ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.39
Committed: Mon Mar 5 00:17:06 2012 UTC (12 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.38: +9 -1 lines
Log Message:
Added recording of product and manufacturer names

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.39 static const char RCSid[] = "$Id: bsdf.c,v 2.38 2012/03/04 23:28:34 greg Exp $";
3 greg 2.1 #endif
4     /*
5 greg 2.15 * bsdf.c
6     *
7     * Definitions for bidirectional scattering distribution functions.
8     *
9     * Created by Greg Ward on 1/10/11.
10     *
11     */
12    
13 greg 2.30 #define _USE_MATH_DEFINES
14 greg 2.15 #include <stdio.h>
15     #include <stdlib.h>
16 greg 2.31 #include <string.h>
17 greg 2.15 #include <math.h>
18 greg 2.32 #include <ctype.h>
19 greg 2.15 #include "ezxml.h"
20     #include "hilbert.h"
21     #include "bsdf.h"
22     #include "bsdf_m.h"
23     #include "bsdf_t.h"
24    
25     /* English ASCII strings corresponding to ennumerated errors */
26     const char *SDerrorEnglish[] = {
27     "No error",
28     "Memory error",
29     "File input/output error",
30     "File format error",
31     "Illegal argument",
32     "Invalid data",
33     "Unsupported feature",
34     "Internal program error",
35     "Unknown error"
36     };
37    
38     /* Additional information on last error (ASCII English) */
39     char SDerrorDetail[256];
40    
41     /* Cache of loaded BSDFs */
42     struct SDCache_s *SDcacheList = NULL;
43    
44     /* Retain BSDFs in cache list */
45     int SDretainSet = SDretainNone;
46    
47     /* Report any error to the indicated stream (in English) */
48     SDError
49     SDreportEnglish(SDError ec, FILE *fp)
50     {
51 greg 2.21 if (!ec)
52     return SDEnone;
53     if ((ec < SDEnone) | (ec > SDEunknown)) {
54     SDerrorDetail[0] = '\0';
55     ec = SDEunknown;
56     }
57 greg 2.15 if (fp == NULL)
58     return ec;
59     fputs(SDerrorEnglish[ec], fp);
60     if (SDerrorDetail[0]) {
61     fputs(": ", fp);
62     fputs(SDerrorDetail, fp);
63     }
64     fputc('\n', fp);
65     if (fp != stderr)
66     fflush(fp);
67     return ec;
68     }
69    
70     static double
71     to_meters( /* return factor to convert given unit to meters */
72     const char *unit
73     )
74     {
75     if (unit == NULL) return(1.); /* safe assumption? */
76     if (!strcasecmp(unit, "Meter")) return(1.);
77     if (!strcasecmp(unit, "Foot")) return(.3048);
78     if (!strcasecmp(unit, "Inch")) return(.0254);
79     if (!strcasecmp(unit, "Centimeter")) return(.01);
80     if (!strcasecmp(unit, "Millimeter")) return(.001);
81     sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
82     return(-1.);
83     }
84    
85     /* Load geometric dimensions and description (if any) */
86     static SDError
87 greg 2.16 SDloadGeometry(SDData *sd, ezxml_t wdb)
88 greg 2.15 {
89     ezxml_t geom;
90     double cfact;
91     const char *fmt, *mgfstr;
92    
93 greg 2.16 if (wdb == NULL) /* no geometry section? */
94     return SDEnone;
95 greg 2.39 if ((geom = ezxml_child(wdb, "Name")) != NULL) {
96     strncpy(sd->matn, ezxml_txt(geom), SDnameLn);
97     sd->matn[SDnameLn-1] = '\0';
98     }
99     if ((geom = ezxml_child(wdb, "Manufacturer")) != NULL) {
100     strncpy(sd->makr, ezxml_txt(geom), SDnameLn);
101     sd->makr[SDnameLn-1] = '\0';
102     }
103 greg 2.16 sd->dim[0] = sd->dim[1] = sd->dim[2] = .0;
104 greg 2.38 SDerrorDetail[0] = '\0';
105 greg 2.15 if ((geom = ezxml_child(wdb, "Width")) != NULL)
106 greg 2.16 sd->dim[0] = atof(ezxml_txt(geom)) *
107 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
108     if ((geom = ezxml_child(wdb, "Height")) != NULL)
109 greg 2.16 sd->dim[1] = atof(ezxml_txt(geom)) *
110 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
111     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
112 greg 2.16 sd->dim[2] = atof(ezxml_txt(geom)) *
113 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
114 greg 2.23 if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) {
115 greg 2.38 if (!SDerrorDetail[0])
116     sprintf(SDerrorDetail, "Negative dimension in \"%s\"",
117     sd->name);
118 greg 2.15 return SDEdata;
119 greg 2.17 }
120 greg 2.15 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
121     (mgfstr = ezxml_txt(geom)) == NULL)
122     return SDEnone;
123 greg 2.32 while (isspace(*mgfstr))
124     ++mgfstr;
125     if (!*mgfstr)
126     return SDEnone;
127 greg 2.15 if ((fmt = ezxml_attr(geom, "format")) != NULL &&
128     strcasecmp(fmt, "MGF")) {
129     sprintf(SDerrorDetail,
130     "Unrecognized geometry format '%s' in \"%s\"",
131 greg 2.16 fmt, sd->name);
132 greg 2.15 return SDEsupport;
133     }
134     cfact = to_meters(ezxml_attr(geom, "unit"));
135 greg 2.38 if (cfact <= 0)
136     return SDEformat;
137 greg 2.16 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
138     if (sd->mgf == NULL) {
139 greg 2.15 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
140     return SDEmemory;
141     }
142     if (cfact < 0.99 || cfact > 1.01)
143 greg 2.16 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
144 greg 2.15 else
145 greg 2.16 strcpy(sd->mgf, mgfstr);
146 greg 2.15 return SDEnone;
147     }
148    
149     /* Load a BSDF struct from the given file (free first and keep name) */
150     SDError
151     SDloadFile(SDData *sd, const char *fname)
152     {
153     SDError lastErr;
154 greg 2.16 ezxml_t fl, wtl;
155 greg 2.15
156     if ((sd == NULL) | (fname == NULL || !*fname))
157     return SDEargument;
158     /* free old data, keeping name */
159     SDfreeBSDF(sd);
160     /* parse XML file */
161     fl = ezxml_parse_file(fname);
162     if (fl == NULL) {
163     sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
164     return SDEfile;
165     }
166     if (ezxml_error(fl)[0]) {
167     sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
168     ezxml_free(fl);
169     return SDEformat;
170     }
171 greg 2.16 if (strcmp(ezxml_name(fl), "WindowElement")) {
172     sprintf(SDerrorDetail,
173     "BSDF \"%s\": top level node not 'WindowElement'",
174     sd->name);
175     ezxml_free(fl);
176     return SDEformat;
177     }
178     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
179     if (wtl == NULL) {
