--- ray/src/common/bsdf.c 2009/06/17 20:41:47 2.1 +++ ray/src/common/bsdf.c 2011/02/19 01:48:59 2.16 @@ -1,14 +1,795 @@ #ifndef lint -static const char RCSid[] = "$Id: bsdf.c,v 2.1 2009/06/17 20:41:47 greg Exp $"; +static const char RCSid[] = "$Id: bsdf.c,v 2.16 2011/02/19 01:48:59 greg Exp $"; #endif /* + * bsdf.c + * + * Definitions for bidirectional scattering distribution functions. + * + * Created by Greg Ward on 1/10/11. + * + */ + +#include +#include +#include +#include "ezxml.h" +#include "hilbert.h" +#include "bsdf.h" +#include "bsdf_m.h" +#include "bsdf_t.h" + +/* English ASCII strings corresponding to ennumerated errors */ +const char *SDerrorEnglish[] = { + "No error", + "Memory error", + "File input/output error", + "File format error", + "Illegal argument", + "Invalid data", + "Unsupported feature", + "Internal program error", + "Unknown error" + }; + +/* Additional information on last error (ASCII English) */ +char SDerrorDetail[256]; + +/* Cache of loaded BSDFs */ +struct SDCache_s *SDcacheList = NULL; + +/* Retain BSDFs in cache list */ +int SDretainSet = SDretainNone; + +/* Report any error to the indicated stream (in English) */ +SDError +SDreportEnglish(SDError ec, FILE *fp) +{ + if (fp == NULL) + return ec; + if (!ec) + return SDEnone; + fputs(SDerrorEnglish[ec], fp); + if (SDerrorDetail[0]) { + fputs(": ", fp); + fputs(SDerrorDetail, fp); + } + fputc('\n', fp); + if (fp != stderr) + fflush(fp); + return ec; +} + +static double +to_meters( /* return factor to convert given unit to meters */ + const char *unit +) +{ + if (unit == NULL) return(1.); /* safe assumption? */ + if (!strcasecmp(unit, "Meter")) return(1.); + if (!strcasecmp(unit, "Foot")) return(.3048); + if (!strcasecmp(unit, "Inch")) return(.0254); + if (!strcasecmp(unit, "Centimeter")) return(.01); + if (!strcasecmp(unit, "Millimeter")) return(.001); + sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit); + return(-1.); +} + +/* Load geometric dimensions and description (if any) */ +static SDError +SDloadGeometry(SDData *sd, ezxml_t wdb) +{ + ezxml_t geom; + double cfact; + const char *fmt, *mgfstr; + + if (wdb == NULL) /* no geometry section? */ + return SDEnone; + sprintf(SDerrorDetail, "Negative size in \"%s\"", sd->name); + sd->dim[0] = sd->dim[1] = sd->dim[2] = .0; + if ((geom = ezxml_child(wdb, "Width")) != NULL) + sd->dim[0] = atof(ezxml_txt(geom)) * + to_meters(ezxml_attr(geom, "unit")); + if ((geom = ezxml_child(wdb, "Height")) != NULL) + sd->dim[1] = atof(ezxml_txt(geom)) * + to_meters(ezxml_attr(geom, "unit")); + if ((geom = ezxml_child(wdb, "Thickness")) != NULL) + sd->dim[2] = atof(ezxml_txt(geom)) * + to_meters(ezxml_attr(geom, "unit")); + if ((sd->dim[0] < .0) | (sd->dim[1] < .0) | (sd->dim[2] < .0)) + return SDEdata; + if ((geom = ezxml_child(wdb, "Geometry")) == NULL || + (mgfstr = ezxml_txt(geom)) == NULL) + return SDEnone; + if ((fmt = ezxml_attr(geom, "format")) != NULL && + strcasecmp(fmt, "MGF")) { + sprintf(SDerrorDetail, + "Unrecognized geometry format '%s' in \"%s\"", + fmt, sd->name); + return SDEsupport; + } + cfact = to_meters(ezxml_attr(geom, "unit")); + sd->mgf = (char *)malloc(strlen(mgfstr)+32); + if (sd->mgf == NULL) { + strcpy(SDerrorDetail, "Out of memory in SDloadGeometry"); + return SDEmemory; + } + if (cfact < 0.99 || cfact > 1.01) + sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr); + else + strcpy(sd->mgf, mgfstr); + return SDEnone; +} + +/* Load a BSDF struct from the given file (free first and keep name) */ +SDError +SDloadFile(SDData *sd, const char *fname) +{ + SDError lastErr; + ezxml_t fl, wtl; + + if ((sd == NULL) | (fname == NULL || !