ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.59
Committed: Sat Mar 27 17:50:18 2021 UTC (4 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.58: +15 -11 lines
Log Message:
fix: Allow different front/back diffuse reflectance in BSDF library

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: bsdf.c,v 2.58 2020/05/14 19:20:13 greg Exp $";
3 #endif
4 /*
5 * bsdf.c
6 *
7 * Definitions for bidirectional scattering distribution functions.
8 *
9 * Created by Greg Ward on 1/10/11.
10 *
11 */
12
13 #define _USE_MATH_DEFINES
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include <math.h>
18 #include <ctype.h>
19 #include "ezxml.h"
20 #include "hilbert.h"
21 #include "bsdf.h"
22 #include "bsdf_m.h"
23 #include "bsdf_t.h"
24
25 /* English ASCII strings corresponding to ennumerated errors */
26 const char *SDerrorEnglish[] = {
27 "No error",
28 "Memory error",
29 "File input/output error",
30 "File format error",
31 "Illegal argument",
32 "Invalid data",
33 "Unsupported feature",
34 "Internal program error",
35 "Unknown error"
36 };
37
38 /* Pointer to error list in preferred language */
39 const char **SDerrorList = SDerrorEnglish;
40
41 /* Additional information on last error (ASCII English) */
42 char SDerrorDetail[256];
43
44 /* Empty distribution for getCDist() calls that fail for some reason */
45 const SDCDst SDemptyCD;
46
47 /* Cache of loaded BSDFs */
48 struct SDCache_s *SDcacheList = NULL;
49
50 /* Retain BSDFs in cache list? */
51 int SDretainSet = SDretainNone;
52
53 /* Maximum cache size for any given BSDF? */
54 unsigned long SDmaxCache = 0; /* 0 == unlimited */
55
56 /* Report any error to the indicated stream */
57 SDError
58 SDreportError(SDError ec, FILE *fp)
59 {
60 if (!ec)
61 return SDEnone;
62 if ((ec < SDEnone) | (ec > SDEunknown)) {
63 SDerrorDetail[0] = '\0';
64 ec = SDEunknown;
65 }
66 if (fp == NULL)
67 return ec;
68 fputs(SDerrorList[ec], fp);
69 if (SDerrorDetail[0]) {
70 fputs(": ", fp);
71 fputs(SDerrorDetail, fp);
72 }
73 fputc('\n', fp);
74 if (fp != stderr)
75 fflush(fp);
76 return ec;
77 }
78
79 static double
80 to_meters( /* return factor to convert given unit to meters */
81 const char *unit
82 )
83 {
84 if (unit == NULL) return(1.); /* safe assumption? */
85 if (!strcasecmp(unit, "Meter")) return(1.);
86 if (!strcasecmp(unit, "Foot")) return(.3048);
87 if (!strcasecmp(unit, "Inch")) return(.0254);
88 if (!strcasecmp(unit, "Centimeter")) return(.01);
89 if (!strcasecmp(unit, "Millimeter")) return(.001);
90 sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
91 return(-1.);
92 }
93
94 /* Load geometric dimensions and description (if any) */
95 static SDError
96 SDloadGeometry(SDData *sd, ezxml_t wtl)
97 {
98 ezxml_t node, matl, geom;
99 double cfact;
100 const char *fmt = NULL, *mgfstr;
101
102 SDerrorDetail[0] = '\0';
103 sd->matn[0] = '\0'; sd->makr[0] = '\0';
104 sd->dim[0] = sd->dim[1] = sd->dim[2] = 0;
105 matl = ezxml_child(wtl, "Material");
106 if (matl != NULL) { /* get material info. */
107 if ((node = ezxml_child(matl, "Name")) != NULL) {
108 strncpy(sd->matn, ezxml_txt(node), SDnameLn);
