ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.38
Committed: Sun Mar 4 23:28:34 2012 UTC (12 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.37: +8 -3 lines
Log Message:
Improved error diagnostics

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.38 static const char RCSid[] = "$Id: bsdf.c,v 2.37 2012/03/04 20:11:10 greg Exp $";
3 greg 2.1 #endif
4     /*
5 greg 2.15 * bsdf.c
6     *
7     * Definitions for bidirectional scattering distribution functions.
8     *
9     * Created by Greg Ward on 1/10/11.
10     *
11     */
12    
13 greg 2.30 #define _USE_MATH_DEFINES
14 greg 2.15 #include <stdio.h>
15     #include <stdlib.h>
16 greg 2.31 #include <string.h>
17 greg 2.15 #include <math.h>
18 greg 2.32 #include <ctype.h>
19 greg 2.15 #include "ezxml.h"
20     #include "hilbert.h"
21     #include "bsdf.h"
22     #include "bsdf_m.h"
23     #include "bsdf_t.h"
24    
25     /* English ASCII strings corresponding to ennumerated errors */
26     const char *SDerrorEnglish[] = {
27     "No error",
28     "Memory error",
29     "File input/output error",
30     "File format error",
31     "Illegal argument",
32     "Invalid data",
33     "Unsupported feature",
34     "Internal program error",
35     "Unknown error"
36     };
37    
38     /* Additional information on last error (ASCII English) */
39     char SDerrorDetail[256];
40    
41     /* Cache of loaded BSDFs */
42     struct SDCache_s *SDcacheList = NULL;
43    
44     /* Retain BSDFs in cache list */
45     int SDretainSet = SDretainNone;
46    
47     /* Report any error to the indicated stream (in English) */
48     SDError
49     SDreportEnglish(SDError ec, FILE *fp)
50     {
51 greg 2.21 if (!ec)
52     return SDEnone;
53     if ((ec < SDEnone) | (ec > SDEunknown)) {
54     SDerrorDetail[0] = '\0';
55     ec = SDEunknown;
56     }
57 greg 2.15 if (fp == NULL)
58     return ec;
59     fputs(SDerrorEnglish[ec], fp);
60     if (SDerrorDetail[0]) {
61     fputs(": ", fp);
62     fputs(SDerrorDetail, fp);
63     }
64     fputc('\n', fp);
65     if (fp != stderr)
66     fflush(fp);
67     return ec;
68     }
69    
70     static double
71     to_meters( /* return factor to convert given unit to meters */
72     const char *unit
73     )
74     {
75     if (unit == NULL) return(1.); /* safe assumption? */
76     if (!strcasecmp(unit, "Meter")) return(1.);
77     if (!strcasecmp(unit, "Foot")) return(.3048);
78     if (!strcasecmp(unit, "Inch")) return(.0254);
79     if (!strcasecmp(unit, "Centimeter")) return(.01);
80     if (!strcasecmp(unit, "Millimeter")) return(.001);
81     sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
82     return(-1.);
83     }
84    
85     /* Load geometric dimensions and description (if any) */
86     static SDError
87 greg 2.16 SDloadGeometry(SDData *sd, ezxml_t wdb)
88 greg 2.15 {
89     ezxml_t geom;
90     double cfact;
91     const char *fmt, *mgfstr;
92    
93 greg 2.16 if (wdb == NULL) /* no geometry section? */
94     return SDEnone;
95     sd->dim[0] = sd->dim[1] = sd->dim[2] = .0;
96 greg 2.38 SDerrorDetail[0] = '\0';
97 greg 2.15 if ((geom = ezxml_child(wdb, "Width")) != NULL)
98 greg 2.16 sd->dim[0] = atof(ezxml_txt(geom)) *
99 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
100     if ((geom = ezxml_child(wdb, "Height")) != NULL)
101 greg 2.16 sd->dim[1] = atof(ezxml_txt(geom)) *
102 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
103     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
104 greg 2.16 sd->dim[2] = atof(ezxml_txt(geom)) *
105 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
106 greg 2.23 if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) {
107 greg 2.38 if (!SDerrorDetail[0])
108     sprintf(SDerrorDetail, "Negative dimension in \"%s\"",
109     sd->name);
110 greg 2.15 return SDEdata;
111 greg 2.17 }
112 greg 2.15 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
113     (mgfstr = ezxml_txt(geom)) == NULL)
114     return SDEnone;
115 greg 2.32 while (isspace(*mgfstr))
116     ++mgfstr;
117     if (!*mgfstr)
118     return SDEnone;
119 greg 2.15 if ((fmt = ezxml_attr(geom, "format")) != NULL &&
