1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: bsdf.c,v 2.59 2021/03/27 17:50:18 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* bsdf.c |
6 |
* |
7 |
* Definitions for bidirectional scattering distribution functions. |
8 |
* |
9 |
* Created by Greg Ward on 1/10/11. |
10 |
* |
11 |
*/ |
12 |
|
13 |
#define _USE_MATH_DEFINES |
14 |
#include <stdio.h> |
15 |
#include <stdlib.h> |
16 |
#include <string.h> |
17 |
#include <math.h> |
18 |
#include <ctype.h> |
19 |
#include "ezxml.h" |
20 |
#include "hilbert.h" |
21 |
#include "bsdf.h" |
22 |
#include "bsdf_m.h" |
23 |
#include "bsdf_t.h" |
24 |
|
25 |
/* English ASCII strings corresponding to ennumerated errors */ |
26 |
const char *SDerrorEnglish[] = { |
27 |
"No error", |
28 |
"Memory error", |
29 |
"File input/output error", |
30 |
"File format error", |
31 |
"Illegal argument", |
32 |
"Invalid data", |
33 |
"Unsupported feature", |
34 |
"Internal program error", |
35 |
"Unknown error" |
36 |
}; |
37 |
|
38 |
/* Pointer to error list in preferred language */ |
39 |
const char **SDerrorList = SDerrorEnglish; |
40 |
|
41 |
/* Additional information on last error (ASCII English) */ |
42 |
char SDerrorDetail[256]; |
43 |
|
44 |
/* Empty distribution for getCDist() calls that fail for some reason */ |
45 |
const SDCDst SDemptyCD; |
46 |
|
47 |
/* Cache of loaded BSDFs */ |
48 |
struct SDCache_s *SDcacheList = NULL; |
49 |
|
50 |
/* Retain BSDFs in cache list? */ |
51 |
int SDretainSet = SDretainNone; |
52 |
|
53 |
/* Maximum cache size for any given BSDF? */ |
54 |
unsigned long SDmaxCache = 0; /* 0 == unlimited */ |
55 |
|
56 |
/* Report any error to the indicated stream */ |
57 |
SDError |
58 |
SDreportError(SDError ec, FILE *fp) |
59 |
{ |
60 |
if (!ec) |
61 |
return SDEnone; |
62 |
if ((ec < SDEnone) | (ec > SDEunknown)) { |
63 |
SDerrorDetail[0] = '\0'; |
64 |
ec = SDEunknown; |
65 |
} |
66 |
if (fp == NULL) |
67 |
return ec; |
68 |
fputs(SDerrorList[ec], fp); |
69 |
if (SDerrorDetail[0]) { |
70 |
fputs(": ", fp); |
71 |
fputs(SDerrorDetail, fp); |
72 |
} |
73 |
fputc('\n', fp); |
74 |
if (fp != stderr) |
75 |
fflush(fp); |
76 |
return ec; |
77 |
} |
78 |
|
79 |
static double |
80 |
to_meters( /* return factor to convert given unit to meters */ |
81 |
const char *unit |
82 |
) |
83 |
{ |
84 |
if (unit == NULL) return(1.); /* safe assumption? */ |
85 |
if (!strcasecmp(unit, "Meter")) return(1.); |
86 |
if (!strcasecmp(unit, "Foot")) return(.3048); |
87 |
if (!strcasecmp(unit, "Inch")) return(.0254); |
88 |
if (!strcasecmp(unit, "Centimeter")) return(.01); |
89 |
if (!strcasecmp(unit, "Millimeter")) return(.001); |
90 |
sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit); |
91 |
return(-1.); |
92 |
} |
93 |
|
94 |
/* Load geometric dimensions and description (if any) */ |
95 |
static SDError |
96 |
SDloadGeometry(SDData *sd, ezxml_t wtl) |
97 |
{ |
98 |
ezxml_t node, matl, geom; |
99 |
double cfact; |
100 |
const char *fmt = NULL, *mgfstr; |
101 |
|
102 |
SDerrorDetail[0] = '\0'; |
103 |
sd->matn[0] = '\0'; sd->makr[0] = '\0'; |
104 |
sd->dim[0] = sd->dim[1] = sd->dim[2] = 0; |
105 |
matl = ezxml_child(wtl, "Material"); |
106 |
if (matl != NULL) { /* get material info. */ |
107 |
if ((node = ezxml_child(matl, "Name")) != NULL) { |
108 |
strncpy(sd->matn, ezxml_txt(node), SDnameLn); |
109 |
if (sd->matn[SDnameLn-1]) |
110 |
strcpy(sd->matn+(SDnameLn-4), "..."); |
111 |
} |
112 |
if ((node = ezxml_child(matl, "Manufacturer")) != NULL) { |
113 |
strncpy(sd->makr, ezxml_txt(node), SDnameLn); |
114 |
if (sd->makr[SDnameLn-1]) |
115 |
strcpy(sd->makr+(SDnameLn-4), "..."); |
116 |
} |
117 |