109 if (sd->matn[SDnameLn-1])
110 strcpy(sd->matn+(SDnameLn-4), "...");
111 }
112 if ((node = ezxml_child(matl, "Manufacturer")) != NULL) {
113 strncpy(sd->makr, ezxml_txt(node), SDnameLn);
114 if (sd->makr[SDnameLn-1])
115 strcpy(sd->makr+(SDnameLn-4), "...");
116 }
117 if ((node = ezxml_child(matl, "Width")) != NULL)
118 sd->dim[0] = atof(ezxml_txt(node)) *
119 to_meters(ezxml_attr(node, "unit"));
120 if ((node = ezxml_child(matl, "Height")) != NULL)
121 sd->dim[1] = atof(ezxml_txt(node)) *
122 to_meters(ezxml_attr(node, "unit"));
123 if ((node = ezxml_child(matl, "Thickness")) != NULL)
124 sd->dim[2] = atof(ezxml_txt(node)) *
125 to_meters(ezxml_attr(node, "unit"));
126 if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) {
127 if (!SDerrorDetail[0])
128 sprintf(SDerrorDetail, "Negative dimension in \"%s\"",
129 sd->name);
130 return SDEdata;
131 }
132 }
133 sd->mgf = NULL;
134 geom = ezxml_child(wtl, "Geometry");
135 if (geom == NULL) /* no actual geometry? */
136 return SDEnone;
137 fmt = ezxml_attr(geom, "format");
138 if (fmt != NULL && strcasecmp(fmt, "MGF")) {
139 sprintf(SDerrorDetail,
140 "Unrecognized geometry format '%s' in \"%s\"",
141 fmt, sd->name);
142 return SDEsupport;
143 }
144 if ((node = ezxml_child(geom, "MGFblock")) == NULL ||
145 (mgfstr = ezxml_txt(node)) == NULL)
146 return SDEnone;
147 while (isspace(*mgfstr))
148 ++mgfstr;
149 if (!*mgfstr)
150 return SDEnone;
151 cfact = to_meters(ezxml_attr(node, "unit"));
152 if (cfact <= 0)
153 return SDEformat;
154 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
155 if (sd->mgf == NULL) {
156 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
157 return SDEmemory;
158 }
159 if (cfact < 0.99 || cfact > 1.01)
160 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
161 else
162 strcpy(sd->mgf, mgfstr);
163 return SDEnone;
164 }
165
166 /* Load a BSDF struct from the given file (free first and keep name) */
167 SDError
168 SDloadFile(SDData *sd, const char *fname)
169 {
170 SDError lastErr;
171 ezxml_t fl, wtl;
172
173 if ((sd == NULL) | (fname == NULL || !*fname))
174 return SDEargument;
175 /* free old data, keeping name */
176 SDfreeBSDF(sd);
177 /* parse XML file */
178 fl = ezxml_parse_file(fname);
179 if (fl == NULL) {
180 sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
181 return SDEfile;
182 }
183 if (ezxml_error(fl)[0]) {
184 sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
185 ezxml_free(fl);
186 return SDEformat;
187 }
188 if (strcmp(ezxml_name(fl), "WindowElement")) {
189 sprintf(SDerrorDetail,
190 "BSDF \"%s\": top level node not 'WindowElement'",
191 sd->name);
192 ezxml_free(fl);
193 return SDEformat;
194 }
195 wtl = ezxml_child(fl, "FileType");
196 if (wtl != NULL && strcmp(ezxml_txt(wtl), "BSDF")) {
197 sprintf(SDerrorDetail,
198 "XML \"%s\": wrong FileType (must be 'BSDF')",
199 sd->name);
200 ezxml_free(fl);
201 return SDEformat;
202 }
203 wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
204 if (wtl == NULL) {
205 sprintf(SDerrorDetail, "BSDF \"%s\": no optical layers",
206 sd->name);
207 ezxml_free(fl);
208 return SDEformat;
209 }
210 /* load geometry if present */