120     strcasecmp(fmt, "MGF")) {
121     sprintf(SDerrorDetail,
122     "Unrecognized geometry format '%s' in \"%s\"",
123 greg 2.16 fmt, sd->name);
124 greg 2.15 return SDEsupport;
125     }
126     cfact = to_meters(ezxml_attr(geom, "unit"));
127 greg 2.38 if (cfact <= 0)
128     return SDEformat;
129 greg 2.16 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
130     if (sd->mgf == NULL) {
131 greg 2.15 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
132     return SDEmemory;
133     }
134     if (cfact < 0.99 || cfact > 1.01)
135 greg 2.16 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
136 greg 2.15 else
137 greg 2.16 strcpy(sd->mgf, mgfstr);
138 greg 2.15 return SDEnone;
139     }
140    
141     /* Load a BSDF struct from the given file (free first and keep name) */
142     SDError
143     SDloadFile(SDData *sd, const char *fname)
144     {
145     SDError lastErr;
146 greg 2.16 ezxml_t fl, wtl;
147 greg 2.15
148     if ((sd == NULL) | (fname == NULL || !*fname))
149     return SDEargument;
150     /* free old data, keeping name */
151     SDfreeBSDF(sd);
152     /* parse XML file */
153     fl = ezxml_parse_file(fname);
154     if (fl == NULL) {
155     sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
156     return SDEfile;
157     }
158     if (ezxml_error(fl)[0]) {
159     sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
160     ezxml_free(fl);
161     return SDEformat;
162     }
163 greg 2.16 if (strcmp(ezxml_name(fl), "WindowElement")) {
164     sprintf(SDerrorDetail,
165     "BSDF \"%s\": top level node not 'WindowElement'",
166     sd->name);
167     ezxml_free(fl);
168     return SDEformat;
169     }
170     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
171     if (wtl == NULL) {
172 greg 2.38 sprintf(SDerrorDetail, "BSDF \"%s\": no optical layers'",
173 greg 2.16 sd->name);
174     ezxml_free(fl);
175     return SDEformat;
176     }
177 greg 2.15 /* load geometry if present */
178 greg 2.16 lastErr = SDloadGeometry(sd, ezxml_child(wtl, "Material"));
179 greg 2.36 if (lastErr) {
180     ezxml_free(fl);
181 greg 2.15 return lastErr;
182 greg 2.36 }
183 greg 2.15 /* try loading variable resolution data */
184 greg 2.16 lastErr = SDloadTre(sd, wtl);
185 greg 2.15 /* check our result */
186 greg 2.29 if (lastErr == SDEsupport) /* try matrix BSDF if not tree data */
187 greg 2.16 lastErr = SDloadMtx(sd, wtl);
188 greg 2.29
189 greg 2.15 /* done with XML file */
190     ezxml_free(fl);
191 greg 2.16
192     if (lastErr) { /* was there a load error? */
193     SDfreeBSDF(sd);
194     return lastErr;
195     }
196     /* remove any insignificant components */
197     if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
198     SDfreeSpectralDF(sd->rf); sd->rf = NULL;
199     }
200     if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
201     SDfreeSpectralDF(sd->rb); sd->rb = NULL;
202     }
203     if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
204     SDfreeSpectralDF(sd->tf); sd->tf = NULL;
205     }
206     /* return success */
207     return SDEnone;
208 greg 2.15 }
209    
210     /* Allocate new spectral distribution function */
211     SDSpectralDF *
212     SDnewSpectralDF(int nc)
213     {
214     SDSpectralDF *df;
215    
216     if (nc <= 0) {
217     strcpy(SDerrorDetail, "Zero component spectral DF request");
218     return NULL;
219     }
220     df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
221     (nc-1)*sizeof(SDComponent));
222     if (df == NULL) {
223     sprintf(SDerrorDetail,
224     "Cannot allocate %d component spectral DF", nc);
225     return NULL;
226     }
227     df->minProjSA = .0;
228     df->maxHemi = .0;
229     df->ncomp = nc;
230     memset(df->comp, 0, nc*sizeof(SDComponent));
231     return df;
232     }
233    
234 greg 2.37 /* Add component(s) to spectral distribution function */
235     SDSpectralDF *
236     SDaddComponent(SDSpectralDF *odf, int nadd)
237     {
238     SDSpectralDF *df;
239    
240     if (odf == NULL)
241     return SDnewSpectralDF(nadd);
242     if (nadd <= 0)
243     return odf;