if ((node = ezxml_child(matl, "Width")) != NULL) |
118 |
sd->dim[0] = atof(ezxml_txt(node)) * |
119 |
to_meters(ezxml_attr(node, "unit")); |
120 |
if ((node = ezxml_child(matl, "Height")) != NULL) |
121 |
sd->dim[1] = atof(ezxml_txt(node)) * |
122 |
to_meters(ezxml_attr(node, "unit")); |
123 |
if ((node = ezxml_child(matl, "Thickness")) != NULL) |
124 |
sd->dim[2] = atof(ezxml_txt(node)) * |
125 |
to_meters(ezxml_attr(node, "unit")); |
126 |
if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) { |
127 |
if (!SDerrorDetail[0]) |
128 |
sprintf(SDerrorDetail, "Negative dimension in \"%s\"", |
129 |
sd->name); |
130 |
return SDEdata; |
131 |
} |
132 |
} |
133 |
sd->mgf = NULL; |
134 |
geom = ezxml_child(wtl, "Geometry"); |
135 |
if (geom == NULL) /* no actual geometry? */ |
136 |
return SDEnone; |
137 |
fmt = ezxml_attr(geom, "format"); |
138 |
if (fmt != NULL && strcasecmp(fmt, "MGF")) { |
139 |
sprintf(SDerrorDetail, |
140 |
"Unrecognized geometry format '%s' in \"%s\"", |
141 |
fmt, sd->name); |
142 |
return SDEsupport; |
143 |
} |
144 |
if ((node = ezxml_child(geom, "MGFblock")) == NULL || |
145 |
(mgfstr = ezxml_txt(node)) == NULL) |
146 |
return SDEnone; |
147 |
while (isspace(*mgfstr)) |
148 |
++mgfstr; |
149 |
if (!*mgfstr) |
150 |
return SDEnone; |
151 |
cfact = to_meters(ezxml_attr(node, "unit")); |
152 |
if (cfact <= 0) |
153 |
return SDEformat; |
154 |
sd->mgf = (char *)malloc(strlen(mgfstr)+32); |
155 |
if (sd->mgf == NULL) { |
156 |
strcpy(SDerrorDetail, "Out of memory in SDloadGeometry"); |
157 |
return SDEmemory; |
158 |
} |
159 |
if (cfact < 0.99 || cfact > 1.01) |
160 |
sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr); |
161 |
else |
162 |
strcpy(sd->mgf, mgfstr); |
163 |
return SDEnone; |
164 |
} |
165 |
|
166 |
/* Load a BSDF struct from the given file (free first and keep name) */ |
167 |
SDError |
168 |
SDloadFile(SDData *sd, const char *fname) |
169 |
{ |
170 |
SDError lastErr; |
171 |
ezxml_t fl, wtl; |
172 |
|
173 |
if ((sd == NULL) | (fname == NULL || !*fname)) |
174 |
return SDEargument; |
175 |
/* free old data, keeping name */ |
176 |
SDfreeBSDF(sd); |
177 |
/* parse XML file */ |
178 |
fl = ezxml_parse_file(fname); |
179 |
if (fl == NULL) { |
180 |
sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname); |
181 |
return SDEfile; |
182 |
} |
183 |
if (ezxml_error(fl)[0]) { |
184 |
sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl)); |
185 |
ezxml_free(fl); |
186 |
return SDEformat; |
187 |
} |
188 |
if (strcmp(ezxml_name(fl), "WindowElement")) { |
189 |
sprintf(SDerrorDetail, |
190 |
"BSDF \"%s\": top level node not 'WindowElement'", |
191 |
sd->name); |
192 |
ezxml_free(fl); |
193 |
return SDEformat; |
194 |
} |
195 |
wtl = ezxml_child(fl, "FileType"); |
196 |
if (wtl != NULL && strcmp(ezxml_txt(wtl), "BSDF")) { |
197 |
sprintf(SDerrorDetail, |
198 |
"XML \"%s\": wrong FileType (must be 'BSDF')", |
199 |
sd->name); |
200 |
ezxml_free(fl); |
201 |
return SDEformat; |
202 |
} |
203 |
wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer"); |
204 |
if (wtl == NULL) { |
205 |
sprintf(SDerrorDetail, "BSDF \"%s\": no optical layers", |
206 |
sd->name); |
207 |
ezxml_free(fl); |
208 |
return SDEformat; |
209 |
} |
210 |
/* load geometry if present */ |
211 |
lastErr = SDloadGeometry(sd, wtl); |
212 |
if (lastErr) { |
213 |
ezxml_free(fl); |
214 |
return lastErr; |
215 |
} |
216 |
/* try loading variable resolution data */ |
217 |
lastErr = SDloadTre(sd, wtl); |
218 |
/* check our result */ |
219 |
if (lastErr == SDEsupport) /* try matrix BSDF if not tree data */ |
220 |
lastErr = SDloadMtx(sd, wtl); |
221 |
|
222 |