211 lastErr = SDloadGeometry(sd, wtl);
212 if (lastErr) {
213 ezxml_free(fl);
214 return lastErr;
215 }
216 /* try loading variable resolution data */
217 lastErr = SDloadTre(sd, wtl);
218 /* check our result */
219 if (lastErr == SDEsupport) /* try matrix BSDF if not tree data */
220 lastErr = SDloadMtx(sd, wtl);
221
222 /* done with XML file */
223 ezxml_free(fl);
224
225 if (lastErr) { /* was there a load error? */
226 SDfreeBSDF(sd);
227 return lastErr;
228 }
229 /* remove any insignificant components */
230 if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
231 SDfreeSpectralDF(sd->rf); sd->rf = NULL;
232 }
233 if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
234 SDfreeSpectralDF(sd->rb); sd->rb = NULL;
235 }
236 if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
237 SDfreeSpectralDF(sd->tf); sd->tf = NULL;
238 }
239 if (sd->tb != NULL && sd->tb->maxHemi <= .001) {
240 SDfreeSpectralDF(sd->tb); sd->tb = NULL;
241 }
242 /* return success */
243 return SDEnone;
244 }
245
246 /* Allocate new spectral distribution function */
247 SDSpectralDF *
248 SDnewSpectralDF(int nc)
249 {
250 SDSpectralDF *df;
251
252 if (nc <= 0) {
253 strcpy(SDerrorDetail, "Zero component spectral DF request");
254 return NULL;
255 }
256 df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
257 (nc-1)*sizeof(SDComponent));
258 if (df == NULL) {
259 sprintf(SDerrorDetail,
260 "Cannot allocate %d component spectral DF", nc);
261 return NULL;
262 }
263 df->minProjSA = .0;
264 df->maxHemi = .0;
265 df->ncomp = nc;
266 memset(df->comp, 0, nc*sizeof(SDComponent));
267 return df;
268 }
269
270 /* Add component(s) to spectral distribution function */
271 SDSpectralDF *
272 SDaddComponent(SDSpectralDF *odf, int nadd)
273 {
274 SDSpectralDF *df;
275
276 if (odf == NULL)
277 return SDnewSpectralDF(nadd);
278 if (nadd <= 0)
279 return odf;
280 df = (SDSpectralDF *)realloc(odf, sizeof(SDSpectralDF) +
281 (odf->ncomp+nadd-1)*sizeof(SDComponent));
282 if (df == NULL) {
283 sprintf(SDerrorDetail,
284 "Cannot add %d component(s) to spectral DF", nadd);
285 SDfreeSpectralDF(odf);
286 return NULL;
287 }
288 memset(df->comp+df->ncomp, 0, nadd*sizeof(SDComponent));
289 df->ncomp += nadd;
290 return df;
291 }
292
293 /* Free cached cumulative distributions for BSDF component */
294 void
295 SDfreeCumulativeCache(SDSpectralDF *df)
296 {
297 int n;
298 SDCDst *cdp;
299
300 if (df == NULL)
301 return;
302 for (n = df->ncomp; n-- > 0; )
303 while ((cdp = df->comp[n].cdList) != NULL) {
304 df->comp[n].cdList = cdp->next;
305 free(cdp);
306 }
307 }
308
309 /* Free a spectral distribution function */
310 void
311 SDfreeSpectralDF(SDSpectralDF *df)
312 {
313 int n;
314
315 if (df == NULL)
316 return;
317 SDfreeCumulativeCache(df);
318 for (n = df->ncomp; n-- > 0; )
319 if (df->comp[n].dist != NULL)
320 (*df->comp[n].func->freeSC)(df->comp[n].dist);
321 free(df);
322 }
323
324 /* Shorten file path to useable BSDF name, removing suffix */
325 void
326 SDclipName(char *res, const char *fname)
327 {
328 const char *cp, *dot = NULL;
329
330 for (cp = fname; *cp; cp++)
331 if (*cp == '.')