180 greg 2.38 sprintf(SDerrorDetail, "BSDF \"%s\": no optical layers'",
181 greg 2.16 sd->name);
182     ezxml_free(fl);
183     return SDEformat;
184     }
185 greg 2.15 /* load geometry if present */
186 greg 2.16 lastErr = SDloadGeometry(sd, ezxml_child(wtl, "Material"));
187 greg 2.36 if (lastErr) {
188     ezxml_free(fl);
189 greg 2.15 return lastErr;
190 greg 2.36 }
191 greg 2.15 /* try loading variable resolution data */
192 greg 2.16 lastErr = SDloadTre(sd, wtl);
193 greg 2.15 /* check our result */
194 greg 2.29 if (lastErr == SDEsupport) /* try matrix BSDF if not tree data */
195 greg 2.16 lastErr = SDloadMtx(sd, wtl);
196 greg 2.29
197 greg 2.15 /* done with XML file */
198     ezxml_free(fl);
199 greg 2.16
200     if (lastErr) { /* was there a load error? */
201     SDfreeBSDF(sd);
202     return lastErr;
203     }
204     /* remove any insignificant components */
205     if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
206     SDfreeSpectralDF(sd->rf); sd->rf = NULL;
207     }
208     if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
209     SDfreeSpectralDF(sd->rb); sd->rb = NULL;
210     }
211     if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
212     SDfreeSpectralDF(sd->tf); sd->tf = NULL;
213     }
214     /* return success */
215     return SDEnone;
216 greg 2.15 }
217    
218     /* Allocate new spectral distribution function */
219     SDSpectralDF *
220     SDnewSpectralDF(int nc)
221     {
222     SDSpectralDF *df;
223    
224     if (nc <= 0) {
225     strcpy(SDerrorDetail, "Zero component spectral DF request");
226     return NULL;
227     }
228     df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
229     (nc-1)*sizeof(SDComponent));
230     if (df == NULL) {
231     sprintf(SDerrorDetail,
232     "Cannot allocate %d component spectral DF", nc);
233     return NULL;
234     }
235     df->minProjSA = .0;
236     df->maxHemi = .0;
237     df->ncomp = nc;
238     memset(df->comp, 0, nc*sizeof(SDComponent));
239     return df;
240     }
241    
242 greg 2.37 /* Add component(s) to spectral distribution function */
243     SDSpectralDF *
244     SDaddComponent(SDSpectralDF *odf, int nadd)
245     {
246     SDSpectralDF *df;
247    
248     if (odf == NULL)
249     return SDnewSpectralDF(nadd);
250     if (nadd <= 0)
251     return odf;
252     df = (SDSpectralDF *)realloc(odf, sizeof(SDSpectralDF) +
253     (odf->ncomp+nadd-1)*sizeof(SDComponent));
254     if (df == NULL) {
255     sprintf(SDerrorDetail,
256     "Cannot add %d component(s) to spectral DF", nadd);
257     SDfreeSpectralDF(odf);
258     return NULL;
259     }
260     memset(df->comp+df->ncomp, 0, nadd*sizeof(SDComponent));
261     df->ncomp += nadd;
262     return df;
263     }
264    
265 greg 2.15 /* Free cached cumulative distributions for BSDF component */
266     void
267     SDfreeCumulativeCache(SDSpectralDF *df)
268     {
269     int n;
270     SDCDst *cdp;
271    
272     if (df == NULL)
273     return;
274     for (n = df->ncomp; n-- > 0; )
275     while ((cdp = df->comp[n].cdList) != NULL) {
276     df->comp[n].cdList = cdp->next;
277     free(cdp);
278     }
279     }
280    
281     /* Free a spectral distribution function */
282     void
283     SDfreeSpectralDF(SDSpectralDF *df)
284     {
285     int n;
286    
287     if (df == NULL)
288     return;
289     SDfreeCumulativeCache(df);
290     for (n = df->ncomp; n-- > 0; )
291 greg 2.34 if (df->comp[n].dist != NULL)
292     (*df->comp[n].func->freeSC)(df->comp[n].dist);
293 greg 2.15 free(df);
294     }
295    
296     /* Shorten file path to useable BSDF name, removing suffix */
297     void
298 greg 2.16 SDclipName(char *res, const char *fname)
299 greg 2.15 {
300     const char *cp, *dot = NULL;
301    
302     for (cp = fname; *cp; cp++)
303     if (*cp == '.')
304     dot = cp;
305     if ((dot == NULL) | (dot < fname+2))
306     dot = cp;
307     if (dot - fname >= SDnameLn)
308     fname = dot - SDnameLn + 1;
309     while (fname < dot)
310     *res++ = *fname++;
311     *res = '\0';
312     }
313    
314     /* Initialize an unused BSDF struct (simply clears to zeroes) */
315     void
316 greg 2.20 SDclearBSDF(SDData *sd, const char *fname)
317 greg 2.15 {
318 greg 2.20 if (sd == NULL)
319     return;
320     memset(sd, 0, sizeof(SDData));
321     if (fname == NULL)
322     return;
323     SDclipName(sd->name, fname);
324 greg 2.15 }
325    
326     /* Free data associated with BSDF struct */
327     void
328     SDfreeBSDF(SDData *sd)
329     {
330     if (sd == NULL)
331     return;
332     if (sd->mgf != NULL) {
333     free(sd->mgf);
334     sd->mgf = NULL;
335     }
336     if (sd->rf != NULL) {
337     SDfreeSpectralDF(sd->rf);
338     sd->rf = NULL;
339     }
340     if (sd->rb != NULL) {
341     SDfreeSpectralDF(sd->rb);
342     sd->rb = NULL;
343     }
344     if (sd->tf != NULL) {
345     SDfreeSpectralDF(sd->tf);
346     sd->tf = NULL;
347     }
348     sd->rLambFront.cieY = .0;
349 greg 2.16 sd->rLambFront.spec.flags = 0;
350 greg 2.15 sd->rLambBack.cieY = .0;
351 greg 2.16 sd->rLambBack.spec.flags = 0;
352 greg 2.15 sd->tLamb.cieY = .0;
353 greg 2.16 sd->tLamb.spec.flags = 0;
354 greg 2.15 }
355    
356     /* Find writeable BSDF by name, or allocate new cache entry if absent */
357     SDData *
358     SDgetCache(const char *bname)
359     {
360     struct SDCache_s *sdl;
361     char sdnam[SDnameLn];
362    
363     if (bname == NULL)
364     return NULL;
365    
366     SDclipName(sdnam, bname);
367     for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
368     if (!strcmp(sdl->bsdf.name, sdnam)) {
369     sdl->refcnt++;
370     return &sdl->bsdf;
371     }
372    
373     sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
374     if (sdl == NULL)
375     return NULL;
376    
377     strcpy(sdl->bsdf.name, sdnam);
378     sdl->next = SDcacheList;
379     SDcacheList = sdl;
380    
381 greg 2.21 sdl->refcnt = 1;
382 greg 2.15 return &sdl->bsdf;
383     }
384    
385     /* Get loaded BSDF from cache (or load and cache it on first call) */
386     /* Report any problem to stderr and return NULL on failure */
387     const SDData *
388     SDcacheFile(const char *fname)
389     {
390     SDData *sd;
391     SDError ec;
392    