/* done with XML file */ |
223 |
ezxml_free(fl); |
224 |
|
225 |
if (lastErr) { /* was there a load error? */ |
226 |
SDfreeBSDF(sd); |
227 |
return lastErr; |
228 |
} |
229 |
/* remove any insignificant components */ |
230 |
if (sd->rf != NULL && sd->rf->maxHemi <= .001) { |
231 |
SDfreeSpectralDF(sd->rf); sd->rf = NULL; |
232 |
} |
233 |
if (sd->rb != NULL && sd->rb->maxHemi <= .001) { |
234 |
SDfreeSpectralDF(sd->rb); sd->rb = NULL; |
235 |
} |
236 |
if (sd->tf != NULL && sd->tf->maxHemi <= .001) { |
237 |
SDfreeSpectralDF(sd->tf); sd->tf = NULL; |
238 |
} |
239 |
if (sd->tb != NULL && sd->tb->maxHemi <= .001) { |
240 |
SDfreeSpectralDF(sd->tb); sd->tb = NULL; |
241 |
} |
242 |
/* return success */ |
243 |
return SDEnone; |
244 |
} |
245 |
|
246 |
/* Allocate new spectral distribution function */ |
247 |
SDSpectralDF * |
248 |
SDnewSpectralDF(int nc) |
249 |
{ |
250 |
SDSpectralDF *df; |
251 |
|
252 |
if (nc <= 0) { |
253 |
strcpy(SDerrorDetail, "Zero component spectral DF request"); |
254 |
return NULL; |
255 |
} |
256 |
df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) + |
257 |
(nc-1)*sizeof(SDComponent)); |
258 |
if (df == NULL) { |
259 |
sprintf(SDerrorDetail, |
260 |
"Cannot allocate %d component spectral DF", nc); |
261 |
return NULL; |
262 |
} |
263 |
df->minProjSA = .0; |
264 |
df->maxHemi = .0; |
265 |
df->ncomp = nc; |
266 |
memset(df->comp, 0, nc*sizeof(SDComponent)); |
267 |
return df; |
268 |
} |
269 |
|
270 |
/* Add component(s) to spectral distribution function */ |
271 |
SDSpectralDF * |
272 |
SDaddComponent(SDSpectralDF *odf, int nadd) |
273 |
{ |
274 |
SDSpectralDF *df; |
275 |
|
276 |
if (odf == NULL) |
277 |
return SDnewSpectralDF(nadd); |
278 |
if (nadd <= 0) |
279 |
return odf; |
280 |
df = (SDSpectralDF *)realloc(odf, sizeof(SDSpectralDF) + |
281 |
(odf->ncomp+nadd-1)*sizeof(SDComponent)); |
282 |
if (df == NULL) { |
283 |
sprintf(SDerrorDetail, |
284 |
"Cannot add %d component(s) to spectral DF", nadd); |
285 |
SDfreeSpectralDF(odf); |
286 |
return NULL; |
287 |
} |
288 |
memset(df->comp+df->ncomp, 0, nadd*sizeof(SDComponent)); |
289 |
df->ncomp += nadd; |
290 |
return df; |
291 |
} |
292 |
|
293 |
/* Free cached cumulative distributions for BSDF component */ |
294 |
void |
295 |
SDfreeCumulativeCache(SDSpectralDF *df) |
296 |
{ |
297 |
int n; |
298 |
SDCDst *cdp; |
299 |
|
300 |
if (df == NULL) |
301 |
return; |
302 |
for (n = df->ncomp; n-- > 0; ) |
303 |
while ((cdp = df->comp[n].cdList) != NULL) { |
304 |
df->comp[n].cdList = cdp->next; |
305 |
free(cdp); |
306 |
} |
307 |
} |
308 |
|
309 |
/* Free a spectral distribution function */ |
310 |
void |
311 |
SDfreeSpectralDF(SDSpectralDF *df) |
312 |
{ |
313 |
int n; |
314 |
|
315 |
if (df == NULL) |
316 |
return; |
317 |
SDfreeCumulativeCache(df); |
318 |
for (n = df->ncomp; n-- > 0; ) |
319 |
if (df->comp[n].dist != NULL) |
320 |
(*df->comp[n].func->freeSC)(df->comp[n].dist); |
321 |
free(df); |
322 |
} |
323 |
|
324 |
/* Shorten file path to useable BSDF name, removing suffix */ |
325 |
void |
326 |
SDclipName(char *res, const char *fname) |
327 |
{ |
328 |
const char *cp, *dot = NULL; |
329 |
|
330 |
for (cp = fname; *cp; cp++) |
331 |
if (*cp == '.') |
332 |
dot = cp; |
333 |
else if (*cp == '/') |
334 |
dot = NULL; |
335 |
if ((dot == NULL) | (dot < fname+2)) |
336 |
dot = cp; |
337 |
if (dot - fname >= SDnameLn) |
338 |
fname = dot - SDnameLn + 1; |
339 |
while (fname < dot) |
340 |
*res++ = *fname++; |
341 |
*res = '\0'; |
342 |
} |
343 |
|
344 |
/* Initialize an unused BSDF struct (simply clears to zeroes) */ |
345 |
void |
346 |
SDclearBSDF(SDData *sd, const char *fname) |