*fname)) + return SDEargument; + /* free old data, keeping name */ + SDfreeBSDF(sd); + /* parse XML file */ + fl = ezxml_parse_file(fname); + if (fl == NULL) { + sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname); + return SDEfile; + } + if (ezxml_error(fl)[0]) { + sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl)); + ezxml_free(fl); + return SDEformat; + } + if (strcmp(ezxml_name(fl), "WindowElement")) { + sprintf(SDerrorDetail, + "BSDF \"%s\": top level node not 'WindowElement'", + sd->name); + ezxml_free(fl); + return SDEformat; + } + wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer"); + if (wtl == NULL) { + sprintf(SDerrorDetail, "BSDF \"%s\": no optical layer'", + sd->name); + ezxml_free(fl); + return SDEformat; + } + /* load geometry if present */ + lastErr = SDloadGeometry(sd, ezxml_child(wtl, "Material")); + if (lastErr) + return lastErr; + /* try loading variable resolution data */ + lastErr = SDloadTre(sd, wtl); + /* check our result */ + switch (lastErr) { + case SDEformat: + case SDEdata: + case SDEsupport: /* possibly we just tried the wrong format */ + lastErr = SDloadMtx(sd, wtl); + break; + default: /* variable res. OK else serious error */ + break; + } + /* done with XML file */ + ezxml_free(fl); + + if (lastErr) { /* was there a load error? */ + SDfreeBSDF(sd); + return lastErr; + } + /* remove any insignificant components */ + if (sd->rf != NULL && sd->rf->maxHemi <= .001) { + SDfreeSpectralDF(sd->rf); sd->rf = NULL; + } + if (sd->rb != NULL && sd->rb->maxHemi <= .001) { + SDfreeSpectralDF(sd->rb); sd->rb = NULL; + } + if (sd->tf != NULL && sd->tf->maxHemi <= .001) { + SDfreeSpectralDF(sd->tf); sd->tf = NULL; + } + /* return success */ + return SDEnone; +} + +/* Allocate new spectral distribution function */ +SDSpectralDF * +SDnewSpectralDF(int nc) +{ + SDSpectralDF *df; + + if (nc <= 0) { + strcpy(SDerrorDetail, "Zero component spectral DF request"); + return NULL; + } + df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) + + (nc-1)*sizeof(SDComponent)); + if (df == NULL) { + sprintf(SDerrorDetail, + "Cannot allocate %d component spectral DF", nc); + return NULL; + } + df->minProjSA = .0; + df->maxHemi = .0; + df->ncomp = nc; + memset(df->comp, 0, nc*sizeof(SDComponent)); + return df; +} + +/* Free cached cumulative distributions for BSDF component */ +void +SDfreeCumulativeCache(SDSpectralDF *df) +{ + int n; + SDCDst *cdp; + + if (df == NULL) + return; + for (n = df->ncomp; n-- > 0; ) + while ((cdp = df->comp[n].cdList) != NULL) { + df->comp[n].cdList = cdp->next; + free(cdp); + } +} + +/* Free a spectral distribution function */ +void +SDfreeSpectralDF(SDSpectralDF *df) +{ + int n; + + if (df == NULL) + return; + SDfreeCumulativeCache(df); + for (n = df->ncomp; n-- > 0; ) + (*df->comp[n].func->freeSC)(df->comp[n].dist); + free(df); +} + +/* Shorten file path to useable BSDF name, removing suffix */ +void +SDclipName(char *res, const char *fname) +{ + const char *cp, *dot = NULL; + + for (cp = fname; *cp; cp++) + if (*cp == '.') + dot = cp; + if ((dot == NULL) | (dot < fname+2)) + dot = cp; + if (dot - fname >= SDnameLn) + fname = dot - SDnameLn + 1; + while (fname < dot) + *res++ = *fname++; + *res = '\0'; +} + +/* Initialize an unused BSDF struct (simply clears to zeroes) */ +void +SDclearBSDF(SDData *sd) +{ + if (sd != NULL) + memset(sd, 0, sizeof(SDData)); +} + +/* Free data associated with BSDF struct */ +void +SDfreeBSDF(SDData *sd) +{ + if (sd == NULL) + return; + if (sd->mgf != NULL) { + free(sd->mgf); + sd->mgf = NULL; + } + if (sd->rf != NULL) { + SDfreeSpectralDF(sd->rf); + sd->rf = NULL; + } + if (sd->rb != NULL) { + SDfreeSpectralDF(sd->rb); + sd->rb = NULL; + } + if (sd->tf != NULL) { + SDfreeSpectralDF(sd->tf); + sd->tf = NULL; + } + sd->rLambFront.cieY = .0; + sd->rLambFront.spec.flags = 0; + sd->rLambBack.cieY = .0; + sd->rLambBack.spec.flags = 0; + sd->tLamb.cieY = .0; + sd->tLamb.spec.flags = 0; +} + +/* Find writeable BSDF by name, or allocate new cache entry if absent */ +SDData * +SDgetCache(const char *bname) +{ + struct SDCache_s *sdl; + char sdnam[SDnameLn]; + + if (bname == NULL) + return NULL; + + SDclipName(sdnam, bname); + for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next) + if (!strcmp(sdl->bsdf.name, sdnam)) { + sdl->refcnt++; + return &sdl->bsdf; + } + + sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s)); + if (sdl == NULL) + return NULL; + + strcpy(sdl->bsdf.name, sdnam); + sdl->next = SDcacheList; + SDcacheList = sdl; + + sdl->refcnt++; + return &sdl->bsdf; +} + +/* Get loaded BSDF from cache (or load and cache it on first call) */ +/* Report any problem to stderr and return NULL on failure */ +const SDData * +SDcacheFile(const char *fname) +{ + SDData *sd; + SDError ec; + + if (fname == NULL || !