393     if (fname == NULL || !*fname)
394     return NULL;
395     SDerrorDetail[0] = '\0';
396     if ((sd = SDgetCache(fname)) == NULL) {
397     SDreportEnglish(SDEmemory, stderr);
398     return NULL;
399     }
400     if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
401     SDreportEnglish(ec, stderr);
402     SDfreeCache(sd);
403     return NULL;
404     }
405     return sd;
406     }
407    
408     /* Free a BSDF from our cache (clear all if NULL) */
409     void
410     SDfreeCache(const SDData *sd)
411     {
412     struct SDCache_s *sdl, *sdLast = NULL;
413    
414     if (sd == NULL) { /* free entire list */
415     while ((sdl = SDcacheList) != NULL) {
416     SDcacheList = sdl->next;
417     SDfreeBSDF(&sdl->bsdf);
418     free(sdl);
419     }
420     return;
421     }
422     for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
423     if (&sdl->bsdf == sd)
424     break;
425 greg 2.21 if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
426 greg 2.15 return; /* missing or still in use */
427     /* keep unreferenced data? */
428     if (SDisLoaded(sd) && SDretainSet) {
429     if (SDretainSet == SDretainAll)
430     return; /* keep everything */
431     /* else free cumulative data */
432     SDfreeCumulativeCache(sd->rf);
433     SDfreeCumulativeCache(sd->rb);
434     SDfreeCumulativeCache(sd->tf);
435     return;
436     }
437     /* remove from list and free */
438     if (sdLast == NULL)
439     SDcacheList = sdl->next;
440     else
441     sdLast->next = sdl->next;
442     SDfreeBSDF(&sdl->bsdf);
443     free(sdl);
444     }
445    
446     /* Sample an individual BSDF component */
447     SDError
448 greg 2.24 SDsampComponent(SDValue *sv, FVECT ioVec, double randX, SDComponent *sdc)
449 greg 2.15 {
450     float coef[SDmaxCh];
451     SDError ec;
452 greg 2.24 FVECT inVec;
453 greg 2.15 const SDCDst *cd;
454     double d;
455     int n;
456     /* check arguments */
457 greg 2.24 if ((sv == NULL) | (ioVec == NULL) | (sdc == NULL))
458 greg 2.15 return SDEargument;
459     /* get cumulative distribution */
460 greg 2.24 VCOPY(inVec, ioVec);
461 greg 2.15 cd = (*sdc->func->getCDist)(inVec, sdc);
462     if (cd == NULL)
463     return SDEmemory;
464 greg 2.35 if (cd->cTotal <= 1e-6) { /* anything to sample? */
465 greg 2.15 sv->spec = c_dfcolor;
466     sv->cieY = .0;
467 greg 2.24 memset(ioVec, 0, 3*sizeof(double));
468 greg 2.15 return SDEnone;
469     }
470     sv->cieY = cd->cTotal;
471     /* compute sample direction */
472 greg 2.24 ec = (*sdc->func->sampCDist)(ioVec, randX, cd);
473 greg 2.15 if (ec)
474     return ec;
475     /* get BSDF color */
476 greg 2.25 n = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
477 greg 2.15 if (n <= 0) {
478     strcpy(SDerrorDetail, "BSDF sample value error");
479     return SDEinternal;
480     }
481     sv->spec = sdc->cspec[0];
482     d = coef[0];
483     while (--n) {
484     c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
485     d += coef[n];
486     }
487     /* make sure everything is set */
488     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
489     return SDEnone;
490     }
491    
492     #define MS_MAXDIM 15
493    
494     /* Convert 1-dimensional random variable to N-dimensional */
495     void
496     SDmultiSamp(double t[], int n, double randX)
497     {
498     unsigned nBits;
499     double scale;
500     bitmask_t ndx, coord[MS_MAXDIM];
501    
502     while (n > MS_MAXDIM) /* punt for higher dimensions */
503 greg 2.19 t[--n] = rand()*(1./(RAND_MAX+.5));
504 greg 2.15 nBits = (8*sizeof(bitmask_t) - 1) / n;
505     ndx = randX * (double)((bitmask_t)1 << (nBits*n));
506     /* get coordinate on Hilbert curve */
507     hilbert_i2c(n, nBits, ndx, coord);
508     /* convert back to [0,1) range */
509     scale = 1. / (double)((bitmask_t)1 << nBits);
510     while (n--)
511 greg 2.19 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
512 greg 2.15 }
513    
514     #undef MS_MAXDIM
515    
516     /* Generate diffuse hemispherical sample */
517     static void
518     SDdiffuseSamp(FVECT outVec, int outFront, double randX)
519     {
520     /* convert to position on hemisphere */
521     SDmultiSamp(outVec, 2, randX);
522     SDsquare2disk(outVec, outVec[0], outVec[1]);
523     outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
524 greg 2.23 if (outVec[2] > 0) /* a bit of paranoia */
525 greg 2.15 outVec[2] = sqrt(outVec[2]);
526     if (!outFront) /* going out back? */
527     outVec[2] = -outVec[2];
528     }
529    
530     /* Query projected solid angle coverage for non-diffuse BSDF direction */
531     SDError
532 greg 2.22 SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2,
533     int qflags, const SDData *sd)
534 greg 2.15 {
535 greg 2.23 SDSpectralDF *rdf, *tdf;
536 greg 2.15 SDError ec;
537     int i;
538     /* check arguments */
539 greg 2.26 if ((projSA == NULL) | (v1 == NULL) | (sd == NULL))
540 greg 2.15 return SDEargument;
541     /* initialize extrema */
542 greg 2.17 switch (qflags) {
543 greg 2.15 case SDqueryMax:
544     projSA[0] = .0;
545     break;
546     case SDqueryMin+SDqueryMax:
547     projSA[1] = .0;
548     /* fall through */
549     case SDqueryMin:
550     projSA[0] = 10.;
551     break;
552     case 0:
553     return SDEargument;
554     }
555 greg 2.23 if (v1[2] > 0) /* front surface query? */
556 greg 2.15 rdf = sd->rf;
557     else
558     rdf = sd->rb;
559 greg 2.26 tdf = sd->tf;
560     if (v2 != NULL) /* bidirectional? */
561     if (v1[2] > 0 ^ v2[2] > 0)
562     rdf = NULL;
563     else
564     tdf = NULL;
565 greg 2.15 ec = SDEdata; /* run through components */
566     for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
567 greg 2.22 ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2,
568 greg 2.25 qflags, &rdf->comp[i]);
569 greg 2.15 if (ec)
570     return ec;
571     }
572 greg 2.23 for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) {
573     ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2,
574 greg 2.25 qflags, &tdf->comp[i]);
575 greg 2.15 if (ec)
576     return ec;
577     }
578 greg 2.17 if (ec) { /* all diffuse? */
579     projSA[0] = M_PI;
580     if (qflags == SDqueryMin+SDqueryMax)
581     projSA[1] = M_PI;
582     }
583     return SDEnone;
584 greg 2.15 }