347 |
{ |
348 |
if (sd == NULL) |
349 |
return; |
350 |
memset(sd, 0, sizeof(SDData)); |
351 |
if (fname == NULL) |
352 |
return; |
353 |
SDclipName(sd->name, fname); |
354 |
} |
355 |
|
356 |
/* Free data associated with BSDF struct */ |
357 |
void |
358 |
SDfreeBSDF(SDData *sd) |
359 |
{ |
360 |
if (sd == NULL) |
361 |
return; |
362 |
if (sd->mgf != NULL) { |
363 |
free(sd->mgf); |
364 |
sd->mgf = NULL; |
365 |
} |
366 |
if (sd->rf != NULL) { |
367 |
SDfreeSpectralDF(sd->rf); |
368 |
sd->rf = NULL; |
369 |
} |
370 |
if (sd->rb != NULL) { |
371 |
SDfreeSpectralDF(sd->rb); |
372 |
sd->rb = NULL; |
373 |
} |
374 |
if (sd->tf != NULL) { |
375 |
SDfreeSpectralDF(sd->tf); |
376 |
sd->tf = NULL; |
377 |
} |
378 |
if (sd->tb != NULL) { |
379 |
SDfreeSpectralDF(sd->tb); |
380 |
sd->tb = NULL; |
381 |
} |
382 |
sd->rLambFront.cieY = .0; |
383 |
sd->rLambFront.spec.flags = 0; |
384 |
sd->rLambBack.cieY = .0; |
385 |
sd->rLambBack.spec.flags = 0; |
386 |
sd->tLambFront.cieY = .0; |
387 |
sd->tLambFront.spec.flags = 0; |
388 |
sd->tLambBack.cieY = .0; |
389 |
sd->tLambBack.spec.flags = 0; |
390 |
} |
391 |
|
392 |
/* Find writeable BSDF by name, or allocate new cache entry if absent */ |
393 |
SDData * |
394 |
SDgetCache(const char *bname) |
395 |
{ |
396 |
struct SDCache_s *sdl; |
397 |
char sdnam[SDnameLn]; |
398 |
|
399 |
if (bname == NULL) |
400 |
return NULL; |
401 |
|
402 |
SDclipName(sdnam, bname); |
403 |
for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next) |
404 |
if (!strcmp(sdl->bsdf.name, sdnam)) { |
405 |
sdl->refcnt++; |
406 |
return &sdl->bsdf; |
407 |
} |
408 |
|
409 |
sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s)); |
410 |
if (sdl == NULL) |
411 |
return NULL; |
412 |
|
413 |
strcpy(sdl->bsdf.name, sdnam); |
414 |
sdl->next = SDcacheList; |
415 |
SDcacheList = sdl; |
416 |
|
417 |
sdl->refcnt = 1; |
418 |
return &sdl->bsdf; |
419 |
} |
420 |
|
421 |
/* Get loaded BSDF from cache (or load and cache it on first call) */ |
422 |
/* Report any problem to stderr and return NULL on failure */ |
423 |
const SDData * |
424 |
SDcacheFile(const char *fname) |
425 |
{ |
426 |
SDData *sd; |
427 |
SDError ec; |
428 |
|
429 |
if (fname == NULL || !*fname) |
430 |
return NULL; |
431 |
SDerrorDetail[0] = '\0'; |
432 |
/* PLACE MUTEX LOCK HERE FOR THREAD-SAFE */ |
433 |
if ((sd = SDgetCache(fname)) == NULL) { |
434 |
SDreportError(SDEmemory, stderr); |
435 |
return NULL; |
436 |
} |
437 |
if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) { |
438 |
SDreportError(ec, stderr); |
439 |
SDfreeCache(sd); |
440 |
sd = NULL; |
441 |
} |
442 |
/* END MUTEX LOCK */ |
443 |
return sd; |
444 |
} |
445 |
|
446 |
/* Free a BSDF from our cache (clear all if NULL) */ |
447 |
void |
448 |
SDfreeCache(const SDData *sd) |
449 |
{ |
450 |
struct SDCache_s *sdl, *sdLast = NULL; |
451 |
|
452 |
if (sd == NULL) { /* free entire list */ |
453 |
while ((sdl = SDcacheList) != NULL) { |
454 |
SDcacheList = sdl->next; |
455 |
SDfreeBSDF(&sdl->bsdf); |
456 |
free(sdl); |
457 |
} |
458 |
return; |
459 |
} |
460 |
for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next) |
461 |
if (&sdl->bsdf == sd) |
462 |
break; |
463 |
if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0))) |
464 |
return; /* missing or still in use */ |
465 |
/* keep unreferenced data? */ |
466 |
if (SDisLoaded(sd) && SDretainSet) { |
467 |
if (SDretainSet == SDretainAll) |
468 |
return; /* keep everything */ |
469 |
/* else free cumulative data */ |
470 |
SDfreeCumulativeCache(sd->rf); |
471 |
SDfreeCumulativeCache(sd->rb); |
472 |
SDfreeCumulativeCache(sd->tf); |
473 |