*fname) + return NULL; + SDerrorDetail[0] = '\0'; + if ((sd = SDgetCache(fname)) == NULL) { + SDreportEnglish(SDEmemory, stderr); + return NULL; + } + if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) { + SDreportEnglish(ec, stderr); + SDfreeCache(sd); + return NULL; + } + return sd; +} + +/* Free a BSDF from our cache (clear all if NULL) */ +void +SDfreeCache(const SDData *sd) +{ + struct SDCache_s *sdl, *sdLast = NULL; + + if (sd == NULL) { /* free entire list */ + while ((sdl = SDcacheList) != NULL) { + SDcacheList = sdl->next; + SDfreeBSDF(&sdl->bsdf); + free(sdl); + } + return; + } + for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next) + if (&sdl->bsdf == sd) + break; + if (sdl == NULL || --sdl->refcnt) + return; /* missing or still in use */ + /* keep unreferenced data? */ + if (SDisLoaded(sd) && SDretainSet) { + if (SDretainSet == SDretainAll) + return; /* keep everything */ + /* else free cumulative data */ + SDfreeCumulativeCache(sd->rf); + SDfreeCumulativeCache(sd->rb); + SDfreeCumulativeCache(sd->tf); + return; + } + /* remove from list and free */ + if (sdLast == NULL) + SDcacheList = sdl->next; + else + sdLast->next = sdl->next; + SDfreeBSDF(&sdl->bsdf); + free(sdl); +} + +/* Sample an individual BSDF component */ +SDError +SDsampComponent(SDValue *sv, FVECT outVec, const FVECT inVec, + double randX, SDComponent *sdc) +{ + float coef[SDmaxCh]; + SDError ec; + const SDCDst *cd; + double d; + int n; + /* check arguments */ + if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL)) + return SDEargument; + /* get cumulative distribution */ + cd = (*sdc->func->getCDist)(inVec, sdc); + if (cd == NULL) + return SDEmemory; + if (cd->cTotal <= 1e-7) { /* anything to sample? */ + sv->spec = c_dfcolor; + sv->cieY = .0; + memset(outVec, 0, 3*sizeof(double)); + return SDEnone; + } + sv->cieY = cd->cTotal; + /* compute sample direction */ + ec = (*sdc->func->sampCDist)(outVec, randX, cd); + if (ec) + return ec; + /* get BSDF color */ + n = (*sdc->func->getBSDFs)(coef, outVec, inVec, sdc->dist); + if (n <= 0) { + strcpy(SDerrorDetail, "BSDF sample value error"); + return SDEinternal; + } + sv->spec = sdc->cspec[0]; + d = coef[0]; + while (--n) { + c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]); + d += coef[n]; + } + /* make sure everything is set */ + c_ccvt(&sv->spec, C_CSXY+C_CSSPEC); + return SDEnone; +} + +#define MS_MAXDIM 15 + +/* Convert 1-dimensional random variable to N-dimensional */ +void +SDmultiSamp(double t[], int n, double randX) +{ + unsigned nBits; + double scale; + bitmask_t ndx, coord[MS_MAXDIM]; + + while (n > MS_MAXDIM) /* punt for higher dimensions */ + t[--n] = drand48(); + nBits = (8*sizeof(bitmask_t) - 1) / n; + ndx = randX * (double)((bitmask_t)1 << (nBits*n)); + /* get coordinate on Hilbert curve */ + hilbert_i2c(n, nBits, ndx, coord); + /* convert back to [0,1) range */ + scale = 1. / (double)((bitmask_t)1 << nBits); + while (n--) + t[n] = scale * ((double)coord[n] + drand48()); +} + +#undef MS_MAXDIM + +/* Generate diffuse hemispherical sample */ +static void +SDdiffuseSamp(FVECT outVec, int outFront, double randX) +{ + /* convert to position on hemisphere */ + SDmultiSamp(outVec, 2, randX); + SDsquare2disk(outVec, outVec[0], outVec[1]); + outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1]; + if (outVec[2] > .0) /* a bit of paranoia */ + outVec[2] = sqrt(outVec[2]); + if (!outFront) /* going out back? */ + outVec[2] = -outVec[2]; +} + +/* Query projected solid angle coverage for non-diffuse BSDF direction */ +SDError +SDsizeBSDF(double *projSA, const FVECT vec, int qflags, const SDData *sd) +{ + SDSpectralDF *rdf; + SDError ec; + int i; + /* check arguments */ + if ((projSA == NULL) | (vec == NULL) | (sd == NULL)) + return SDEargument; + /* initialize extrema */ + switch (qflags & SDqueryMin+SDqueryMax) { + case SDqueryMax: + projSA[0] = .0; + break; + case SDqueryMin+SDqueryMax: + projSA[1] = .0; + /* fall through */ + case SDqueryMin: + projSA[0] = 10.; + break; + case 0: + return SDEargument; + } + if (vec[2] > .0) /* front surface query? */ + rdf = sd->rf; + else + rdf = sd->rb; + ec = SDEdata; /* run through components */ + for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) { + ec = (*rdf->comp[i].func->queryProjSA)(projSA, vec, qflags, + rdf->comp[i].dist); + if (ec) + return ec; + } + for (i = (sd->tf==NULL) ? 