244     df = (SDSpectralDF *)realloc(odf, sizeof(SDSpectralDF) +
245     (odf->ncomp+nadd-1)*sizeof(SDComponent));
246     if (df == NULL) {
247     sprintf(SDerrorDetail,
248     "Cannot add %d component(s) to spectral DF", nadd);
249     SDfreeSpectralDF(odf);
250     return NULL;
251     }
252     memset(df->comp+df->ncomp, 0, nadd*sizeof(SDComponent));
253     df->ncomp += nadd;
254     return df;
255     }
256    
257 greg 2.15 /* Free cached cumulative distributions for BSDF component */
258     void
259     SDfreeCumulativeCache(SDSpectralDF *df)
260     {
261     int n;
262     SDCDst *cdp;
263    
264     if (df == NULL)
265     return;
266     for (n = df->ncomp; n-- > 0; )
267     while ((cdp = df->comp[n].cdList) != NULL) {
268     df->comp[n].cdList = cdp->next;
269     free(cdp);
270     }
271     }
272    
273     /* Free a spectral distribution function */
274     void
275     SDfreeSpectralDF(SDSpectralDF *df)
276     {
277     int n;
278    
279     if (df == NULL)
280     return;
281     SDfreeCumulativeCache(df);
282     for (n = df->ncomp; n-- > 0; )
283 greg 2.34 if (df->comp[n].dist != NULL)
284     (*df->comp[n].func->freeSC)(df->comp[n].dist);
285 greg 2.15 free(df);
286     }
287    
288     /* Shorten file path to useable BSDF name, removing suffix */
289     void
290 greg 2.16 SDclipName(char *res, const char *fname)
291 greg 2.15 {
292     const char *cp, *dot = NULL;
293    
294     for (cp = fname; *cp; cp++)
295     if (*cp == '.')
296     dot = cp;
297     if ((dot == NULL) | (dot < fname+2))
298     dot = cp;
299     if (dot - fname >= SDnameLn)
300     fname = dot - SDnameLn + 1;
301     while (fname < dot)
302     *res++ = *fname++;
303     *res = '\0';
304     }
305    
306     /* Initialize an unused BSDF struct (simply clears to zeroes) */
307     void
308 greg 2.20 SDclearBSDF(SDData *sd, const char *fname)
309 greg 2.15 {
310 greg 2.20 if (sd == NULL)
311     return;
312     memset(sd, 0, sizeof(SDData));
313     if (fname == NULL)
314     return;
315     SDclipName(sd->name, fname);
316 greg 2.15 }
317    
318     /* Free data associated with BSDF struct */
319     void
320     SDfreeBSDF(SDData *sd)
321     {
322     if (sd == NULL)
323     return;
324     if (sd->mgf != NULL) {
325     free(sd->mgf);
326     sd->mgf = NULL;
327     }
328     if (sd->rf != NULL) {
329     SDfreeSpectralDF(sd->rf);
330     sd->rf = NULL;
331     }
332     if (sd->rb != NULL) {
333     SDfreeSpectralDF(sd->rb);
334     sd->rb = NULL;
335     }
336     if (sd->tf != NULL) {
337     SDfreeSpectralDF(sd->tf);
338     sd->tf = NULL;
339     }
340     sd->rLambFront.cieY = .0;
341 greg 2.16 sd->rLambFront.spec.flags = 0;
342 greg 2.15 sd->rLambBack.cieY = .0;
343 greg 2.16 sd->rLambBack.spec.flags = 0;
344 greg 2.15 sd->tLamb.cieY = .0;
345 greg 2.16 sd->tLamb.spec.flags = 0;
346 greg 2.15 }
347    
348     /* Find writeable BSDF by name, or allocate new cache entry if absent */
349     SDData *
350     SDgetCache(const char *bname)
351     {
352     struct SDCache_s *sdl;
353     char sdnam[SDnameLn];
354    
355     if (bname == NULL)
356     return NULL;
357    
358     SDclipName(sdnam, bname);
359     for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
360     if (!strcmp(sdl->bsdf.name, sdnam)) {
361     sdl->refcnt++;
362     return &sdl->bsdf;
363     }
364    
365     sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
366     if (sdl == NULL)
367     return NULL;
368    
369     strcpy(sdl->bsdf.name, sdnam);
370     sdl->next = SDcacheList;
371     SDcacheList = sdl;
372    
373 greg 2.21 sdl->refcnt = 1;
374 greg 2.15 return &sdl->bsdf;
375     }
376    
377     /* Get loaded BSDF from cache (or load and cache it on first call) */
378     /* Report any problem to stderr and return NULL on failure */
379     const SDData *
380     SDcacheFile(const char *fname)
381     {
382     SDData *sd;
383     SDError ec;
384    
385     if (fname == NULL || !*fname)
386     return NULL;
387     SDerrorDetail[0] = '\0';
388     if ((sd = SDgetCache(fname)) == NULL) {
389     SDreportEnglish(SDEmemory, stderr);