332 dot = cp;
333 if ((dot == NULL) | (dot < fname+2))
334 dot = cp;
335 if (dot - fname >= SDnameLn)
336 fname = dot - SDnameLn + 1;
337 while (fname < dot)
338 *res++ = *fname++;
339 *res = '\0';
340 }
341
342 /* Initialize an unused BSDF struct (simply clears to zeroes) */
343 void
344 SDclearBSDF(SDData *sd, const char *fname)
345 {
346 if (sd == NULL)
347 return;
348 memset(sd, 0, sizeof(SDData));
349 if (fname == NULL)
350 return;
351 SDclipName(sd->name, fname);
352 }
353
354 /* Free data associated with BSDF struct */
355 void
356 SDfreeBSDF(SDData *sd)
357 {
358 if (sd == NULL)
359 return;
360 if (sd->mgf != NULL) {
361 free(sd->mgf);
362 sd->mgf = NULL;
363 }
364 if (sd->rf != NULL) {
365 SDfreeSpectralDF(sd->rf);
366 sd->rf = NULL;
367 }
368 if (sd->rb != NULL) {
369 SDfreeSpectralDF(sd->rb);
370 sd->rb = NULL;
371 }
372 if (sd->tf != NULL) {
373 SDfreeSpectralDF(sd->tf);
374 sd->tf = NULL;
375 }
376 if (sd->tb != NULL) {
377 SDfreeSpectralDF(sd->tb);
378 sd->tb = NULL;
379 }
380 sd->rLambFront.cieY = .0;
381 sd->rLambFront.spec.flags = 0;
382 sd->rLambBack.cieY = .0;
383 sd->rLambBack.spec.flags = 0;
384 sd->tLambFront.cieY = .0;
385 sd->tLambFront.spec.flags = 0;
386 sd->tLambBack.cieY = .0;
387 sd->tLambBack.spec.flags = 0;
388 }
389
390 /* Find writeable BSDF by name, or allocate new cache entry if absent */
391 SDData *
392 SDgetCache(const char *bname)
393 {
394 struct SDCache_s *sdl;
395 char sdnam[SDnameLn];
396
397 if (bname == NULL)
398 return NULL;
399
400 SDclipName(sdnam, bname);
401 for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
402 if (!strcmp(sdl->bsdf.name, sdnam)) {
403 sdl->refcnt++;
404 return &sdl->bsdf;
405 }
406
407 sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
408 if (sdl == NULL)
409 return NULL;
410
411 strcpy(sdl->bsdf.name, sdnam);
412 sdl->next = SDcacheList;
413 SDcacheList = sdl;
414
415 sdl->refcnt = 1;
416 return &sdl->bsdf;
417 }
418
419 /* Get loaded BSDF from cache (or load and cache it on first call) */
420 /* Report any problem to stderr and return NULL on failure */
421 const SDData *
422 SDcacheFile(const char *fname)
423 {
424 SDData *sd;
425 SDError ec;
426
427 if (fname == NULL || !*fname)
428 return NULL;
429 SDerrorDetail[0] = '\0';
430 /* PLACE MUTEX LOCK HERE FOR THREAD-SAFE */
431 if ((sd = SDgetCache(fname)) == NULL) {
432 SDreportError(SDEmemory, stderr);
433 return NULL;
434 }
435 if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
436 SDreportError(ec, stderr);
437 SDfreeCache(sd);
438 sd = NULL;
439 }
440 /* END MUTEX LOCK */
441 return sd;
442 }
443
444 /* Free a BSDF from our cache (clear all if NULL) */
445 void
446 SDfreeCache(const SDData *sd)
447 {
448 struct SDCache_s *sdl, *sdLast = NULL;
449
450 if (sd == NULL) { /* free entire list */
451 while ((sdl = SDcacheList) != NULL) {
452 SDcacheList = sdl->next;
453 SDfreeBSDF(&sdl->bsdf);
454 free(sdl);
455 }
456 return;
457 }
458 for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
459 if (&sdl->bsdf == sd)
460 break;
461 if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
462 return; /* missing or still in use */
463 /* keep unreferenced data? */
464 if (SDisLoaded(sd) && SDretainSet) {
465 if (SDretainSet == SDretainAll)
466 return; /* keep everything */
467 /* else free cumulative data */