585    
586     /* Return BSDF for the given incident and scattered ray vectors */
587     SDError
588     SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
589     {
590     int inFront, outFront;
591     SDSpectralDF *sdf;
592     float coef[SDmaxCh];
593     int nch, i;
594     /* check arguments */
595     if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
596     return SDEargument;
597     /* whose side are we on? */
598 greg 2.23 inFront = (inVec[2] > 0);
599     outFront = (outVec[2] > 0);
600 greg 2.15 /* start with diffuse portion */
601     if (inFront & outFront) {
602     *sv = sd->rLambFront;
603     sdf = sd->rf;
604     } else if (!(inFront | outFront)) {
605     *sv = sd->rLambBack;
606     sdf = sd->rb;
607     } else /* inFront ^ outFront */ {
608     *sv = sd->tLamb;
609     sdf = sd->tf;
610     }
611     sv->cieY *= 1./M_PI;
612     /* add non-diffuse components */
613     i = (sdf != NULL) ? sdf->ncomp : 0;
614     while (i-- > 0) {
615     nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
616 greg 2.25 &sdf->comp[i]);
617 greg 2.15 while (nch-- > 0) {
618     c_cmix(&sv->spec, sv->cieY, &sv->spec,
619     coef[nch], &sdf->comp[i].cspec[nch]);
620     sv->cieY += coef[nch];
621     }
622     }
623     /* make sure everything is set */
624     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
625     return SDEnone;
626     }
627    
628     /* Compute directional hemispherical scattering at this incident angle */
629     double
630     SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
631     {
632     double hsum;
633     SDSpectralDF *rdf;
634     const SDCDst *cd;
635     int i;
636     /* check arguments */
637     if ((inVec == NULL) | (sd == NULL))
638     return .0;
639     /* gather diffuse components */
640 greg 2.23 if (inVec[2] > 0) {
641 greg 2.15 hsum = sd->rLambFront.cieY;
642     rdf = sd->rf;
643     } else /* !inFront */ {
644     hsum = sd->rLambBack.cieY;
645     rdf = sd->rb;
646     }
647     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
648     hsum = .0;
649     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
650     hsum += sd->tLamb.cieY;
651     /* gather non-diffuse components */
652     i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
653     rdf != NULL) ? rdf->ncomp : 0;
654     while (i-- > 0) { /* non-diffuse reflection */
655     cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
656     if (cd != NULL)
657     hsum += cd->cTotal;
658     }
659     i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
660     sd->tf != NULL) ? sd->tf->ncomp : 0;
661     while (i-- > 0) { /* non-diffuse transmission */
662     cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]);
663     if (cd != NULL)
664     hsum += cd->cTotal;
665     }
666     return hsum;
667     }
668    
669     /* Sample BSDF direction based on the given random variable */
670     SDError
671 greg 2.24 SDsampBSDF(SDValue *sv, FVECT ioVec, double randX, int sflags, const SDData *sd)
672 greg 2.15 {
673     SDError ec;
674 greg 2.24 FVECT inVec;
675 greg 2.15 int inFront;
676     SDSpectralDF *rdf;
677     double rdiff;
678     float coef[SDmaxCh];
679     int i, j, n, nr;
680     SDComponent *sdc;
681     const SDCDst **cdarr = NULL;
682     /* check arguments */
683 greg 2.24 if ((sv == NULL) | (ioVec == NULL) | (sd == NULL) |
684 greg 2.23 (randX < 0) | (randX >= 1.))
685 greg 2.15 return SDEargument;
686     /* whose side are we on? */
687 greg 2.24 VCOPY(inVec, ioVec);
688 greg 2.23 inFront = (inVec[2] > 0);
689 greg 2.15 /* remember diffuse portions */
690     if (inFront) {
691     *sv = sd->rLambFront;
692     rdf = sd->rf;
693     } else /* !inFront */ {
694     *sv = sd->rLambBack;
695     rdf = sd->rb;
696     }
697     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
698     sv->cieY = .0;
699     rdiff = sv->cieY;
700     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
701     sv->cieY += sd->tLamb.cieY;
702     /* gather non-diffuse components */
703     i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
704     rdf != NULL) ? rdf->ncomp : 0;
705     j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
706     sd->tf != NULL) ? sd->tf->ncomp : 0;
707     n = i + j;
708     if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
709     return SDEmemory;
710     while (j-- > 0) { /* non-diffuse transmission */
711     cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]);
712     if (cdarr[i+j] == NULL) {
713     free(cdarr);
714     return SDEmemory;
715     }
716     sv->cieY += cdarr[i+j]->cTotal;
717     }
718     while (i-- > 0) { /* non-diffuse reflection */
719     cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
720     if (cdarr[i] == NULL) {
721     free(cdarr);
722     return SDEmemory;
723     }
724     sv->cieY += cdarr[i]->cTotal;
725     }
726 greg 2.35 if (sv->cieY <= 1e-6) { /* anything to sample? */
727 greg 2.15 sv->cieY = .0;
728 greg 2.24 memset(ioVec, 0, 3*sizeof(double));
729 greg 2.15 return SDEnone;
730     }
731     /* scale random variable */
732     randX *= sv->cieY;
733     /* diffuse reflection? */
734     if (randX < rdiff) {
735 greg 2.24 SDdiffuseSamp(ioVec, inFront, randX/rdiff);
736 greg 2.15 goto done;
737     }
738     randX -= rdiff;
739     /* diffuse transmission? */
740     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
741     if (randX < sd->tLamb.cieY) {
742     sv->spec = sd->tLamb.spec;
743 greg 2.24 SDdiffuseSamp(ioVec, !inFront, randX/sd->tLamb.cieY);
744 greg 2.15 goto done;
745     }
746     randX -= sd->tLamb.cieY;
747     }
748     /* else one of cumulative dist. */
749     for (i = 0; i < n && randX < cdarr[i]->cTotal; i++)
750     randX -= cdarr[i]->cTotal;
751     if (i >= n)
752     return SDEinternal;
753     /* compute sample direction */
754     sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr];
755 greg 2.24 ec = (*sdc->func->sampCDist)(ioVec, randX/cdarr[i]->cTotal, cdarr[i]);
756 greg 2.15 if (ec)
757     return ec;
758     /* compute color */
759 greg 2.25 j = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
760 greg 2.15 if (j <= 0) {
761     sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
762     sd->name);
763     return SDEinternal;
764     }