390     return NULL;
391     }
392     if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
393     SDreportEnglish(ec, stderr);
394     SDfreeCache(sd);
395     return NULL;
396     }
397     return sd;
398     }
399    
400     /* Free a BSDF from our cache (clear all if NULL) */
401     void
402     SDfreeCache(const SDData *sd)
403     {
404     struct SDCache_s *sdl, *sdLast = NULL;
405    
406     if (sd == NULL) { /* free entire list */
407     while ((sdl = SDcacheList) != NULL) {
408     SDcacheList = sdl->next;
409     SDfreeBSDF(&sdl->bsdf);
410     free(sdl);
411     }
412     return;
413     }
414     for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
415     if (&sdl->bsdf == sd)
416     break;
417 greg 2.21 if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
418 greg 2.15 return; /* missing or still in use */
419     /* keep unreferenced data? */
420     if (SDisLoaded(sd) && SDretainSet) {
421     if (SDretainSet == SDretainAll)
422     return; /* keep everything */
423     /* else free cumulative data */
424     SDfreeCumulativeCache(sd->rf);
425     SDfreeCumulativeCache(sd->rb);
426     SDfreeCumulativeCache(sd->tf);
427     return;
428     }
429     /* remove from list and free */
430     if (sdLast == NULL)
431     SDcacheList = sdl->next;
432     else
433     sdLast->next = sdl->next;
434     SDfreeBSDF(&sdl->bsdf);
435     free(sdl);
436     }
437    
438     /* Sample an individual BSDF component */
439     SDError
440 greg 2.24 SDsampComponent(SDValue *sv, FVECT ioVec, double randX, SDComponent *sdc)
441 greg 2.15 {
442     float coef[SDmaxCh];
443     SDError ec;
444 greg 2.24 FVECT inVec;
445 greg 2.15 const SDCDst *cd;
446     double d;
447     int n;
448     /* check arguments */
449 greg 2.24 if ((sv == NULL) | (ioVec == NULL) | (sdc == NULL))
450 greg 2.15 return SDEargument;
451     /* get cumulative distribution */
452 greg 2.24 VCOPY(inVec, ioVec);
453 greg 2.15 cd = (*sdc->func->getCDist)(inVec, sdc);
454     if (cd == NULL)
455     return SDEmemory;
456 greg 2.35 if (cd->cTotal <= 1e-6) { /* anything to sample? */
457 greg 2.15 sv->spec = c_dfcolor;
458     sv->cieY = .0;
459 greg 2.24 memset(ioVec, 0, 3*sizeof(double));
460 greg 2.15 return SDEnone;
461     }
462     sv->cieY = cd->cTotal;
463     /* compute sample direction */
464 greg 2.24 ec = (*sdc->func->sampCDist)(ioVec, randX, cd);
465 greg 2.15 if (ec)
466     return ec;
467     /* get BSDF color */
468 greg 2.25 n = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
469 greg 2.15 if (n <= 0) {
470     strcpy(SDerrorDetail, "BSDF sample value error");
471     return SDEinternal;
472     }
473     sv->spec = sdc->cspec[0];
474     d = coef[0];
475     while (--n) {
476     c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
477     d += coef[n];
478     }
479     /* make sure everything is set */
480     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
481     return SDEnone;
482     }
483    
484     #define MS_MAXDIM 15
485    
486     /* Convert 1-dimensional random variable to N-dimensional */
487     void
488     SDmultiSamp(double t[], int n, double randX)
489     {
490     unsigned nBits;
491     double scale;
492     bitmask_t ndx, coord[MS_MAXDIM];
493    
494     while (n > MS_MAXDIM) /* punt for higher dimensions */
495 greg 2.19 t[--n] = rand()*(1./(RAND_MAX+.5));
496 greg 2.15 nBits = (8*sizeof(bitmask_t) - 1) / n;
497     ndx = randX * (double)((bitmask_t)1 << (nBits*n));
498     /* get coordinate on Hilbert curve */
499     hilbert_i2c(n, nBits, ndx, coord);
500     /* convert back to [0,1) range */
501     scale = 1. / (double)((bitmask_t)1 << nBits);
502     while (n--)
503 greg 2.19 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
504 greg 2.15 }
505    
506     #undef MS_MAXDIM
507    
508     /* Generate diffuse hemispherical sample */
509     static void
510     SDdiffuseSamp(FVECT outVec, int outFront, double randX)
511     {
512     /* convert to position on hemisphere */
513     SDmultiSamp(outVec, 2, randX);
514     SDsquare2disk(outVec, outVec[0], outVec[1]);
