSA[0] = 10.; + break; + case 0: + return SDEargument; + } + if (v1[2] > 0) { /* front surface query? */ + rdf = sd->rf; + tdf = (sd->tf != NULL) ? sd->tf : sd->tb; + } else { + rdf = sd->rb; + tdf = (sd->tb != NULL) ? sd->tb : sd->tf; + } + if (v2 != NULL) /* bidirectional? */ + if (v1[2] > 0 ^ v2[2] > 0) + rdf = NULL; + else + tdf = NULL; + ec = SDEdata; /* run through components */ + for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) { + ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2, + qflags, &rdf->comp[i]); + if (ec) + return ec; + } + for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) { + ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2, + qflags, &tdf->comp[i]); + if (ec) + return ec; + } + if (ec) { /* all diffuse? */ + projSA[0] = M_PI; + if (qflags == SDqueryMin+SDqueryMax) + projSA[1] = M_PI; + } + return SDEnone; +} + +/* Return BSDF for the given incident and scattered ray vectors */ +SDError +SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd) +{ + int inFront, outFront; + SDSpectralDF *sdf; + float coef[SDmaxCh]; + int nch, i; + /* check arguments */ + if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL)) + return SDEargument; + /* whose side are we on? */ + inFront = (inVec[2] > 0); + outFront = (outVec[2] > 0); + /* start with diffuse portion */ + if (inFront & outFront) { + *sv = sd->rLambFront; + sdf = sd->rf; + } else if (!(inFront | outFront)) { + *sv = sd->rLambBack; + sdf = sd->rb; + } else if (inFront) { + *sv = sd->tLamb; + sdf = (sd->tf != NULL) ? sd->tf : sd->tb; + } else /* inBack */ { + *sv = sd->tLamb; + sdf = (sd->tb != NULL) ? sd->tb : sd->tf; + } + sv->cieY *= 1./M_PI; + /* add non-diffuse components */ + i = (sdf != NULL) ? sdf->ncomp : 0; + while (i-- > 0) { + nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec, + &sdf->comp[i]); + while (nch-- > 0) { + c_cmix(&sv->spec, sv->cieY, &sv->spec, + coef[nch], &sdf->comp[i].cspec[nch]); + sv->cieY += coef[nch]; + } + } + /* make sure everything is set */ + c_ccvt(&sv->spec, C_CSXY+C_CSSPEC); + return SDEnone; +} + +/* Compute directional hemispherical scattering at this incident angle */ +double +SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd) +{ + double hsum; + SDSpectralDF *rdf, *tdf; + const SDCDst *cd; + int i; + /* check arguments */ + if ((inVec == NULL) | (sd == NULL)) + return .0; + /* gather diffuse components */ + if (inVec[2] > 0) { + hsum = sd->rLambFront.cieY; + rdf = sd->rf; + tdf = (sd->tf != NULL) ? sd->tf : sd->tb; + } else /* !inFront */ { + hsum = sd->rLambBack.cieY; + rdf = sd->rb; + tdf = (sd->tb != NULL) ? sd->tb : sd->tf; + } + if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR) + hsum = .0; + if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) + hsum += sd->tLamb.cieY; + /* gather non-diffuse components */ + i = (((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR) & + (rdf != NULL)) ? rdf->ncomp : 0; + while (i-- > 0) { /* non-diffuse reflection */ + cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]); + if (cd != NULL) + hsum += cd->cTotal; + } + i = (((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT) & + (tdf != NULL)) ? tdf->ncomp : 0; + while (i-- > 0) { /* non-diffuse transmission */ + cd = (*tdf->comp[i].func->getCDist)(inVec, &tdf->comp[i]); + if (cd != NULL) + hsum += cd->cTotal; + } + return hsum; +} + +/* Sample BSDF direction based on the given random variable */ +SDError +SDsampBSDF(SDValue *sv, FVECT ioVec, double randX, int sflags, const SDData *sd) +{ + SDError ec; + FVECT inVec; + int inFront; + SDSpectralDF *rdf, *tdf; + double rdiff; + float coef[SDmaxCh]; + int i, j, n, nr; + SDComponent *sdc; + const SDCDst **cdarr = NULL; + /* check arguments */ + if ((sv == NULL) | (ioVec == NULL) | (sd == NULL) | + (randX < 0) | (randX >= 1.)) + return SDEargument; + /* whose side are we on? */ + VCOPY(inVec, ioVec); + inFront = (inVec[2] > 0); + /* remember diffuse portions */ + if (inFront) { + *sv = sd->rLambFront; + rdf = sd->rf; + tdf = (sd->tf != NULL) ? sd->tf : sd->tb; + } else /* !inFront */ { + *sv = sd->rLambBack; + rdf = sd->rb; + tdf = (sd->tb != NULL) ? sd->tb : sd->tf; + } + if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR) + sv->cieY = .0; + rdiff = sv->cieY; + if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) + sv->cieY += sd->tLamb.cieY; + /* gather non-diffuse components */ + i = nr = (((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR) & + (rdf != NULL)) ? rdf->ncomp : 0; + j = (((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT) & + (tdf != NULL)) ? tdf->ncomp : 0; + n = i + j; + if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL) + return SDEmemory; + while (j-- > 0) { /* non-diffuse transmission */ + cdarr[i+j] = (*tdf->comp[j].func->getCDist)(inVec, &tdf->comp[j]); + if (cdarr[i+j] == NULL) { + free(cdarr); + return SDEmemory; + } + sv->cieY += cdarr[i+j]->cTotal; + } + while (i-- > 0) { /* non-diffuse reflection */ + cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]); + if (cdarr[i] == NULL) { + free(cdarr); + return SDEmemory; + } + sv->cieY += cdarr[i]->cTotal; + } + if (sv->cieY <= 1e-6) { /* anything to sample? */ + sv->cieY = .0; + memset(ioVec, 0, 3*sizeof(double)); + return SDEnone; + } + /* scale random variable */ + randX *= sv->cieY; + /* diffuse reflection? */ + if (randX < rdiff) { + SDdiffuseSamp(ioVec, inFront, randX/rdiff); + goto done; + } + randX -= rdiff; + /* diffuse transmission? */ + if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) { + if (randX < sd->tLamb.cieY) { + sv->spec = sd->tLamb.spec; + SDdiffuseSamp(ioVec, !inFront, randX/sd->tLamb.cieY); + goto done; + } + randX -= sd->tLamb.cieY; + } + /* else one of cumulative dist. */ + for (i = 0; i < n && randX < cdarr[i]->cTotal; i++) + randX -= cdarr[i]->cTotal; + if (i >= n) + return SDEinternal; + /* compute sample direction */ + sdc = (i < nr) ? &rdf->comp[i] : &tdf->comp[i-nr]; + ec = (*sdc->func->sampCDist)(ioVec, randX/cdarr[i]->cTotal, cdarr[i]); + if (ec) + return ec; + /* compute color */ + j = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc); + if (j <= 0) { + sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error", + sd->name); + return SDEinternal; + } + sv->spec = sdc->cspec[0]; + rdiff = coef[0]; + while (--j) { + c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]); + rdiff += coef[j]; + } +done: + if (cdarr != NULL) + free(cdarr); + /* make sure everything is set */ + c_ccvt(&sv->spec, C_CSXY+C_CSSPEC); + return SDEnone; +} + +/* Compute World->BSDF transform from surface normal and up (Y) vector */ +SDError +SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec) +{ + if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL)) + return SDEargument; + VCOPY(vMtx[2], sNrm); + if (normalize(vMtx[2]) == 0) + return SDEargument; + fcross(vMtx[0], uVec, vMtx[2]); + if (normalize(vMtx[0]) == 0) + return SDEargument; + fcross(vMtx[1], vMtx[2], vMtx[0]); + return SDEnone; +} + +/* Compute inverse transform */ +SDError +SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3]) +{ + RREAL mTmp[3][3]; + double d; + + if ((iMtx == NULL) | (vMtx == NULL)) + return SDEargument; + /* compute determinant */ + mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2]; + mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1]; + mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2]; + d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2]; + if (d == 0) { + strcpy(SDerrorDetail, "Zero determinant in matrix inversion"); + return SDEargument; + } + d = 1./d; /* invert matrix */ + mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d; + mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]); + mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]); + mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]); + mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]); + mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]); + mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]); + memcpy(iMtx, mTmp, sizeof(mTmp)); + return SDEnone; +} + +/* Transform and normalize direction (column) vector */ +SDError +SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec) +{ + FVECT vTmp; + + if ((resVec == NULL) | (inpVec == NULL)) + return SDEargument; + if (vMtx == NULL) { /* assume they just want to normalize */ + if (resVec != inpVec) + VCOPY(resVec, inpVec); + return (normalize(resVec) > 0) ? SDEnone : SDEargument; + } + vTmp[0] = DOT(vMtx[0], inpVec); + vTmp[1] = DOT(vMtx[1], inpVec); + vTmp[2] = DOT(vMtx[2], inpVec); + if (normalize(vTmp) == 0) + return SDEargument; + VCOPY(resVec, vTmp); + return SDEnone; +} + +/*################################################################*/ +/*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/ + +/* * Routines for handling BSDF data */ #include "standard.h" -#include "bsdf.h" #include "paths.h" -#include "ezxml.h" -#include #define MAXLATS 46 /* maximum number of latitudes */ @@ -66,12 +939,12 @@ static int nabases = 3; /* current number of defined b static int fequal(double a, double b) { - if (b != .0) + if (b != 0) a = a/b - 1.; return((a <= 1e-6) & (a >= -1e-6)); } -// returns the name of the given tag +/* Returns the name of the given tag */ #ifdef ezxml_name #undef ezxml_name static char * @@ -83,7 +956,7 @@ ezxml_name(ezxml_t xml) } #endif -// returns the given tag's character content or empty string if none +/* Returns the given tag's character content or empty string if none */ #ifdef ezxml_txt #undef ezxml_txt static char * @@ -129,7 +1002,7 @@ ab_getndx( /* get index corresponding to the given ve { ANGLE_BASIS *ab = (ANGLE_BASIS *)p; int li, ndx; - double pol, azi, d; + double pol, azi; if ((v[2] < -1.0) | (v[2] > 1.0)) return(-1); @@ -247,22 +1120,6 @@ load_angle_basis( /* load custom BSDF angle basis */ } -static double -to_meters( /* return factor to convert given unit to meters */ - const char *unit -) -{ - if (unit == NULL) return(1.); /* safe assumption? */ - if (!strcasecmp(unit, "Meter")) return(1.); - if (!strcasecmp(unit, "Foot")) return(.3048); - if (!strcasecmp(unit, "Inch")) return(.0254); - if (!strcasecmp(unit, "Centimeter")) return(.01); - if (!strcasecmp(unit, "Millimeter")) return(.001); - sprintf(errmsg, "unknown dimensional unit '%s'", unit); - error(USER, errmsg); -} - - static void load_geometry( /* load geometric dimensions and description (if any) */ struct BSDF_data *dp, @@ -343,7 +1200,7 @@ load_bsdf_data( /* load BSDF distribution for this wa break; } if (i < 0) { - sprintf(errmsg, "undefined RowAngleBasis '%s'", cbasis); + sprintf(errmsg, "undefined RowAngleBasis '%s'", rbasis); error(WARNING, errmsg); return; } @@ -385,7 +1242,7 @@ check_bsdf_data( /* check that BSDF data is sane */ ) { double *omega_iarr, *omega_oarr; - double dom, contrib, hemi_total, full_total; + double dom, hemi_total, full_total; int nneg; FVECT v; int i, o; @@ -400,7 +1257,7 @@ check_bsdf_data( /* check that BSDF data is sane */ hemi_total = .0; for (i = dp->ninc; i--; ) { dom = getBSDF_incohm(dp,i); - if (dom <= .0) { + if (dom <= 0) { error(WARNING, "zero/negative incoming solid angle"); continue; } @@ -423,7 +1280,7 @@ check_bsdf_data( /* check that BSDF data is sane */ hemi_total = .0; for (o = dp->nout; o--; ) { dom = getBSDF_outohm(dp,o); - if (dom <= .0) { + if (dom <= 0) { error(WARNING, "zero/negative outgoing solid angle"); continue; } @@ -447,7 +1304,7 @@ check_bsdf_data( /* check that BSDF data is sane */ hemi_total = .0; for (o = dp->nout; o--; ) { double f = BSDF_value(dp,i,o); - if (f >= .0) + if (f >= 0) hemi_total += f*omega_oarr[o]; else { nneg += (f < -FTINY); @@ -535,22 +1392,28 @@ load_BSDF( /* load BSDF data from file */ error(WARNING, errmsg); ezxml_free(fl); return(NULL); - } - load_angle_basis(ezxml_child(ezxml_child(wtl, - "DataDefinition"), "AngleBasis")); + } + for (wld = ezxml_child(ezxml_child(wtl, + "DataDefinition"), "AngleBasis"); + wld != NULL; wld = wld->next) + load_angle_basis(wld); dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data)); load_geometry(dp, ezxml_child(wtl, "Material")); for (wld = ezxml_child(wtl, "WavelengthData"); wld != NULL; wld = wld->next) { - if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")), "Visible")) + if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")), + "Visible")) continue; - wdb = ezxml_child(wld, "WavelengthDataBlock"); - if (wdb == NULL) continue; - if (strcasecmp(ezxml_txt(ezxml_child(wdb,"WavelengthDataDirection")), + for (wdb = ezxml_child(wld, "WavelengthDataBlock"); + wdb != NULL; wdb = wdb->next) + if (!strcasecmp(ezxml_txt(ezxml_child(wdb, + "WavelengthDataDirection")), "Transmission Front")) - continue; - load_bsdf_data(dp, wdb); /* load front BTDF */ - break; /* ignore the rest */ + break; + if (wdb != NULL) { /* load front BTDF */ + load_bsdf_data(dp, wdb); + break; /* ignore the rest */ + } } ezxml_free(fl); /* done with XML file */ if (!check_bsdf_data(dp)) { @@ -594,7 +1457,7 @@ r_BSDF_incvec( /* compute random input vector at give if (!getBSDF_incvec(v, b, i)) return(0); rad = sqrt(getBSDF_incohm(b, i) / PI); - multisamp(pert, 3, rv); + SDmultiSamp(pert, 3, rv); for (j = 0; j < 3; j++) v[j] += rad*(2.*pert[j] - 1.); if (xm != NULL) @@ -619,7 +1482,7 @@ r_BSDF_outvec( /* compute random output vector at giv if (!getBSDF_outvec(v, b, o)) return(0); rad = sqrt(getBSDF_outohm(b, o) / PI); - multisamp(pert, 3, rv); + SDmultiSamp(pert, 3, rv); for (j = 0; j < 3; j++) v[j] += rad*(2.*pert[j] - 1.); if (xm != NULL) @@ -726,3 +1589,6 @@ getBSDF_xfm( /* compute BSDF orient. -> world orient. } return(1); } + +/*######### END DEPRECATED ROUTINES #######*/ +/*################################################################*/