SDfreeCumulativeCache(sd->tb); |
474 |
return; |
475 |
} |
476 |
/* remove from list and free */ |
477 |
if (sdLast == NULL) |
478 |
SDcacheList = sdl->next; |
479 |
else |
480 |
sdLast->next = sdl->next; |
481 |
SDfreeBSDF(&sdl->bsdf); |
482 |
free(sdl); |
483 |
} |
484 |
|
485 |
/* Sample an individual BSDF component */ |
486 |
SDError |
487 |
SDsampComponent(SDValue *sv, FVECT ioVec, double randX, SDComponent *sdc) |
488 |
{ |
489 |
float coef[SDmaxCh]; |
490 |
SDError ec; |
491 |
FVECT inVec; |
492 |
const SDCDst *cd; |
493 |
double d; |
494 |
int n; |
495 |
/* check arguments */ |
496 |
if ((sv == NULL) | (ioVec == NULL) | (sdc == NULL)) |
497 |
return SDEargument; |
498 |
/* get cumulative distribution */ |
499 |
VCOPY(inVec, ioVec); |
500 |
sv->cieY = 0; |
501 |
cd = (*sdc->func->getCDist)(inVec, sdc); |
502 |
if (cd != NULL) |
503 |
sv->cieY = cd->cTotal; |
504 |
if (sv->cieY <= 1e-6) { /* nothing to sample? */ |
505 |
sv->spec = c_dfcolor; |
506 |
memset(ioVec, 0, sizeof(FVECT)); |
507 |
return SDEnone; |
508 |
} |
509 |
/* compute sample direction */ |
510 |
ec = (*sdc->func->sampCDist)(ioVec, randX, cd); |
511 |
if (ec) |
512 |
return ec; |
513 |
/* get BSDF color */ |
514 |
n = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc); |
515 |
if (n <= 0) { |
516 |
strcpy(SDerrorDetail, "BSDF sample value error"); |
517 |
return SDEinternal; |
518 |
} |
519 |
sv->spec = sdc->cspec[0]; |
520 |
d = coef[0]; |
521 |
while (--n) { |
522 |
c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]); |
523 |
d += coef[n]; |
524 |
} |
525 |
c_ccvt(&sv->spec, C_CSXY); /* make sure (x,y) is set */ |
526 |
return SDEnone; |
527 |
} |
528 |
|
529 |
#define MS_MAXDIM 15 |
530 |
|
531 |
/* Convert 1-dimensional random variable to N-dimensional */ |
532 |
void |
533 |
SDmultiSamp(double t[], int n, double randX) |
534 |
{ |
535 |
unsigned nBits; |
536 |
double scale; |
537 |
bitmask_t ndx, coord[MS_MAXDIM]; |
538 |
|
539 |
if (n <= 0) /* check corner cases */ |
540 |
return; |
541 |
if (randX < 0) randX = 0; |
542 |
else if (randX >= 1.) randX = 0.999999999999999; |
543 |
if (n == 1) { |
544 |
t[0] = randX; |
545 |
return; |
546 |
} |
547 |
while (n > MS_MAXDIM) /* punt for higher dimensions */ |
548 |
t[--n] = rand()*(1./(RAND_MAX+.5)); |
549 |
nBits = (8*sizeof(bitmask_t) - 1) / n; |
550 |
ndx = randX * (double)((bitmask_t)1 << (nBits*n)); |
551 |
/* get coordinate on Hilbert curve */ |
552 |
hilbert_i2c(n, nBits, ndx, coord); |
553 |
/* convert back to [0,1) range */ |
554 |
scale = 1. / (double)((bitmask_t)1 << nBits); |
555 |
while (n--) |
556 |
t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5))); |
557 |
} |
558 |
|
559 |
#undef MS_MAXDIM |
560 |
|
561 |
/* Generate diffuse hemispherical sample */ |
562 |
static void |
563 |
SDdiffuseSamp(FVECT outVec, int outFront, double randX) |
564 |
{ |
565 |
/* convert to position on hemisphere */ |
566 |
SDmultiSamp(outVec, 2, randX); |
567 |
SDsquare2disk(outVec, outVec[0], outVec[1]); |
568 |
outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1]; |
569 |
outVec[2] = sqrt(outVec[2]*(outVec[2]>0)); |
570 |
if (!outFront) /* going out back? */ |
571 |
outVec[2] = -outVec[2]; |
572 |
} |
573 |
|
574 |
/* Query projected solid angle coverage for non-diffuse BSDF direction */ |
575 |
SDError |
576 |
SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2, |
577 |
int qflags, const SDData *sd) |
578 |
{ |
579 |
SDSpectralDF *rdf, *tdf; |
580 |
SDError ec; |
581 |
int i; |
582 |
/* check arguments */ |
583 |
if ((projSA == NULL) | (v1 == NULL) | (sd == NULL)) |
584 |
return SDEargument; |
585 |
/* initialize extrema */ |