515     outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
516 greg 2.23 if (outVec[2] > 0) /* a bit of paranoia */
517 greg 2.15 outVec[2] = sqrt(outVec[2]);
518     if (!outFront) /* going out back? */
519     outVec[2] = -outVec[2];
520     }
521    
522     /* Query projected solid angle coverage for non-diffuse BSDF direction */
523     SDError
524 greg 2.22 SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2,
525     int qflags, const SDData *sd)
526 greg 2.15 {
527 greg 2.23 SDSpectralDF *rdf, *tdf;
528 greg 2.15 SDError ec;
529     int i;
530     /* check arguments */
531 greg 2.26 if ((projSA == NULL) | (v1 == NULL) | (sd == NULL))
532 greg 2.15 return SDEargument;
533     /* initialize extrema */
534 greg 2.17 switch (qflags) {
535 greg 2.15 case SDqueryMax:
536     projSA[0] = .0;
537     break;
538     case SDqueryMin+SDqueryMax:
539     projSA[1] = .0;
540     /* fall through */
541     case SDqueryMin:
542     projSA[0] = 10.;
543     break;
544     case 0:
545     return SDEargument;
546     }
547 greg 2.23 if (v1[2] > 0) /* front surface query? */
548 greg 2.15 rdf = sd->rf;
549     else
550     rdf = sd->rb;
551 greg 2.26 tdf = sd->tf;
552     if (v2 != NULL) /* bidirectional? */
553     if (v1[2] > 0 ^ v2[2] > 0)
554     rdf = NULL;
555     else
556     tdf = NULL;
557 greg 2.15 ec = SDEdata; /* run through components */
558     for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
559 greg 2.22 ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2,
560 greg 2.25 qflags, &rdf->comp[i]);
561 greg 2.15 if (ec)
562     return ec;
563     }
564 greg 2.23 for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) {
565     ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2,
566 greg 2.25 qflags, &tdf->comp[i]);
567 greg 2.15 if (ec)
568     return ec;
569     }
570 greg 2.17 if (ec) { /* all diffuse? */
571     projSA[0] = M_PI;
572     if (qflags == SDqueryMin+SDqueryMax)
573     projSA[1] = M_PI;
574     }
575     return SDEnone;
576 greg 2.15 }
577    
578     /* Return BSDF for the given incident and scattered ray vectors */
579     SDError
580     SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
581     {
582     int inFront, outFront;
583     SDSpectralDF *sdf;
584     float coef[SDmaxCh];
585     int nch, i;
586     /* check arguments */
587     if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
588     return SDEargument;
589     /* whose side are we on? */
590 greg 2.23 inFront = (inVec[2] > 0);
591     outFront = (outVec[2] > 0);
592 greg 2.15 /* start with diffuse portion */
593     if (inFront & outFront) {
594     *sv = sd->rLambFront;
595     sdf = sd->rf;
596     } else if (!(inFront | outFront)) {
597     *sv = sd->rLambBack;
598     sdf = sd->rb;
599     } else /* inFront ^ outFront */ {
600     *sv = sd->tLamb;
601     sdf = sd->tf;
602     }
603     sv->cieY *= 1./M_PI;
604     /* add non-diffuse components */
605     i = (sdf != NULL) ? sdf->ncomp : 0;
606     while (i-- > 0) {
607     nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
608 greg 2.25 &sdf->comp[i]);
609 greg 2.15 while (nch-- > 0) {
610     c_cmix(&sv->spec, sv->cieY, &sv->spec,
611     coef[nch], &sdf->comp[i].cspec[nch]);
612     sv->cieY += coef[nch];
613     }
614     }
615     /* make sure everything is set */
616     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
617     return SDEnone;
618     }
619    
620     /* Compute directional hemispherical scattering at this incident angle */
621     double
622     SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
623     {
624     double hsum;
625     SDSpectralDF *rdf;
626     const SDCDst *cd;
627     int i;
628     /* check arguments */
629     if ((inVec == NULL) | (sd == NULL))
630     return .0;
631     /* gather diffuse components */
632 greg 2.23 if (inVec[2] > 0) {
633 greg 2.15 hsum = sd->rLambFront.cieY;
634     rdf = sd->rf;
635     } else /* !inFront */ {
636     hsum = sd->rLambBack.cieY;
637     rdf = sd->rb;
638     }
639     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
640     hsum = .0;
641     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