468 SDfreeCumulativeCache(sd->rf);
469 SDfreeCumulativeCache(sd->rb);
470 SDfreeCumulativeCache(sd->tf);
471 SDfreeCumulativeCache(sd->tb);
472 return;
473 }
474 /* remove from list and free */
475 if (sdLast == NULL)
476 SDcacheList = sdl->next;
477 else
478 sdLast->next = sdl->next;
479 SDfreeBSDF(&sdl->bsdf);
480 free(sdl);
481 }
482
483 /* Sample an individual BSDF component */
484 SDError
485 SDsampComponent(SDValue *sv, FVECT ioVec, double randX, SDComponent *sdc)
486 {
487 float coef[SDmaxCh];
488 SDError ec;
489 FVECT inVec;
490 const SDCDst *cd;
491 double d;
492 int n;
493 /* check arguments */
494 if ((sv == NULL) | (ioVec == NULL) | (sdc == NULL))
495 return SDEargument;
496 /* get cumulative distribution */
497 VCOPY(inVec, ioVec);
498 sv->cieY = 0;
499 cd = (*sdc->func->getCDist)(inVec, sdc);
500 if (cd != NULL)
501 sv->cieY = cd->cTotal;
502 if (sv->cieY <= 1e-6) { /* nothing to sample? */
503 sv->spec = c_dfcolor;
504 memset(ioVec, 0, sizeof(FVECT));
505 return SDEnone;
506 }
507 /* compute sample direction */
508 ec = (*sdc->func->sampCDist)(ioVec, randX, cd);
509 if (ec)
510 return ec;
511 /* get BSDF color */
512 n = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
513 if (n <= 0) {
514 strcpy(SDerrorDetail, "BSDF sample value error");
515 return SDEinternal;
516 }
517 sv->spec = sdc->cspec[0];
518 d = coef[0];
519 while (--n) {
520 c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
521 d += coef[n];
522 }
523 c_ccvt(&sv->spec, C_CSXY); /* make sure (x,y) is set */
524 return SDEnone;
525 }
526
527 #define MS_MAXDIM 15
528
529 /* Convert 1-dimensional random variable to N-dimensional */
530 void
531 SDmultiSamp(double t[], int n, double randX)
532 {
533 unsigned nBits;
534 double scale;
535 bitmask_t ndx, coord[MS_MAXDIM];
536
537 if (n <= 0) /* check corner cases */
538 return;
539 if (randX < 0) randX = 0;
540 else if (randX >= 1.) randX = 0.999999999999999;
541 if (n == 1) {
542 t[0] = randX;
543 return;
544 }
545 while (n > MS_MAXDIM) /* punt for higher dimensions */
546 t[--n] = rand()*(1./(RAND_MAX+.5));
547 nBits = (8*sizeof(bitmask_t) - 1) / n;
548 ndx = randX * (double)((bitmask_t)1 << (nBits*n));
549 /* get coordinate on Hilbert curve */
550 hilbert_i2c(n, nBits, ndx, coord);
551 /* convert back to [0,1) range */
552 scale = 1. / (double)((bitmask_t)1 << nBits);
553 while (n--)
554 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
555 }
556
557 #undef MS_MAXDIM
558
559 /* Generate diffuse hemispherical sample */
560 static void
561 SDdiffuseSamp(FVECT outVec, int outFront, double randX)
562 {
563 /* convert to position on hemisphere */
564 SDmultiSamp(outVec, 2, randX);
565 SDsquare2disk(outVec, outVec[0], outVec[1]);
566 outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
567 outVec[2] = sqrt(outVec[2]*(outVec[2]>0));
568 if (!outFront) /* going out back? */
569 outVec[2] = -outVec[2];
570 }
571
572 /* Query projected solid angle coverage for non-diffuse BSDF direction */
573 SDError
574 SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2,
575 int qflags, const SDData *sd)
576 {
577 SDSpectralDF *rdf, *tdf;
578 SDError ec;
579 int i;
580 /* check arguments */
581 if ((projSA == NULL) | (v1 == NULL) | (sd == NULL))
582 return SDEargument;
583 /* initialize extrema */