586 |
switch (qflags) { |
587 |
case SDqueryMax: |
588 |
projSA[0] = .0; |
589 |
break; |
590 |
case SDqueryMin+SDqueryMax: |
591 |
projSA[1] = .0; |
592 |
/* fall through */ |
593 |
case SDqueryMin: |
594 |
projSA[0] = 10.; |
595 |
break; |
596 |
case 0: |
597 |
return SDEargument; |
598 |
} |
599 |
if (v1[2] > 0) { /* front surface query? */ |
600 |
rdf = sd->rf; |
601 |
tdf = (sd->tf != NULL) ? sd->tf : sd->tb; |
602 |
} else { |
603 |
rdf = sd->rb; |
604 |
tdf = (sd->tb != NULL) ? sd->tb : sd->tf; |
605 |
} |
606 |
if (v2 != NULL) { /* bidirectional? */ |
607 |
if (v1[2] > 0 ^ v2[2] > 0) |
608 |
rdf = NULL; |
609 |
else |
610 |
tdf = NULL; |
611 |
} |
612 |
ec = SDEdata; /* run through components */ |
613 |
for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) { |
614 |
ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2, |
615 |
qflags, &rdf->comp[i]); |
616 |
if (ec) |
617 |
return ec; |
618 |
} |
619 |
for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) { |
620 |
ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2, |
621 |
qflags, &tdf->comp[i]); |
622 |
if (ec) |
623 |
return ec; |
624 |
} |
625 |
if (ec) { /* all diffuse? */ |
626 |
projSA[0] = M_PI; |
627 |
if (qflags == SDqueryMin+SDqueryMax) |
628 |
projSA[1] = M_PI; |
629 |
} else if (qflags == SDqueryMin+SDqueryMax && projSA[0] > projSA[1]) |
630 |
projSA[0] = projSA[1]; |
631 |
return SDEnone; |
632 |
} |
633 |
|
634 |
/* Return BSDF for the given incident and scattered ray vectors */ |
635 |
SDError |
636 |
SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd) |
637 |
{ |
638 |
int inFront, outFront; |
639 |
SDSpectralDF *sdf; |
640 |
float coef[SDmaxCh]; |
641 |
int nch, i; |
642 |
/* check arguments */ |
643 |
if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL)) |
644 |
return SDEargument; |
645 |
/* whose side are we on? */ |
646 |
inFront = (inVec[2] > 0); |
647 |
outFront = (outVec[2] > 0); |
648 |
/* start with diffuse portion */ |
649 |
if (inFront & outFront) { |
650 |
*sv = sd->rLambFront; |
651 |
sdf = sd->rf; |
652 |
} else if (!(inFront | outFront)) { |
653 |
*sv = sd->rLambBack; |
654 |
sdf = sd->rb; |
655 |
} else if (inFront) { |
656 |
*sv = sd->tLambFront; |
657 |
sdf = (sd->tf != NULL) ? sd->tf : sd->tb; |
658 |
} else /* outFront & !inFront */ { |
659 |
*sv = sd->tLambBack; |
660 |
sdf = (sd->tb != NULL) ? sd->tb : sd->tf; |
661 |
} |
662 |
sv->cieY *= 1./M_PI; |
663 |
/* add non-diffuse components */ |
664 |
i = (sdf != NULL) ? sdf->ncomp : 0; |
665 |
while (i-- > 0) { |
666 |
nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec, |
667 |
&sdf->comp[i]); |
668 |
while (nch-- > 0) { |
669 |
c_cmix(&sv->spec, sv->cieY, &sv->spec, |
670 |
coef[nch], &sdf->comp[i].cspec[nch]); |
671 |
sv->cieY += coef[nch]; |
672 |
} |
673 |
} |
674 |
c_ccvt(&sv->spec, C_CSXY); /* make sure (x,y) is set */ |
675 |
return SDEnone; |
676 |
} |
677 |
|
678 |
/* Compute directional hemispherical scattering at this incident angle */ |
679 |
double |
680 |
SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd) |
681 |
{ |
682 |
double hsum; |
683 |
SDSpectralDF *rdf, *tdf; |
684 |
const SDCDst *cd; |
685 |
int i; |
686 |
/* check arguments */ |
687 |
if ((inVec == NULL) | (sd == NULL)) |
688 |
return .0; |
689 |
/* gather diffuse components */ |
690 |
if (inVec[2] > 0) { |
691 |
hsum = sd->rLambFront.cieY; |
692 |
rdf = sd->rf; |
693 |
tdf = (sd->tf != NULL) ? sd->tf : sd->tb; |
694 |
} else /* !inFront */ { |
695 |
hsum = sd->rLambBack.cieY; |
696 |
rdf = sd->rb; |
697 |
tdf = (sd->tb != NULL) ? sd->tb : sd->tf; |
698 |
} |
699 |
if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR) |