642     hsum += sd->tLamb.cieY;
643     /* gather non-diffuse components */
644     i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
645     rdf != NULL) ? rdf->ncomp : 0;
646     while (i-- > 0) { /* non-diffuse reflection */
647     cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
648     if (cd != NULL)
649     hsum += cd->cTotal;
650     }
651     i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
652     sd->tf != NULL) ? sd->tf->ncomp : 0;
653     while (i-- > 0) { /* non-diffuse transmission */
654     cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]);
655     if (cd != NULL)
656     hsum += cd->cTotal;
657     }
658     return hsum;
659     }
660    
661     /* Sample BSDF direction based on the given random variable */
662     SDError
663 greg 2.24 SDsampBSDF(SDValue *sv, FVECT ioVec, double randX, int sflags, const SDData *sd)
664 greg 2.15 {
665     SDError ec;
666 greg 2.24 FVECT inVec;
667 greg 2.15 int inFront;
668     SDSpectralDF *rdf;
669     double rdiff;
670     float coef[SDmaxCh];
671     int i, j, n, nr;
672     SDComponent *sdc;
673     const SDCDst **cdarr = NULL;
674     /* check arguments */
675 greg 2.24 if ((sv == NULL) | (ioVec == NULL) | (sd == NULL) |
676 greg 2.23 (randX < 0) | (randX >= 1.))
677 greg 2.15 return SDEargument;
678     /* whose side are we on? */
679 greg 2.24 VCOPY(inVec, ioVec);
680 greg 2.23 inFront = (inVec[2] > 0);
681 greg 2.15 /* remember diffuse portions */
682     if (inFront) {
683     *sv = sd->rLambFront;
684     rdf = sd->rf;
685     } else /* !inFront */ {
686     *sv = sd->rLambBack;
687     rdf = sd->rb;
688     }
689     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
690     sv->cieY = .0;
691     rdiff = sv->cieY;
692     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
693     sv->cieY += sd->tLamb.cieY;
694     /* gather non-diffuse components */
695     i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
696     rdf != NULL) ? rdf->ncomp : 0;
697     j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
698     sd->tf != NULL) ? sd->tf->ncomp : 0;
699     n = i + j;
700     if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
701     return SDEmemory;
702     while (j-- > 0) { /* non-diffuse transmission */
703     cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]);
704     if (cdarr[i+j] == NULL) {
705     free(cdarr);
706     return SDEmemory;
707     }
708     sv->cieY += cdarr[i+j]->cTotal;
709     }
710     while (i-- > 0) { /* non-diffuse reflection */
711     cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
712     if (cdarr[i] == NULL) {
713     free(cdarr);
714     return SDEmemory;
715     }
716     sv->cieY += cdarr[i]->cTotal;
717     }
718 greg 2.35 if (sv->cieY <= 1e-6) { /* anything to sample? */
719 greg 2.15 sv->cieY = .0;
720 greg 2.24 memset(ioVec, 0, 3*sizeof(double));
721 greg 2.15 return SDEnone;
722     }
723     /* scale random variable */
724     randX *= sv->cieY;
725     /* diffuse reflection? */
726     if (randX < rdiff) {
727 greg 2.24 SDdiffuseSamp(ioVec, inFront, randX/rdiff);
728 greg 2.15 goto done;
729     }
730     randX -= rdiff;
731     /* diffuse transmission? */
732     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
733     if (randX < sd->tLamb.cieY) {
734     sv->spec = sd->tLamb.spec;
735 greg 2.24 SDdiffuseSamp(ioVec, !inFront, randX/sd->tLamb.cieY);
736 greg 2.15 goto done;
737     }
738     randX -= sd->tLamb.cieY;
739     }
740     /* else one of cumulative dist. */
741     for (i = 0; i < n && randX < cdarr[i]->cTotal; i++)
742     randX -= cdarr[i]->cTotal;
743     if (i >= n)
744     return SDEinternal;
745     /* compute sample direction */
746     sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr];
747 greg 2.24 ec = (*sdc->func->sampCDist)(ioVec, randX/cdarr[i]->cTotal, cdarr[i]);
748 greg 2.15 if (ec)
749     return ec;
750     /* compute color */
751 greg 2.25 j = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
752 greg 2.15 if (j <= 0) {
753     sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
754     sd->name);