584 switch (qflags) {
585 case SDqueryMax:
586 projSA[0] = .0;
587 break;
588 case SDqueryMin+SDqueryMax:
589 projSA[1] = .0;
590 /* fall through */
591 case SDqueryMin:
592 projSA[0] = 10.;
593 break;
594 case 0:
595 return SDEargument;
596 }
597 if (v1[2] > 0) { /* front surface query? */
598 rdf = sd->rf;
599 tdf = (sd->tf != NULL) ? sd->tf : sd->tb;
600 } else {
601 rdf = sd->rb;
602 tdf = (sd->tb != NULL) ? sd->tb : sd->tf;
603 }
604 if (v2 != NULL) { /* bidirectional? */
605 if (v1[2] > 0 ^ v2[2] > 0)
606 rdf = NULL;
607 else
608 tdf = NULL;
609 }
610 ec = SDEdata; /* run through components */
611 for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
612 ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2,
613 qflags, &rdf->comp[i]);
614 if (ec)
615 return ec;
616 }
617 for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) {
618 ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2,
619 qflags, &tdf->comp[i]);
620 if (ec)
621 return ec;
622 }
623 if (ec) { /* all diffuse? */
624 projSA[0] = M_PI;
625 if (qflags == SDqueryMin+SDqueryMax)
626 projSA[1] = M_PI;
627 } else if (qflags == SDqueryMin+SDqueryMax && projSA[0] > projSA[1])
628 projSA[0] = projSA[1];
629 return SDEnone;
630 }
631
632 /* Return BSDF for the given incident and scattered ray vectors */
633 SDError
634 SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
635 {
636 int inFront, outFront;
637 SDSpectralDF *sdf;
638 float coef[SDmaxCh];
639 int nch, i;
640 /* check arguments */
641 if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
642 return SDEargument;
643 /* whose side are we on? */
644 inFront = (inVec[2] > 0);
645 outFront = (outVec[2] > 0);
646 /* start with diffuse portion */
647 if (inFront & outFront) {
648 *sv = sd->rLambFront;
649 sdf = sd->rf;
650 } else if (!(inFront | outFront)) {
651 *sv = sd->rLambBack;
652 sdf = sd->rb;
653 } else if (inFront) {
654 *sv = sd->tLambFront;
655 sdf = (sd->tf != NULL) ? sd->tf : sd->tb;
656 } else /* outFront & !inFront */ {
657 *sv = sd->tLambBack;
658 sdf = (sd->tb != NULL) ? sd->tb : sd->tf;
659 }
660 sv->cieY *= 1./M_PI;
661 /* add non-diffuse components */
662 i = (sdf != NULL) ? sdf->ncomp : 0;
663 while (i-- > 0) {
664 nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
665 &sdf->comp[i]);
666 while (nch-- > 0) {
667 c_cmix(&sv->spec, sv->cieY, &sv->spec,
668 coef[nch], &sdf->comp[i].cspec[nch]);
669 sv->cieY += coef[nch];
670 }
671 }
672 c_ccvt(&sv->spec, C_CSXY); /* make sure (x,y) is set */
673 return SDEnone;
674 }
675
676 /* Compute directional hemispherical scattering at this incident angle */
677 double
678 SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
679 {
680 double hsum;
681 SDSpectralDF *rdf, *tdf;
682 const SDCDst *cd;
683 int i;
684 /* check arguments */
685 if ((inVec == NULL) | (sd == NULL))
686 return .0;
687 /* gather diffuse components */
688 if (inVec[2] > 0) {
689 hsum = sd->rLambFront.cieY;
690 rdf = sd->rf;
691 tdf = (sd->tf != NULL) ? sd->tf : sd->tb;
692 } else /* !inFront */ {
693 hsum = sd->rLambBack.cieY;
694 rdf = sd->rb;
695 tdf = (sd->tb != NULL) ? sd->tb : sd->tf;
696 }
697 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
698 hsum = .0;
699 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
700 hsum += (inVec[2] > 0) ?