0 : sd->tf->ncomp; i--; ) { + ec = (*sd->tf->comp[i].func->queryProjSA)(projSA, vec, qflags, + sd->tf->comp[i].dist); + if (ec) + return ec; + } + return ec; +} + +/* Return BSDF for the given incident and scattered ray vectors */ +SDError +SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd) +{ + int inFront, outFront; + SDSpectralDF *sdf; + float coef[SDmaxCh]; + int nch, i; + /* check arguments */ + if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL)) + return SDEargument; + /* whose side are we on? */ + inFront = (inVec[2] > .0); + outFront = (outVec[2] > .0); + /* start with diffuse portion */ + if (inFront & outFront) { + *sv = sd->rLambFront; + sdf = sd->rf; + } else if (!(inFront | outFront)) { + *sv = sd->rLambBack; + sdf = sd->rb; + } else /* inFront ^ outFront */ { + *sv = sd->tLamb; + sdf = sd->tf; + } + sv->cieY *= 1./M_PI; + /* add non-diffuse components */ + i = (sdf != NULL) ? sdf->ncomp : 0; + while (i-- > 0) { + nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec, + sdf->comp[i].dist); + while (nch-- > 0) { + c_cmix(&sv->spec, sv->cieY, &sv->spec, + coef[nch], &sdf->comp[i].cspec[nch]); + sv->cieY += coef[nch]; + } + } + /* make sure everything is set */ + c_ccvt(&sv->spec, C_CSXY+C_CSSPEC); + return SDEnone; +} + +/* Compute directional hemispherical scattering at this incident angle */ +double +SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd) +{ + double hsum; + SDSpectralDF *rdf; + const SDCDst *cd; + int i; + /* check arguments */ + if ((inVec == NULL) | (sd == NULL)) + return .0; + /* gather diffuse components */ + if (inVec[2] > .0) { + hsum = sd->rLambFront.cieY; + rdf = sd->rf; + } else /* !inFront */ { + hsum = sd->rLambBack.cieY; + rdf = sd->rb; + } + if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR) + hsum = .0; + if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) + hsum += sd->tLamb.cieY; + /* gather non-diffuse components */ + i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR && + rdf != NULL) ? rdf->ncomp : 0; + while (i-- > 0) { /* non-diffuse reflection */ + cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]); + if (cd != NULL) + hsum += cd->cTotal; + } + i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT && + sd->tf != NULL) ? sd->tf->ncomp : 0; + while (i-- > 0) { /* non-diffuse transmission */ + cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]); + if (cd != NULL) + hsum += cd->cTotal; + } + return hsum; +} + +/* Sample BSDF direction based on the given random variable */ +SDError +SDsampBSDF(SDValue *sv, FVECT outVec, const FVECT inVec, + double randX, int sflags, const SDData *sd) +{ + SDError ec; + int inFront; + SDSpectralDF *rdf; + double rdiff; + float coef[SDmaxCh]; + int i, j, n, nr; + SDComponent *sdc; + const SDCDst **cdarr = NULL; + /* check arguments */ + if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL) | + (randX < .0) | (randX >= 1.)) + return SDEargument; + /* whose side are we on? */ + inFront = (inVec[2] > .0); + /* remember diffuse portions */ + if (inFront) { + *sv = sd->rLambFront; + rdf = sd->rf; + } else /* !inFront */ { + *sv = sd->rLambBack; + rdf = sd->rb; + } + if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR) + sv->cieY = .0; + rdiff = sv->cieY; + if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) + sv->cieY += sd->tLamb.cieY; + /* gather non-diffuse components */ + i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR && + rdf != NULL) ? rdf->ncomp : 0; + j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT && + sd->tf != NULL) ? sd->tf->ncomp : 0; + n = i + j; + if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL) + return SDEmemory; + while (j-- > 0) { /* non-diffuse transmission */ + cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]); + if (cdarr[i+j] == NULL) { + free(cdarr); + return SDEmemory; + } + sv->cieY += cdarr[i+j]->cTotal; + } + while (i-- > 0) { /* non-diffuse reflection */ + cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]); + if (cdarr[i] == NULL) { + free(cdarr); + return SDEmemory; + } + sv->cieY += cdarr[i]->cTotal; + } + if (sv->cieY <= 1e-7) { /* anything to sample? */ + sv->cieY = .0; + memset(outVec, 0, 3*sizeof(double)); + return SDEnone; + } + /* scale random variable */ + randX *= sv->cieY; + /* diffuse reflection? */ + if (randX < rdiff) { + SDdiffuseSamp(outVec, inFront, randX/rdiff); + goto done; + } + randX -= rdiff; + /* diffuse transmission? */ + if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) { + if (randX < sd->tLamb.cieY) { + sv->spec = sd->tLamb.spec; + SDdiffuseSamp(outVec, !inFront, randX/sd->tLamb.cieY); + goto done; + } + randX -= sd->tLamb.cieY; + } + /* else one of cumulative dist. */ + for (i = 0; i < n && randX < cdarr[i]->cTotal; i++) + randX -= cdarr[i]->cTotal; + if (i >= n) + return SDEinternal; + /* compute sample direction */ + sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr]; + ec = (*sdc->func->sampCDist)(outVec, randX/cdarr[i]->cTotal, cdarr[i]); + if (ec) + return ec; + /* compute color */ + j = (*sdc->func->getBSDFs)(coef, outVec, inVec, sdc->dist); + if (j <= 0) { + sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error", + sd->name); + return SDEinternal; + } + sv->spec = sdc->cspec[0]; + rdiff = coef[0]; + while (--j) { + c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]); + rdiff += coef[j]; + } +done: + if (cdarr != NULL) + free(cdarr); + /* make sure everything is set */ + c_ccvt(&sv->spec, C_CSXY+C_CSSPEC); + return SDEnone; +} + +/* Compute World->BSDF transform from surface normal and up (Y) vector */ +SDError +SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec) +{ + if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL)) + return SDEargument; + VCOPY(vMtx[2], sNrm); + if (normalize(vMtx[2]) == .0) + return SDEargument; + fcross(vMtx[0], uVec, vMtx[2]); + if (normalize(vMtx[0]) == .0) + return SDEargument; + fcross(vMtx[1], vMtx[2], vMtx[0]); + return SDEnone; +} + +/* Compute inverse transform */ +SDError +SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3]) +{ + RREAL mTmp[3][3]; + double d; + + if ((iMtx == NULL) | (vMtx == NULL)) + return SDEargument; + /* compute determinant */ + mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2]; + mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1]; + mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2]; + d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2]; + if (d == .0) { + strcpy(SDerrorDetail, "Zero determinant in matrix inversion"); + return SDEargument; + } + d = 1./d; /* invert matrix */ + mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d; + mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]); + mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]); + mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]); + mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]); + mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]); + mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]); + memcpy(iMtx, mTmp, sizeof(mTmp)); + return SDEnone; +} + +/* Transform and normalize direction (column) vector */ +SDError +SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec) +{ + FVECT vTmp; + + if ((resVec == NULL) | (inpVec == NULL)) + return SDEargument; + if (vMtx == NULL) { /* assume they just want to normalize */ + if (resVec != inpVec) + VCOPY(resVec, inpVec); + return (normalize(resVec) > .0) ? SDEnone : SDEargument; + } + vTmp[0] = DOT(vMtx[0], inpVec); + vTmp[1] = DOT(vMtx[1], inpVec); + vTmp[2] = DOT(vMtx[2], inpVec); + if (normalize(vTmp) == .0) + return SDEargument; + VCOPY(resVec, vTmp); + return SDEnone; +} + +/*################################################################*/ +/*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/ + +/* * Routines for handling BSDF data */ #include "standard.h" -#include "bsdf.h" #include "paths.h" -#include "ezxml.h" #include #define MAXLATS 46 /* maximum number of latitudes */ @@ -23,7 +804,7 @@ typedef struct { } lat[MAXLATS+1]; /* latitudes */ } ANGLE_BASIS; -#define MAXABASES 3 /* limit on defined bases */ +#define MAXABASES 7 /* limit on defined bases */ static ANGLE_BASIS