755     return SDEinternal;
756     }
757     sv->spec = sdc->cspec[0];
758     rdiff = coef[0];
759     while (--j) {
760     c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
761     rdiff += coef[j];
762     }
763     done:
764     if (cdarr != NULL)
765     free(cdarr);
766     /* make sure everything is set */
767     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
768     return SDEnone;
769     }
770    
771     /* Compute World->BSDF transform from surface normal and up (Y) vector */
772     SDError
773     SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
774     {
775     if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
776     return SDEargument;
777     VCOPY(vMtx[2], sNrm);
778 greg 2.23 if (normalize(vMtx[2]) == 0)
779 greg 2.15 return SDEargument;
780     fcross(vMtx[0], uVec, vMtx[2]);
781 greg 2.23 if (normalize(vMtx[0]) == 0)
782 greg 2.15 return SDEargument;
783     fcross(vMtx[1], vMtx[2], vMtx[0]);
784     return SDEnone;
785     }
786    
787     /* Compute inverse transform */
788     SDError
789     SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
790     {
791     RREAL mTmp[3][3];
792     double d;
793    
794     if ((iMtx == NULL) | (vMtx == NULL))
795     return SDEargument;
796     /* compute determinant */
797     mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
798     mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
799     mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
800     d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
801 greg 2.23 if (d == 0) {
802 greg 2.15 strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
803     return SDEargument;
804     }
805     d = 1./d; /* invert matrix */
806     mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
807     mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
808     mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
809     mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
810     mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
811     mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
812     mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
813     memcpy(iMtx, mTmp, sizeof(mTmp));
814     return SDEnone;
815     }
816    
817     /* Transform and normalize direction (column) vector */
818     SDError
819     SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
820     {
821     FVECT vTmp;
822    
823     if ((resVec == NULL) | (inpVec == NULL))
824     return SDEargument;
825     if (vMtx == NULL) { /* assume they just want to normalize */
826     if (resVec != inpVec)
827     VCOPY(resVec, inpVec);
828 greg 2.23 return (normalize(resVec) > 0) ? SDEnone : SDEargument;
829 greg 2.15 }
830     vTmp[0] = DOT(vMtx[0], inpVec);
831     vTmp[1] = DOT(vMtx[1], inpVec);
832     vTmp[2] = DOT(vMtx[2], inpVec);
833 greg 2.23 if (normalize(vTmp) == 0)
834 greg 2.15 return SDEargument;
835     VCOPY(resVec, vTmp);
836     return SDEnone;
837     }
838    
839     /*################################################################*/
840     /*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/
841    
842     /*
843 greg 2.1 * Routines for handling BSDF data
844     */
845    
846     #include "standard.h"
847     #include "paths.h"
848    
849     #define MAXLATS 46 /* maximum number of latitudes */
850    
851     /* BSDF angle specification */
852     typedef struct {
853     char name[64]; /* basis name */
854     int nangles; /* total number of directions */
855     struct {
856     float tmin; /* starting theta */
857     short nphis; /* number of phis (0 term) */
858     } lat[MAXLATS+1]; /* latitudes */
859     } ANGLE_BASIS;
860    
861 greg 2.4 #define MAXABASES 7 /* limit on defined bases */
862 greg 2.1
863     static ANGLE_BASIS abase_list[MAXABASES] = {
864     {
865     "LBNL/Klems Full", 145,
866     { {-5., 1},
867     {5., 8},
868     {15., 16},
869     {25., 20},
870     {35., 24},
871     {45., 24},
872     {55., 24},
873     {65., 16},
874     {75., 12},
875     {90., 0} }
876     }, {
877     "LBNL/Klems Half", 73,
878     { {-6.5, 1},
879     {6.5, 8},