700 |
hsum = .0; |
701 |
if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) |
702 |
hsum += (inVec[2] > 0) ? |
703 |
sd->tLambFront.cieY : sd->tLambBack.cieY; |
704 |
/* gather non-diffuse components */ |
705 |
i = (((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR) & |
706 |
(rdf != NULL)) ? rdf->ncomp : 0; |
707 |
while (i-- > 0) { /* non-diffuse reflection */ |
708 |
cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]); |
709 |
if (cd != NULL) |
710 |
hsum += cd->cTotal; |
711 |
} |
712 |
i = (((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT) & |
713 |
(tdf != NULL)) ? tdf->ncomp : 0; |
714 |
while (i-- > 0) { /* non-diffuse transmission */ |
715 |
cd = (*tdf->comp[i].func->getCDist)(inVec, &tdf->comp[i]); |
716 |
if (cd != NULL) |
717 |
hsum += cd->cTotal; |
718 |
} |
719 |
return hsum; |
720 |
} |
721 |
|
722 |
/* Sample BSDF direction based on the given random variable */ |
723 |
SDError |
724 |
SDsampBSDF(SDValue *sv, FVECT ioVec, double randX, int sflags, const SDData *sd) |
725 |
{ |
726 |
SDError ec; |
727 |
FVECT inVec; |
728 |
int inFront; |
729 |
SDSpectralDF *rdf, *tdf; |
730 |
double rdiff; |
731 |
float coef[SDmaxCh]; |
732 |
int i, j, n, nr; |
733 |
SDComponent *sdc; |
734 |
const SDCDst **cdarr = NULL; |
735 |
/* check arguments */ |
736 |
if ((sv == NULL) | (ioVec == NULL) | (sd == NULL) | |
737 |
(randX < 0) | (randX >= 1.)) |
738 |
return SDEargument; |
739 |
/* whose side are we on? */ |
740 |
VCOPY(inVec, ioVec); |
741 |
inFront = (inVec[2] > 0); |
742 |
/* remember diffuse portions */ |
743 |
if (inFront) { |
744 |
*sv = sd->rLambFront; |
745 |
rdf = sd->rf; |
746 |
tdf = (sd->tf != NULL) ? sd->tf : sd->tb; |
747 |
} else /* !inFront */ { |
748 |
*sv = sd->rLambBack; |
749 |
rdf = sd->rb; |
750 |
tdf = (sd->tb != NULL) ? sd->tb : sd->tf; |
751 |
} |
752 |
if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR) |
753 |
sv->cieY = .0; |
754 |
rdiff = sv->cieY; |
755 |
if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) |
756 |
sv->cieY += inFront ? sd->tLambFront.cieY : sd->tLambBack.cieY; |
757 |
/* gather non-diffuse components */ |
758 |
i = nr = (((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR) & |
759 |
(rdf != NULL)) ? rdf->ncomp : 0; |
760 |
j = (((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT) & |
761 |
(tdf != NULL)) ? tdf->ncomp : 0; |
762 |
n = i + j; |
763 |
if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL) |
764 |
return SDEmemory; |
765 |
while (j-- > 0) { /* non-diffuse transmission */ |
766 |
cdarr[i+j] = (*tdf->comp[j].func->getCDist)(inVec, &tdf->comp[j]); |
767 |
if (cdarr[i+j] == NULL) |
768 |
cdarr[i+j] = &SDemptyCD; |
769 |
sv->cieY += cdarr[i+j]->cTotal; |
770 |
} |
771 |
while (i-- > 0) { /* non-diffuse reflection */ |
772 |
cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]); |
773 |
if (cdarr[i] == NULL) |
774 |
cdarr[i] = &SDemptyCD; |
775 |
sv->cieY += cdarr[i]->cTotal; |
776 |
} |
777 |
if (sv->cieY <= 1e-6) { /* anything to sample? */ |
778 |
sv->cieY = .0; |
779 |
memset(ioVec, 0, sizeof(FVECT)); |
780 |
return SDEnone; |
781 |
} |
782 |
/* scale random variable */ |
783 |
randX *= sv->cieY; |
784 |
/* diffuse reflection? */ |
785 |
if (randX < rdiff) { |
786 |
SDdiffuseSamp(ioVec, inFront, randX/rdiff); |
787 |
goto done; |
788 |
} |
789 |
randX -= rdiff; |
790 |
/* diffuse transmission? */ |
791 |
if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) { |
792 |
const SDValue *sdt = inFront ? &sd->tLambFront : &sd->tLambBack; |
793 |
if (randX < sdt->cieY) { |
794 |
sv->spec = sdt->spec; |
795 |