765     sv->spec = sdc->cspec[0];
766     rdiff = coef[0];
767     while (--j) {
768     c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
769     rdiff += coef[j];
770     }
771     done:
772     if (cdarr != NULL)
773     free(cdarr);
774     /* make sure everything is set */
775     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
776     return SDEnone;
777     }
778    
779     /* Compute World->BSDF transform from surface normal and up (Y) vector */
780     SDError
781     SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
782     {
783     if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
784     return SDEargument;
785     VCOPY(vMtx[2], sNrm);
786 greg 2.23 if (normalize(vMtx[2]) == 0)
787 greg 2.15 return SDEargument;
788     fcross(vMtx[0], uVec, vMtx[2]);
789 greg 2.23 if (normalize(vMtx[0]) == 0)
790 greg 2.15 return SDEargument;
791     fcross(vMtx[1], vMtx[2], vMtx[0]);
792     return SDEnone;
793     }
794    
795     /* Compute inverse transform */
796     SDError
797     SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
798     {
799     RREAL mTmp[3][3];
800     double d;
801    
802     if ((iMtx == NULL) | (vMtx == NULL))
803     return SDEargument;
804     /* compute determinant */
805     mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
806     mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
807     mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
808     d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
809 greg 2.23 if (d == 0) {
810 greg 2.15 strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
811     return SDEargument;
812     }
813     d = 1./d; /* invert matrix */
814     mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
815     mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
816     mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
817     mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
818     mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
819     mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
820     mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
821     memcpy(iMtx, mTmp, sizeof(mTmp));
822     return SDEnone;
823     }
824    
825     /* Transform and normalize direction (column) vector */
826     SDError
827     SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
828     {
829     FVECT vTmp;
830    
831     if ((resVec == NULL) | (inpVec == NULL))
832     return SDEargument;
833     if (vMtx == NULL) { /* assume they just want to normalize */
834     if (resVec != inpVec)
835     VCOPY(resVec, inpVec);
836 greg 2.23 return (normalize(resVec) > 0) ? SDEnone : SDEargument;
837 greg 2.15 }
838     vTmp[0] = DOT(vMtx[0], inpVec);
839     vTmp[1] = DOT(vMtx[1], inpVec);
840     vTmp[2] = DOT(vMtx[2], inpVec);
841 greg 2.23 if (normalize(vTmp) == 0)
842 greg 2.15 return SDEargument;
843     VCOPY(resVec, vTmp);
844     return SDEnone;
845     }
846    
847     /*################################################################*/
848     /*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/
849    
850     /*
851 greg 2.1 * Routines for handling BSDF data
852     */
853    
854     #include "standard.h"
855     #include "paths.h"
856    
857     #define MAXLATS 46 /* maximum number of latitudes */
858    
859     /* BSDF angle specification */
860     typedef struct {
861     char name[64]; /* basis name */
862     int nangles; /* total number of directions */
863     struct {
864     float tmin; /* starting theta */
865     short nphis; /* number of phis (0 term) */
866     } lat[MAXLATS+1]; /* latitudes */
867     } ANGLE_BASIS;
868    
869 greg 2.4 #define MAXABASES 7 /* limit on defined bases */
870 greg 2.1
871     static ANGLE_BASIS abase_list[MAXABASES] = {
872     {
873     "LBNL/Klems Full", 145,
874     { {-5., 1},
875     {5., 8},
876     {15., 16},
877     {25., 20},
878     {35., 24},
879     {45., 24},
880     {55., 24},
881     {65., 16},
882     {75., 12},
883     {90., 0} }
884     }, {
885     "LBNL/Klems Half", 73,
886     { {-6.5, 1},
887     {6.5, 8},
888     {19.5, 12},
889     {32.5, 16},
890     {46.5, 20},
891     {61.5, 12},
892     {76.5, 4},
893     {90., 0} }
894     }, {
895     "LBNL/Klems Quarter", 41,
896     { {-9., 1},
897     {9., 8},
898     {27., 12},
899     {46., 12},
900     {66., 8},
901     {90., 0} }
902     }
903     };
904    
905     static int nabases = 3; /* current number of defined bases */
906    
907 greg 2.9 #define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6)
908    
909     static int
910     fequal(double a, double b)
911     {
912 greg 2.23 if (b != 0)
913 greg 2.9 a = a/b - 1.;
914     return((a <= 1e-6) & (a >= -1e-6));
915     }
916 greg 2.3
917 greg 2.14 /* Returns the name of the given tag */
918 greg 2.3 #ifdef ezxml_name
919     #undef ezxml_name
920     static char *
921     ezxml_name(ezxml_t xml)
922     {
923     if (xml == NULL)
924     return(NULL);
925     return(xml->name);
926     }
927     #endif
928    
929 greg 2.14 /* Returns the given tag's character content or empty string if none */
930 greg 2.3 #ifdef ezxml_txt
931     #undef ezxml_txt
932     static char *
933     ezxml_txt(ezxml_t xml)
934     {
935     if (xml == NULL)
936     return("");
937     return(xml->txt);
938     }
939     #endif
940    
941 greg 2.1
942     static int
943     ab_getvec( /* get vector for this angle basis index */
944     FVECT v,
945     int ndx,
946     void *p
947     )
948     {
949     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
950     int li;
951 greg 2.2 double pol, azi, d;
952 greg 2.1
953     if ((ndx < 0) | (ndx >= ab->nangles))
954     return(0);
955     for (li = 0; ndx >= ab->lat[li].nphis; li++)
956     ndx -= ab->lat[li].nphis;
957 greg 2.2 pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin);
958 greg 2.1 azi = 2.*PI*ndx/ab->lat[li].nphis;
959 greg 2.2 v[2] = d = cos(pol);
960     d = sqrt(1. - d*d); /* sin(pol) */
961 greg 2.1 v[0] = cos(azi)*d;
962     v[1] = sin(azi)*d;
963     return(1);
964     }
965    
966    
967     static int
968     ab_getndx( /* get index corresponding to the given vector */
969     FVECT v,
970     void *p
971     )
972     {
973     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