abase_list[MAXABASES] = { { @@ -61,8 +842,42 @@ static ANGLE_BASIS abase_list[MAXABASES] = { static int nabases = 3; /* current number of defined bases */ +#define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6) static int +fequal(double a, double b) +{ + if (b != .0) + a = a/b - 1.; + return((a <= 1e-6) & (a >= -1e-6)); +} + +/* Returns the name of the given tag */ +#ifdef ezxml_name +#undef ezxml_name +static char * +ezxml_name(ezxml_t xml) +{ + if (xml == NULL) + return(NULL); + return(xml->name); +} +#endif + +/* Returns the given tag's character content or empty string if none */ +#ifdef ezxml_txt +#undef ezxml_txt +static char * +ezxml_txt(ezxml_t xml) +{ + if (xml == NULL) + return(""); + return(xml->txt); +} +#endif + + +static int ab_getvec( /* get vector for this angle basis index */ FVECT v, int ndx, @@ -71,16 +886,16 @@ ab_getvec( /* get vector for this angle basis index * { ANGLE_BASIS *ab = (ANGLE_BASIS *)p; int li; - double alt, azi, d; + double pol, azi, d; if ((ndx < 0) | (ndx >= ab->nangles)) return(0); for (li = 0; ndx >= ab->lat[li].nphis; li++) ndx -= ab->lat[li].nphis; - alt = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin); + pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin); azi = 2.*PI*ndx/ab->lat[li].nphis; - v[2] = d = cos(alt); - d = sqrt(1. - d*d); /* sin(alt) */ + v[2] = d = cos(pol); + d = sqrt(1. - d*d); /* sin(pol) */ v[0] = cos(azi)*d; v[1] = sin(azi)*d; return(1); @@ -95,14 +910,14 @@ ab_getndx( /* get index corresponding to the given ve { ANGLE_BASIS *ab = (ANGLE_BASIS *)p; int li, ndx; - double alt, azi, d; + double pol, azi, d; if ((v[2] < -1.0) | (v[2] > 1.0)) return(-1); - alt = 180.0/PI*acos(v[2]); + pol = 180.0/PI*acos(v[2]); azi = 180.0/PI*atan2(v[1], v[0]); if (azi < 0.0) azi += 360.0; - for (li = 1; ab->lat[li].tmin <= alt; li++) + for (li = 1; ab->lat[li].tmin <= pol; li++) if (!ab->lat[li].nphis) return(-1); --li; @@ -174,6 +989,87 @@ ab_getndxR( /* get index corresponding to the reverse static void +load_angle_basis( /* load custom BSDF angle basis */ + ezxml_t wab +) +{ + char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName")); + ezxml_t wbb; + int i; + + if (!abname || !*abname) + return; + for (i = nabases; i--; ) + if (!strcasecmp(abname, abase_list[i].name)) + return; /* assume it's the same */ + if (nabases >= MAXABASES) + error(INTERNAL, "too many angle bases"); + strcpy(abase_list[nabases].name, abname); + abase_list[nabases].nangles = 0; + for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock"); + wbb != NULL; i++, wbb = wbb->next) { + if (i >= MAXLATS) + error(INTERNAL, "too many latitudes in custom basis"); + abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt( + ezxml_child(ezxml_child(wbb, + "ThetaBounds"), "UpperTheta"))); + if (!i) + abase_list[nabases].lat[i].tmin = + -abase_list[nabases].lat[i+1].tmin; + else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb, + "ThetaBounds"), "LowerTheta"))), + abase_list[nabases].lat[i].tmin)) + error(WARNING, "theta values disagree in custom basis"); + abase_list[nabases].nangles += + abase_list[nabases].lat[i].nphis = + atoi(ezxml_txt(ezxml_child(wbb, "nPhis"))); + } + abase_list[nabases++].lat[i].nphis = 0; +} + + +static void +load_geometry( /* load geometric dimensions and description (if any) */ + struct BSDF_data *dp, + ezxml_t wdb +) +{ + ezxml_t geom; + double cfact; + const char *fmt, *mgfstr; + + dp->dim[0] = dp->dim[1] = dp->dim[2] = 0; + dp->mgf = NULL; + if ((geom = ezxml_child(wdb, "Width")) != NULL) + dp->dim[0] = atof(ezxml_txt(geom)) * + to_meters(ezxml_attr(geom, "unit")); + if ((geom = ezxml_child(wdb, "Height")) != NULL) + dp->dim[1] = atof(ezxml_txt(geom)) * + to_meters(ezxml_attr(geom, "unit")); + if ((geom = ezxml_child(wdb, "Thickness")) != NULL) + dp->dim[2] = atof(ezxml_txt(geom)) * + to_meters(ezxml_attr(geom, "unit")); + if ((geom = ezxml_child(wdb, "Geometry")) == NULL || + (mgfstr = ezxml_txt(geom)) == NULL) + return; + if ((fmt = ezxml_attr(geom, "format")) != NULL && + strcasecmp(fmt, "MGF")) { + sprintf(errmsg, "unrecognized geometry format '%s'", fmt); + error(WARNING, errmsg); + return; + } + cfact = to_meters(ezxml_attr(geom, "unit")); + dp->mgf = (char *)malloc(strlen(mgfstr)+32); + if (dp->mgf == NULL) + error(SYSTEM, "out of memory in load_geometry"); + if (cfact < 0.99 || cfact > 1.01) + sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr); + else + strcpy(dp->mgf, mgfstr); +} + + +static void load_bsdf_data( /* load BSDF distribution for this wavelength */ struct BSDF_data *dp, ezxml_t wdb @@ -184,13 +1080,12 @@ load_bsdf_data( /* load BSDF distribution for this wa char *sdata; int i; - if ((cbasis == NULL) | (rbasis == NULL)) { + if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) { error(WARNING, "missing column/row basis for BSDF"); return; } - /* XXX need to add routines for loading in foreign bases */ for (i = nabases; i--; ) - if (!strcmp(cbasis, abase_list[i].name)) { + if (!strcasecmp(cbasis, abase_list[i].name)) { dp->ninc = abase_list[i].nangles; dp->ib_priv = (void *)&abase_list[i]; dp->ib_vec = ab_getvecR; @@ -199,12 +1094,12 @@ load_bsdf_data( /* load BSDF distribution for this wa break; } if (i < 0) { - sprintf(errmsg, "unsupported ColumnAngleBasis '%s'", cbasis); + sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis); error(WARNING, errmsg); return; } for (i = nabases; i--; ) - if (!strcmp(rbasis, abase_list[i].name)) { + if (!strcasecmp(rbasis, abase_list[i].name)) { dp->nout = abase_list[i].nangles; dp->ob_priv = (void *)&abase_list[i]; dp->ob_vec = ab_getvec; @@ -213,13 +1108,13 @@ load_bsdf_data( /* load BSDF distribution for this wa break; } if (i < 0) { - sprintf(errmsg, "unsupported RowAngleBasis '%s'", cbasis); + sprintf(errmsg, "undefined RowAngleBasis '%s'", rbasis); error(WARNING, errmsg); return; } /* read BSDF data */ sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData")); - if (sdata == NULL) { + if (!sdata || !*sdata) { error(WARNING, "missing BSDF ScatteringData"); return; } @@ -243,7 +1138,7 @@ load_bsdf_data( /* load BSDF distribution for this wa sdata++; if (*sdata) { sprintf(errmsg, "%d extra characters after BSDF ScatteringData", - strlen(sdata)); + (int)strlen(sdata)); error(WARNING, errmsg); } } @@ -254,64 +1149,112 @@ check_bsdf_data( /* check that BSDF data is sane */ struct BSDF_data *dp ) { - double * omega_arr; - double dom, hemi_total; + double *omega_iarr, *omega_oarr; + double dom, contrib, hemi_total, full_total; int nneg; + FVECT v; int i, o; if (dp == NULL || dp->bsdf == NULL) return(0); - omega_arr = (double *)calloc(dp->nout, sizeof(double)); - if (omega_arr == NULL) + omega_iarr = (double *)calloc(dp->ninc, sizeof(double)); + omega_oarr = (double *)calloc(dp->nout, sizeof(double)); + if ((omega_iarr == NULL) | (omega_oarr == NULL)) error(SYSTEM, "out of memory in check_bsdf_data"); + /* incoming projected solid angles */ hemi_total = .0; + for (i = dp->ninc; i--; ) { + dom = getBSDF_incohm(dp,i); + if (dom <= .0) { + error(WARNING, "zero/negative incoming solid angle"); + continue; + } + if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) { + error(WARNING, "illegal incoming BSDF direction"); + free(omega_iarr); free(omega_oarr); + return(0); + } + hemi_total += omega_iarr[i] = dom * -v[2]; + } + if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) { + sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%", + 100.*(hemi_total/PI - 1.)); + error(WARNING, errmsg); + } + dom = PI / hemi_total; /* fix normalization */ + for (i = dp->ninc; i--; ) + omega_iarr[i] *= dom; + /* outgoing projected solid angles */ + hemi_total = .0; for (o = dp->nout; o--; ) { - FVECT v; dom = getBSDF_outohm(dp,o); if (dom <= .0) { - error(WARNING, "zero/negative solid angle"); + error(WARNING, "zero/negative outgoing solid angle"); continue; } if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) { error(WARNING, "illegal outgoing BSDF direction"); - free(omega_arr); + free(omega_iarr); free(omega_oarr); return(0); } - hemi_total += omega_arr[o] = dom*v[2]; + hemi_total += omega_oarr[o] = dom * v[2]; } if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) { sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%", 100.