701 sd->tLambFront.cieY : sd->tLambBack.cieY;
702 /* gather non-diffuse components */
703 i = (((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR) &
704 (rdf != NULL)) ? rdf->ncomp : 0;
705 while (i-- > 0) { /* non-diffuse reflection */
706 cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
707 if (cd != NULL)
708 hsum += cd->cTotal;
709 }
710 i = (((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT) &
711 (tdf != NULL)) ? tdf->ncomp : 0;
712 while (i-- > 0) { /* non-diffuse transmission */
713 cd = (*tdf->comp[i].func->getCDist)(inVec, &tdf->comp[i]);
714 if (cd != NULL)
715 hsum += cd->cTotal;
716 }
717 return hsum;
718 }
719
720 /* Sample BSDF direction based on the given random variable */
721 SDError
722 SDsampBSDF(SDValue *sv, FVECT ioVec, double randX, int sflags, const SDData *sd)
723 {
724 SDError ec;
725 FVECT inVec;
726 int inFront;
727 SDSpectralDF *rdf, *tdf;
728 double rdiff;
729 float coef[SDmaxCh];
730 int i, j, n, nr;
731 SDComponent *sdc;
732 const SDCDst **cdarr = NULL;
733 /* check arguments */
734 if ((sv == NULL) | (ioVec == NULL) | (sd == NULL) |
735 (randX < 0) | (randX >= 1.))
736 return SDEargument;
737 /* whose side are we on? */
738 VCOPY(inVec, ioVec);
739 inFront = (inVec[2] > 0);
740 /* remember diffuse portions */
741 if (inFront) {
742 *sv = sd->rLambFront;
743 rdf = sd->rf;
744 tdf = (sd->tf != NULL) ? sd->tf : sd->tb;
745 } else /* !inFront */ {
746 *sv = sd->rLambBack;
747 rdf = sd->rb;
748 tdf = (sd->tb != NULL) ? sd->tb : sd->tf;
749 }
750 if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
751 sv->cieY = .0;
752 rdiff = sv->cieY;
753 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
754 sv->cieY += inFront ? sd->tLambFront.cieY : sd->tLambBack.cieY;
755 /* gather non-diffuse components */
756 i = nr = (((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR) &
757 (rdf != NULL)) ? rdf->ncomp : 0;
758 j = (((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT) &
759 (tdf != NULL)) ? tdf->ncomp : 0;
760 n = i + j;
761 if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
762 return SDEmemory;
763 while (j-- > 0) { /* non-diffuse transmission */
764 cdarr[i+j] = (*tdf->comp[j].func->getCDist)(inVec, &tdf->comp[j]);
765 if (cdarr[i+j] == NULL)
766 cdarr[i+j] = &SDemptyCD;
767 sv->cieY += cdarr[i+j]->cTotal;
768 }
769 while (i-- > 0) { /* non-diffuse reflection */
770 cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
771 if (cdarr[i] == NULL)
772 cdarr[i] = &SDemptyCD;
773 sv->cieY += cdarr[i]->cTotal;
774 }
775 if (sv->cieY <= 1e-6) { /* anything to sample? */
776 sv->cieY = .0;
777 memset(ioVec, 0, sizeof(FVECT));
778 return SDEnone;
779 }
780 /* scale random variable */
781 randX *= sv->cieY;
782 /* diffuse reflection? */
783 if (randX < rdiff) {
784 SDdiffuseSamp(ioVec, inFront, randX/rdiff);
785 goto done;
786 }
787 randX -= rdiff;
788 /* diffuse transmission? */
789 if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
790 const SDValue *sdt = inFront ? &sd->tLambFront : &sd->tLambBack;
791 if (randX < sdt->cieY) {
792 sv->spec = sdt->spec;
793 SDdiffuseSamp(ioVec, !inFront, randX/sdt->cieY);