974     int li, ndx;
975 greg 2.33 double pol, azi;
976 greg 2.1
977     if ((v[2] < -1.0) | (v[2] > 1.0))
978     return(-1);
979 greg 2.2 pol = 180.0/PI*acos(v[2]);
980 greg 2.1 azi = 180.0/PI*atan2(v[1], v[0]);
981     if (azi < 0.0) azi += 360.0;
982 greg 2.2 for (li = 1; ab->lat[li].tmin <= pol; li++)
983 greg 2.1 if (!ab->lat[li].nphis)
984     return(-1);
985     --li;
986     ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
987     if (ndx >= ab->lat[li].nphis) ndx = 0;
988     while (li--)
989     ndx += ab->lat[li].nphis;
990     return(ndx);
991     }
992    
993    
994     static double
995     ab_getohm( /* get solid angle for this angle basis index */
996     int ndx,
997     void *p
998     )
999     {
1000     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
1001     int li;
1002     double theta, theta1;
1003    
1004     if ((ndx < 0) | (ndx >= ab->nangles))
1005     return(0);
1006     for (li = 0; ndx >= ab->lat[li].nphis; li++)
1007     ndx -= ab->lat[li].nphis;
1008     theta1 = PI/180. * ab->lat[li+1].tmin;
1009     if (ab->lat[li].nphis == 1) { /* special case */
1010     if (ab->lat[li].tmin > FTINY)
1011     error(USER, "unsupported BSDF coordinate system");
1012     return(2.*PI*(1. - cos(theta1)));
1013     }
1014     theta = PI/180. * ab->lat[li].tmin;
1015     return(2.*PI*(cos(theta) - cos(theta1))/(double)ab->lat[li].nphis);
1016     }
1017    
1018    
1019     static int
1020     ab_getvecR( /* get reverse vector for this angle basis index */
1021     FVECT v,
1022     int ndx,
1023     void *p
1024     )
1025     {
1026     if (!ab_getvec(v, ndx, p))
1027     return(0);
1028    
1029     v[0] = -v[0];
1030     v[1] = -v[1];
1031     v[2] = -v[2];
1032    
1033     return(1);
1034     }
1035    
1036    
1037     static int
1038     ab_getndxR( /* get index corresponding to the reverse vector */
1039     FVECT v,
1040     void *p
1041     )
1042     {
1043     FVECT v2;
1044    
1045     v2[0] = -v[0];
1046     v2[1] = -v[1];
1047     v2[2] = -v[2];
1048    
1049     return ab_getndx(v2, p);
1050     }
1051    
1052    
1053     static void
1054 greg 2.4 load_angle_basis( /* load custom BSDF angle basis */
1055 greg 2.3 ezxml_t wab
1056     )
1057     {
1058     char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
1059     ezxml_t wbb;
1060     int i;
1061    
1062 greg 2.4 if (!abname || !*abname)
1063 greg 2.3 return;
1064     for (i = nabases; i--; )
1065 greg 2.12 if (!strcasecmp(abname, abase_list[i].name))
1066 greg 2.4 return; /* assume it's the same */
1067 greg 2.3 if (nabases >= MAXABASES)
1068     error(INTERNAL, "too many angle bases");
1069     strcpy(abase_list[nabases].name, abname);
1070     abase_list[nabases].nangles = 0;
1071     for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
1072     wbb != NULL; i++, wbb = wbb->next) {
1073     if (i >= MAXLATS)
1074     error(INTERNAL, "too many latitudes in custom basis");
1075     abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
1076     ezxml_child(ezxml_child(wbb,
1077     "ThetaBounds"), "UpperTheta")));
1078     if (!i)
1079     abase_list[nabases].lat[i].tmin =
1080     -abase_list[nabases].lat[i+1].tmin;
1081 greg 2.9 else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
1082 greg 2.3 "ThetaBounds"), "LowerTheta"))),
1083     abase_list[nabases].lat[i].tmin))
1084     error(WARNING, "theta values disagree in custom basis");
1085     abase_list[nabases].nangles +=
1086     abase_list[nabases].lat[i].nphis =
1087     atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
1088     }
1089     abase_list[nabases++].lat[i].nphis = 0;
1090     }
1091    
1092    
1093 greg 2.6 static void
1094     load_geometry( /* load geometric dimensions and description (if any) */
1095     struct BSDF_data *dp,
1096     ezxml_t wdb
1097     )
1098     {
1099     ezxml_t geom;
1100     double cfact;
1101     const char *fmt, *mgfstr;
1102    
1103     dp->dim[0] = dp->dim[1] = dp->dim[2] = 0;
1104     dp->mgf = NULL;
1105     if ((geom = ezxml_child(wdb, "Width")) != NULL)
1106     dp->dim[0] = atof(ezxml_txt(geom)) *
1107     to_meters(ezxml_attr(geom, "unit"));
1108     if ((geom = ezxml_child(wdb, "Height")) != NULL)
1109     dp->dim[1] = atof(ezxml_txt(geom)) *
1110     to_meters(ezxml_attr(geom, "unit"));
1111     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
1112     dp->dim[2] = atof(ezxml_txt(geom)) *
1113     to_meters(ezxml_attr(geom, "unit"));
1114     if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
1115     (mgfstr = ezxml_txt(geom)) == NULL)
1116     return;
1117     if ((fmt = ezxml_attr(geom, "format")) != NULL &&
1118     strcasecmp(fmt, "MGF")) {
1119     sprintf(errmsg, "unrecognized geometry format '%s'", fmt);
1120     error(WARNING, errmsg);
1121     return;
1122     }
1123     cfact = to_meters(ezxml_attr(geom, "unit"));
1124     dp->mgf = (char *)malloc(strlen(mgfstr)+32);
1125     if (dp->mgf == NULL)
1126     error(SYSTEM, "out of memory in load_geometry");
1127     if (cfact < 0.99 || cfact > 1.01)
1128     sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
1129     else
1130     strcpy(dp->mgf, mgfstr);
1131     }
1132    
1133    
1134 greg 2.3 static void
1135 greg 2.1 load_bsdf_data( /* load BSDF distribution for this wavelength */
1136     struct BSDF_data *dp,
1137     ezxml_t wdb
1138     )
1139     {
1140     char *cbasis = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
1141     char *rbasis = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
1142     char *sdata;
1143     int i;
1144    
1145 greg 2.4 if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) {
1146 greg 2.1 error(WARNING, "missing column/row basis for BSDF");
1147     return;
1148     }
1149     for (i = nabases; i--; )
1150 greg 2.12 if (!strcasecmp(cbasis, abase_list[i].name)) {
1151 greg 2.1 dp->ninc = abase_list[i].nangles;
1152     dp->ib_priv = (void *)&abase_list[i];
1153     dp->ib_vec = ab_getvecR;
1154     dp->ib_ndx = ab_getndxR;
1155     dp->ib_ohm = ab_getohm;
1156     break;
1157     }
1158     if (i < 0) {
1159 greg 2.4 sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis);
1160 greg 2.1 error(WARNING, errmsg);
1161     return;
1162     }
1163     for (i = nabases; i--; )