*(hemi_total/PI - 1.)); error(WARNING, errmsg); } - dom = PI / hemi_total; /* normalize solid angles */ + dom = PI / hemi_total; /* fix normalization */ for (o = dp->nout; o--; ) - omega_arr[o] *= dom; - nneg = 0; - for (i = dp->ninc; i--; ) { + omega_oarr[o] *= dom; + nneg = 0; /* check outgoing totals */ + for (i = 0; i < dp->ninc; i++) { hemi_total = .0; for (o = dp->nout; o--; ) { double f = BSDF_value(dp,i,o); - if (f > .0) - hemi_total += f*omega_arr[o]; - else if (f < -FTINY) - ++nneg; + if (f >= .0) + hemi_total += f*omega_oarr[o]; + else { + nneg += (f < -FTINY); + BSDF_value(dp,i,o) = .0f; + } } - if (hemi_total > 1.02) { - sprintf(errmsg, "BSDF direction passes %.1f%% of light", - 100.*hemi_total); + if (hemi_total > 1.01) { + sprintf(errmsg, + "incoming BSDF direction %d passes %.1f%% of light", + i, 100.*hemi_total); error(WARNING, errmsg); } } - free(omega_arr); - if (nneg > 0) { - sprintf(errmsg, "%d negative BSDF values", nneg); + if (nneg) { + sprintf(errmsg, "%d negative BSDF values (ignored)", nneg); error(WARNING, errmsg); - return(0); } + full_total = .0; /* reverse roles and check again */ + for (o = 0; o < dp->nout; o++) { + hemi_total = .0; + for (i = dp->ninc; i--; ) + hemi_total += BSDF_value(dp,i,o) * omega_iarr[i]; + + if (hemi_total > 1.01) { + sprintf(errmsg, + "outgoing BSDF direction %d collects %.1f%% of light", + o, 100.*hemi_total); + error(WARNING, errmsg); + } + full_total += hemi_total*omega_oarr[o]; + } + full_total /= PI; + if (full_total > 1.00001) { + sprintf(errmsg, "BSDF transfers %.4f%% of light", + 100.*full_total); + error(WARNING, errmsg); + } + free(omega_iarr); free(omega_oarr); return(1); } + struct BSDF_data * load_BSDF( /* load BSDF data from file */ char *fname @@ -348,18 +1291,35 @@ load_BSDF( /* load BSDF data from file */ return(NULL); } wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer"); + if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl, + "DataDefinition"), "IncidentDataStructure")), + "Columns")) { + sprintf(errmsg, + "BSDF \"%s\": unsupported IncidentDataStructure", + path); + error(WARNING, errmsg); + ezxml_free(fl); + return(NULL); + } + load_angle_basis(ezxml_child(ezxml_child(wtl, + "DataDefinition"), "AngleBasis")); dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data)); + load_geometry(dp, ezxml_child(wtl, "Material")); for (wld = ezxml_child(wtl, "WavelengthData"); wld != NULL; wld = wld->next) { - if (strcmp(ezxml_txt(ezxml_child(wld,"Wavelength")), "Visible")) + if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")), + "Visible")) continue; - wdb = ezxml_child(wld, "WavelengthDataBlock"); - if (wdb == NULL) continue; - if (strcmp(ezxml_txt(ezxml_child(wdb,"WavelengthDataDirection")), + for (wdb = ezxml_child(wld, "WavelengthDataBlock"); + wdb != NULL; wdb = wdb->next) + if (!strcasecmp(ezxml_txt(ezxml_child(wdb, + "WavelengthDataDirection")), "Transmission Front")) - continue; - load_bsdf_data(dp, wdb); /* load front BTDF */ - break; /* ignore the rest */ + break; + if (wdb != NULL) { /* load front BTDF */ + load_bsdf_data(dp, wdb); + break; /* ignore the rest */ + } } ezxml_free(fl); /* done with XML file */ if (!check_bsdf_data(dp)) { @@ -379,6 +1339,8 @@ free_BSDF( /* free BSDF data structure */ { if (b == NULL) return; + if (b->mgf != NULL) + free(b->mgf); if (b->bsdf != NULL) free(b->bsdf); free(b); @@ -435,8 +1397,6 @@ r_BSDF_outvec( /* compute random output vector at giv } -#define FEQ(a,b) ((a)-(b) <= 1e-7 && (b)-(a) <= 1e-7) - static int addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */ char *xfarg[], @@ -487,12 +1447,14 @@ int getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */ MAT4 xm, FVECT nrm, - UpDir ud + UpDir ud, + char *xfbuf ) { char *xfargs[7]; XF myxf; FVECT updir, xdest, ydest; + int i; updir[0] = updir[1] = updir[2] = 0.; switch (ud) { @@ -523,5 +1485,16 @@ getBSDF_xfm( /* compute BSDF orient. -> world orient. fcross(ydest, nrm, xdest); xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs); copymat4(xm, myxf.xfm); + if (xfbuf == NULL) + return(1); + /* return xf arguments as well */ + for (i = 0; xfargs[i] != NULL; i++) { + *xfbuf++ = ' '; + strcpy(xfbuf, xfargs[i]); + while (*xfbuf) ++xfbuf; + } return(1); } + +/*######### END DEPRECATED ROUTINES #######*/ +/*################################################################*/