SDdiffuseSamp(ioVec, !inFront, randX/sdt->cieY); |
796 |
goto done; |
797 |
} |
798 |
randX -= sdt->cieY; |
799 |
} |
800 |
/* else one of cumulative dist. */ |
801 |
for (i = 0; i < n && randX >= cdarr[i]->cTotal; i++) |
802 |
randX -= cdarr[i]->cTotal; |
803 |
if (i >= n) |
804 |
return SDEinternal; |
805 |
/* compute sample direction */ |
806 |
sdc = (i < nr) ? &rdf->comp[i] : &tdf->comp[i-nr]; |
807 |
ec = (*sdc->func->sampCDist)(ioVec, randX/cdarr[i]->cTotal, cdarr[i]); |
808 |
if (ec) |
809 |
return ec; |
810 |
/* compute color */ |
811 |
j = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc); |
812 |
if (j <= 0) { |
813 |
sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error", |
814 |
sd->name); |
815 |
return SDEinternal; |
816 |
} |
817 |
sv->spec = sdc->cspec[0]; |
818 |
rdiff = coef[0]; |
819 |
while (--j) { |
820 |
c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]); |
821 |
rdiff += coef[j]; |
822 |
} |
823 |
done: |
824 |
if (cdarr != NULL) |
825 |
free(cdarr); |
826 |
c_ccvt(&sv->spec, C_CSXY); /* make sure (x,y) is set */ |
827 |
return SDEnone; |
828 |
} |
829 |
|
830 |
/* Compute World->BSDF transform from surface normal and up (Y) vector */ |
831 |
SDError |
832 |
SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec) |
833 |
{ |
834 |
if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL)) |
835 |
return SDEargument; |
836 |
VCOPY(vMtx[2], sNrm); |
837 |
if (normalize(vMtx[2]) == 0) |
838 |
return SDEargument; |
839 |
fcross(vMtx[0], uVec, vMtx[2]); |
840 |
if (normalize(vMtx[0]) == 0) |
841 |
return SDEargument; |
842 |
fcross(vMtx[1], vMtx[2], vMtx[0]); |
843 |
return SDEnone; |
844 |
} |
845 |
|
846 |
/* Compute inverse transform */ |
847 |
SDError |
848 |
SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3]) |
849 |
{ |
850 |
RREAL mTmp[3][3]; |
851 |
double d; |
852 |
|
853 |
if ((iMtx == NULL) | (vMtx == NULL)) |
854 |
return SDEargument; |
855 |
/* compute determinant */ |
856 |
mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2]; |
857 |
mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1]; |
858 |
mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2]; |
859 |
d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2]; |
860 |
if (d == 0) { |
861 |
strcpy(SDerrorDetail, "Zero determinant in matrix inversion"); |
862 |
return SDEargument; |
863 |
} |
864 |
d = 1./d; /* invert matrix */ |
865 |
mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d; |
866 |
mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]); |
867 |
mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]); |
868 |
mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]); |
869 |
mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]); |
870 |
mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]); |
871 |
mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]); |
872 |
memcpy(iMtx, mTmp, sizeof(mTmp)); |
873 |
return SDEnone; |
874 |
} |
875 |
|
876 |
/* Transform and normalize direction (column) vector */ |
877 |
SDError |
878 |
SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec) |
879 |
{ |
880 |
FVECT vTmp; |
881 |
|
882 |
if ((resVec == NULL) | (inpVec == NULL)) |
883 |
return SDEargument; |
884 |
if (vMtx == NULL) { /* assume they just want to normalize */ |
885 |
if (resVec != inpVec) |
886 |
VCOPY(resVec, inpVec); |
887 |
return (normalize(resVec) > 0) ? SDEnone : SDEargument; |
888 |
} |
889 |
vTmp[0] = DOT(vMtx[0], inpVec); |
890 |
vTmp[1] = DOT(vMtx[1], inpVec); |
891 |
vTmp[2] = DOT(vMtx[2], inpVec); |
892 |
if (normalize(vTmp) == 0) |
893 |
return SDEargument; |
894 |
VCOPY(resVec, vTmp); |
895 |
return SDEnone; |
896 |
} |