1164 greg 2.12 if (!strcasecmp(rbasis, abase_list[i].name)) {
1165 greg 2.1 dp->nout = abase_list[i].nangles;
1166     dp->ob_priv = (void *)&abase_list[i];
1167     dp->ob_vec = ab_getvec;
1168     dp->ob_ndx = ab_getndx;
1169     dp->ob_ohm = ab_getohm;
1170     break;
1171     }
1172     if (i < 0) {
1173 greg 2.16 sprintf(errmsg, "undefined RowAngleBasis '%s'", rbasis);
1174 greg 2.1 error(WARNING, errmsg);
1175     return;
1176     }
1177     /* read BSDF data */
1178     sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
1179 greg 2.4 if (!sdata || !*sdata) {
1180 greg 2.1 error(WARNING, "missing BSDF ScatteringData");
1181     return;
1182     }
1183     dp->bsdf = (float *)malloc(sizeof(float)*dp->ninc*dp->nout);
1184     if (dp->bsdf == NULL)
1185     error(SYSTEM, "out of memory in load_bsdf_data");
1186     for (i = 0; i < dp->ninc*dp->nout; i++) {
1187     char *sdnext = fskip(sdata);
1188     if (sdnext == NULL) {
1189     error(WARNING, "bad/missing BSDF ScatteringData");
1190     free(dp->bsdf); dp->bsdf = NULL;
1191     return;
1192     }
1193     while (*sdnext && isspace(*sdnext))
1194     sdnext++;
1195     if (*sdnext == ',') sdnext++;
1196     dp->bsdf[i] = atof(sdata);
1197     sdata = sdnext;
1198     }
1199     while (isspace(*sdata))
1200     sdata++;
1201     if (*sdata) {
1202     sprintf(errmsg, "%d extra characters after BSDF ScatteringData",
1203 greg 2.5 (int)strlen(sdata));
1204 greg 2.1 error(WARNING, errmsg);
1205     }
1206     }
1207    
1208    
1209     static int
1210     check_bsdf_data( /* check that BSDF data is sane */
1211     struct BSDF_data *dp
1212     )
1213     {
1214 greg 2.2 double *omega_iarr, *omega_oarr;
1215 greg 2.33 double dom, hemi_total, full_total;
1216 greg 2.1 int nneg;
1217 greg 2.2 FVECT v;
1218 greg 2.1 int i, o;
1219    
1220     if (dp == NULL || dp->bsdf == NULL)
1221     return(0);
1222 greg 2.2 omega_iarr = (double *)calloc(dp->ninc, sizeof(double));
1223     omega_oarr = (double *)calloc(dp->nout, sizeof(double));
1224     if ((omega_iarr == NULL) | (omega_oarr == NULL))
1225 greg 2.1 error(SYSTEM, "out of memory in check_bsdf_data");
1226 greg 2.2 /* incoming projected solid angles */
1227     hemi_total = .0;
1228     for (i = dp->ninc; i--; ) {
1229     dom = getBSDF_incohm(dp,i);
1230 greg 2.23 if (dom <= 0) {
1231 greg 2.2 error(WARNING, "zero/negative incoming solid angle");
1232     continue;
1233     }
1234     if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) {
1235     error(WARNING, "illegal incoming BSDF direction");
1236     free(omega_iarr); free(omega_oarr);
1237     return(0);
1238     }
1239     hemi_total += omega_iarr[i] = dom * -v[2];
1240     }
1241     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1242     sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%",
1243     100.*(hemi_total/PI - 1.));
1244     error(WARNING, errmsg);
1245     }
1246     dom = PI / hemi_total; /* fix normalization */
1247     for (i = dp->ninc; i--; )
1248     omega_iarr[i] *= dom;
1249     /* outgoing projected solid angles */
1250 greg 2.1 hemi_total = .0;
1251     for (o = dp->nout; o--; ) {
1252     dom = getBSDF_outohm(dp,o);
1253 greg 2.23 if (dom <= 0) {
1254 greg 2.2 error(WARNING, "zero/negative outgoing solid angle");
1255 greg 2.1 continue;
1256     }
1257     if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) {
1258     error(WARNING, "illegal outgoing BSDF direction");
1259 greg 2.2 free(omega_iarr); free(omega_oarr);
1260 greg 2.1 return(0);
1261     }
1262 greg 2.2 hemi_total += omega_oarr[o] = dom * v[2];
1263 greg 2.1 }
1264     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1265     sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%",
1266     100.*(hemi_total/PI - 1.));
1267     error(WARNING, errmsg);
1268     }
1269 greg 2.2 dom = PI / hemi_total; /* fix normalization */
1270 greg 2.1 for (o = dp->nout; o--; )
1271 greg 2.2 omega_oarr[o] *= dom;
1272     nneg = 0; /* check outgoing totals */
1273     for (i = 0; i < dp->ninc; i++) {
1274 greg 2.1 hemi_total = .0;
1275     for (o = dp->nout; o--; ) {
1276     double f = BSDF_value(dp,i,o);
1277 greg 2.23 if (f >= 0)
1278 greg 2.2 hemi_total += f*omega_oarr[o];
1279     else {
1280     nneg += (f < -FTINY);
1281     BSDF_value(dp,i,o) = .0f;
1282     }
1283 greg 2.1 }
1284 greg 2.8 if (hemi_total > 1.01) {
1285 greg 2.2 sprintf(errmsg,
1286     "incoming BSDF direction %d passes %.1f%% of light",
1287     i, 100.*hemi_total);
1288 greg 2.1 error(WARNING, errmsg);
1289     }
1290     }
1291 greg 2.2 if (nneg) {
1292     sprintf(errmsg, "%d negative BSDF values (ignored)", nneg);
1293 greg 2.1 error(WARNING, errmsg);
1294     }
1295 greg 2.7 full_total = .0; /* reverse roles and check again */
1296 greg 2.2 for (o = 0; o < dp->nout; o++) {
1297     hemi_total = .0;
1298     for (i = dp->ninc; i--; )
1299     hemi_total += BSDF_value(dp,i,o) * omega_iarr[i];
1300    
1301 greg 2.8 if (hemi_total > 1.01) {
1302 greg 2.2 sprintf(errmsg,
1303     "outgoing BSDF direction %d collects %.1f%% of light",
1304     o, 100.*hemi_total);
1305     error(WARNING, errmsg);
1306     }
1307 greg 2.7 full_total += hemi_total*omega_oarr[o];
1308     }
1309     full_total /= PI;
1310 greg 2.8 if (full_total > 1.00001) {
1311     sprintf(errmsg, "BSDF transfers %.4f%% of light",
1312 greg 2.7 100.*full_total);
1313     error(WARNING, errmsg);
1314 greg 2.2 }
1315     free(omega_iarr); free(omega_oarr);
1316 greg 2.1 return(1);
1317     }
1318    
1319 greg 2.6
1320 greg 2.1 struct BSDF_data *
1321     load_BSDF( /* load BSDF data from file */
1322     char *fname
1323     )
1324     {
1325     char *path;
1326     ezxml_t fl, wtl, wld, wdb;
1327     struct BSDF_data *dp;
1328    
1329     path = getpath(fname, getrlibpath(), R_OK);
1330     if (path == NULL) {
1331     sprintf(errmsg, "cannot find BSDF file \"%s\"", fname);
1332     error(WARNING, errmsg);
1333     return(NULL);
1334     }
1335     fl = ezxml_parse_file(path);
1336     if (fl == NULL) {
1337     sprintf(errmsg, "cannot open BSDF \"%s\"", path);
1338     error(WARNING, errmsg);
1339     return(NULL);
1340     }
1341     if (ezxml_error(fl)[0]) {
1342     sprintf(errmsg, "BSDF \"%s\" %s", path, ezxml_error(fl));
1343     error(WARNING, errmsg);