794 goto done;
795 }
796 randX -= sdt->cieY;
797 }
798 /* else one of cumulative dist. */
799 for (i = 0; i < n && randX >= cdarr[i]->cTotal; i++)
800 randX -= cdarr[i]->cTotal;
801 if (i >= n)
802 return SDEinternal;
803 /* compute sample direction */
804 sdc = (i < nr) ? &rdf->comp[i] : &tdf->comp[i-nr];
805 ec = (*sdc->func->sampCDist)(ioVec, randX/cdarr[i]->cTotal, cdarr[i]);
806 if (ec)
807 return ec;
808 /* compute color */
809 j = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
810 if (j <= 0) {
811 sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
812 sd->name);
813 return SDEinternal;
814 }
815 sv->spec = sdc->cspec[0];
816 rdiff = coef[0];
817 while (--j) {
818 c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
819 rdiff += coef[j];
820 }
821 done:
822 if (cdarr != NULL)
823 free(cdarr);
824 c_ccvt(&sv->spec, C_CSXY); /* make sure (x,y) is set */
825 return SDEnone;
826 }
827
828 /* Compute World->BSDF transform from surface normal and up (Y) vector */
829 SDError
830 SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
831 {
832 if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
833 return SDEargument;
834 VCOPY(vMtx[2], sNrm);
835 if (normalize(vMtx[2]) == 0)
836 return SDEargument;
837 fcross(vMtx[0], uVec, vMtx[2]);
838 if (normalize(vMtx[0]) == 0)
839 return SDEargument;
840 fcross(vMtx[1], vMtx[2], vMtx[0]);
841 return SDEnone;
842 }
843
844 /* Compute inverse transform */
845 SDError
846 SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
847 {
848 RREAL mTmp[3][3];
849 double d;
850
851 if ((iMtx == NULL) | (vMtx == NULL))
852 return SDEargument;
853 /* compute determinant */
854 mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
855 mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
856 mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
857 d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
858 if (d == 0) {
859 strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
860 return SDEargument;
861 }
862 d = 1./d; /* invert matrix */
863 mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
864 mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
865 mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
866 mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
867 mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
868 mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
869 mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
870 memcpy(iMtx, mTmp, sizeof(mTmp));
871 return SDEnone;
872 }
873
874 /* Transform and normalize direction (column) vector */
875 SDError
876 SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
877 {
878 FVECT vTmp;
879
880 if ((resVec == NULL) | (inpVec == NULL))
881 return SDEargument;
882 if (vMtx == NULL) { /* assume they just want to normalize */
883 if (resVec != inpVec)
884 VCOPY(resVec, inpVec);
885 return (normalize(resVec) > 0) ? SDEnone : SDEargument;
886 }
887 vTmp[0] = DOT(vMtx[0], inpVec);
888 vTmp[1] = DOT(vMtx[1], inpVec);
889 vTmp[2] = DOT(vMtx[2], inpVec);
890 if (normalize(vTmp) == 0)
891 return SDEargument;
892 VCOPY(resVec, vTmp);
893 return SDEnone;
894 }