1344     ezxml_free(fl);
1345     return(NULL);
1346     }
1347     if (strcmp(ezxml_name(fl), "WindowElement")) {
1348     sprintf(errmsg,
1349     "BSDF \"%s\": top level node not 'WindowElement'",
1350     path);
1351     error(WARNING, errmsg);
1352     ezxml_free(fl);
1353     return(NULL);
1354     }
1355     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
1356 greg 2.10 if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl,
1357     "DataDefinition"), "IncidentDataStructure")),
1358     "Columns")) {
1359     sprintf(errmsg,
1360     "BSDF \"%s\": unsupported IncidentDataStructure",
1361     path);
1362     error(WARNING, errmsg);
1363     ezxml_free(fl);
1364     return(NULL);
1365 greg 2.34 }
1366     for (wld = ezxml_child(ezxml_child(wtl,
1367     "DataDefinition"), "AngleBasis");
1368     wld != NULL; wld = wld->next)
1369     load_angle_basis(wld);
1370 greg 2.1 dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data));
1371 greg 2.6 load_geometry(dp, ezxml_child(wtl, "Material"));
1372 greg 2.1 for (wld = ezxml_child(wtl, "WavelengthData");
1373     wld != NULL; wld = wld->next) {
1374 greg 2.13 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1375     "Visible"))
1376 greg 2.1 continue;
1377 greg 2.13 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1378     wdb != NULL; wdb = wdb->next)
1379     if (!strcasecmp(ezxml_txt(ezxml_child(wdb,
1380     "WavelengthDataDirection")),
1381 greg 2.1 "Transmission Front"))
1382 greg 2.13 break;
1383     if (wdb != NULL) { /* load front BTDF */
1384     load_bsdf_data(dp, wdb);
1385     break; /* ignore the rest */
1386     }
1387 greg 2.1 }
1388     ezxml_free(fl); /* done with XML file */
1389     if (!check_bsdf_data(dp)) {
1390     sprintf(errmsg, "bad/missing BTDF data in \"%s\"", path);
1391     error(WARNING, errmsg);
1392     free_BSDF(dp);
1393     dp = NULL;
1394     }
1395     return(dp);
1396     }
1397    
1398    
1399     void
1400     free_BSDF( /* free BSDF data structure */
1401     struct BSDF_data *b
1402     )
1403     {
1404     if (b == NULL)
1405     return;
1406 greg 2.6 if (b->mgf != NULL)
1407     free(b->mgf);
1408 greg 2.1 if (b->bsdf != NULL)
1409     free(b->bsdf);
1410     free(b);
1411     }
1412    
1413    
1414     int
1415     r_BSDF_incvec( /* compute random input vector at given location */
1416     FVECT v,
1417     struct BSDF_data *b,
1418     int i,
1419     double rv,
1420     MAT4 xm
1421     )
1422     {
1423     FVECT pert;
1424     double rad;
1425     int j;
1426    
1427     if (!getBSDF_incvec(v, b, i))
1428     return(0);
1429     rad = sqrt(getBSDF_incohm(b, i) / PI);
1430     multisamp(pert, 3, rv);
1431     for (j = 0; j < 3; j++)
1432     v[j] += rad*(2.*pert[j] - 1.);
1433     if (xm != NULL)
1434     multv3(v, v, xm);
1435     return(normalize(v) != 0.0);
1436     }
1437    
1438    
1439     int
1440     r_BSDF_outvec( /* compute random output vector at given location */
1441     FVECT v,
1442     struct BSDF_data *b,
1443     int o,
1444     double rv,
1445     MAT4 xm
1446     )
1447     {
1448     FVECT pert;
1449     double rad;
1450     int j;
1451    
1452     if (!getBSDF_outvec(v, b, o))
1453     return(0);
1454     rad = sqrt(getBSDF_outohm(b, o) / PI);
1455     multisamp(pert, 3, rv);
1456     for (j = 0; j < 3; j++)
1457     v[j] += rad*(2.*pert[j] - 1.);
1458     if (xm != NULL)
1459     multv3(v, v, xm);
1460     return(normalize(v) != 0.0);
1461     }
1462    
1463    
1464     static int
1465     addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */
1466     char *xfarg[],
1467     FVECT xp,
1468     FVECT yp,
1469     FVECT zp
1470     )
1471     {
1472     static char bufs[3][16];
1473     int bn = 0;
1474     char **xfp = xfarg;
1475     double theta;
1476    
1477     if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
1478     /* Special case for X' along Z-axis */
1479     theta = -atan2(yp[0], yp[1]);
1480     *xfp++ = "-ry";
1481     *xfp++ = xp[2] < 0.0 ? "90" : "-90";
1482     *xfp++ = "-rz";
1483     sprintf(bufs[bn], "%f", theta*(180./PI));
1484     *xfp++ = bufs[bn++];
1485     return(xfp - xfarg);
1486     }
1487     theta = atan2(yp[2], zp[2]);
1488     if (!FEQ(theta,0.0)) {
1489     *xfp++ = "-rx";
1490     sprintf(bufs[bn], "%f", theta*(180./PI));
1491     *xfp++ = bufs[bn++];
1492     }
1493     theta = asin(-xp[2]);
1494     if (!FEQ(theta,0.0)) {
1495     *xfp++ = "-ry";
1496     sprintf(bufs[bn], " %f", theta*(180./PI));
1497     *xfp++ = bufs[bn++];
1498     }
1499     theta = atan2(xp[1], xp[0]);
1500     if (!FEQ(theta,0.0)) {
1501     *xfp++ = "-rz";
1502     sprintf(bufs[bn], "%f", theta*(180./PI));
1503     *xfp++ = bufs[bn++];
1504     }
1505     *xfp = NULL;
1506     return(xfp - xfarg);
1507     }
1508    
1509    
1510     int
1511     getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */
1512     MAT4 xm,
1513     FVECT nrm,
1514 greg 2.6 UpDir ud,
1515     char *xfbuf
1516 greg 2.1 )
1517     {
1518     char *xfargs[7];
1519     XF myxf;
1520     FVECT updir, xdest, ydest;
1521 greg 2.6 int i;
1522 greg 2.1
1523     updir[0] = updir[1] = updir[2] = 0.;
1524     switch (ud) {
1525     case UDzneg:
1526     updir[2] = -1.;
1527     break;
1528     case UDyneg:
1529     updir[1] = -1.;
1530     break;
1531     case UDxneg:
1532     updir[0] = -1.;
1533     break;
1534     case UDxpos:
1535     updir[0] = 1.;
1536     break;
1537     case UDypos:
1538     updir[1] = 1.;
1539     break;
1540     case UDzpos:
1541     updir[2] = 1.;
1542     break;
1543     case UDunknown:
1544     return(0);
1545     }
1546     fcross(xdest, updir, nrm);
1547     if (normalize(xdest) == 0.0)
1548     return(0);
1549     fcross(ydest, nrm, xdest);
1550     xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs);
1551     copymat4(xm, myxf.xfm);
1552 greg 2.6 if (xfbuf == NULL)
1553     return(1);
1554     /* return xf arguments as well */
1555     for (i = 0; xfargs[i] != NULL; i++) {
1556     *xfbuf++ = ' ';
1557     strcpy(xfbuf, xfargs[i]);
1558     while (*xfbuf) ++xfbuf;
1559     }
1560 greg 2.1 return(1);
1561     }
1562 greg 2.15
1563     /*######### END DEPRECATED ROUTINES #######*/
1564     /*################################################################*/