880     {19.5, 12},
881     {32.5, 16},
882     {46.5, 20},
883     {61.5, 12},
884     {76.5, 4},
885     {90., 0} }
886     }, {
887     "LBNL/Klems Quarter", 41,
888     { {-9., 1},
889     {9., 8},
890     {27., 12},
891     {46., 12},
892     {66., 8},
893     {90., 0} }
894     }
895     };
896    
897     static int nabases = 3; /* current number of defined bases */
898    
899 greg 2.9 #define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6)
900    
901     static int
902     fequal(double a, double b)
903     {
904 greg 2.23 if (b != 0)
905 greg 2.9 a = a/b - 1.;
906     return((a <= 1e-6) & (a >= -1e-6));
907     }
908 greg 2.3
909 greg 2.14 /* Returns the name of the given tag */
910 greg 2.3 #ifdef ezxml_name
911     #undef ezxml_name
912     static char *
913     ezxml_name(ezxml_t xml)
914     {
915     if (xml == NULL)
916     return(NULL);
917     return(xml->name);
918     }
919     #endif
920    
921 greg 2.14 /* Returns the given tag's character content or empty string if none */
922 greg 2.3 #ifdef ezxml_txt
923     #undef ezxml_txt
924     static char *
925     ezxml_txt(ezxml_t xml)
926     {
927     if (xml == NULL)
928     return("");
929     return(xml->txt);
930     }
931     #endif
932    
933 greg 2.1
934     static int
935     ab_getvec( /* get vector for this angle basis index */
936     FVECT v,
937     int ndx,
938     void *p
939     )
940     {
941     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
942     int li;
943 greg 2.2 double pol, azi, d;
944 greg 2.1
945     if ((ndx < 0) | (ndx >= ab->nangles))
946     return(0);
947     for (li = 0; ndx >= ab->lat[li].nphis; li++)
948     ndx -= ab->lat[li].nphis;
949 greg 2.2 pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin);
950 greg 2.1 azi = 2.*PI*ndx/ab->lat[li].nphis;
951 greg 2.2 v[2] = d = cos(pol);
952     d = sqrt(1. - d*d); /* sin(pol) */
953 greg 2.1 v[0] = cos(azi)*d;
954     v[1] = sin(azi)*d;
955     return(1);
956     }
957    
958    
959     static int
960     ab_getndx( /* get index corresponding to the given vector */
961     FVECT v,
962     void *p
963     )
964     {
965     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
966     int li, ndx;
967 greg 2.33 double pol, azi;
968 greg 2.1
969     if ((v[2] < -1.0) | (v[2] > 1.0))
970     return(-1);
971 greg 2.2 pol = 180.0/PI*acos(v[2]);
972 greg 2.1 azi = 180.0/PI*atan2(v[1], v[0]);
973     if (azi < 0.0) azi += 360.0;
974 greg 2.2 for (li = 1; ab->lat[li].tmin <= pol; li++)
975 greg 2.1 if (!ab->lat[li].nphis)
976     return(-1);
977     --li;
978     ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
979     if (ndx >= ab->lat[li].nphis) ndx = 0;
980     while (li--)
981     ndx += ab->lat[li].nphis;
982     return(ndx);
983     }
984    
985    
986     static double
987     ab_getohm( /* get solid angle for this angle basis index */
988     int ndx,
989     void *p
990     )
991     {
992     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
993     int li;
994     double theta, theta1;
995    
996     if ((ndx < 0) | (ndx >= ab->nangles))
997     return(0);
998     for (li = 0; ndx >= ab->lat[li].nphis; li++)
999     ndx -= ab->lat[li].nphis;
1000     theta1 = PI/180. * ab->lat[li+1].tmin;
1001     if (ab->lat[li].nphis == 1) { /* special case */
1002     if (ab->lat[li].tmin > FTINY)
1003     error(USER, "unsupported BSDF coordinate system");
1004     return(2.*PI*(1. - cos(theta1)));
1005     }
1006     theta = PI/180. * ab->lat[li].tmin;
1007     return(2.*PI*(cos(theta) - cos(theta1))/(double)ab->lat[li].nphis);
1008     }
1009    
1010    
1011     static int
1012     ab_getvecR( /* get reverse vector for this angle basis index */
1013     FVECT v,
1014     int ndx,
1015     void *p
1016     )
1017     {
1018     if (!ab_getvec(v, ndx, p))
1019     return(0);
1020    
1021     v[0] = -v[0];
1022     v[1] = -v[1];
1023     v[2] = -v[2];
1024    
1025     return(1);
1026     }
1027    
1028    
1029     static int
1030     ab_getndxR( /* get index corresponding to the reverse vector */
1031     FVECT v,
1032     void *p
1033     )
1034     {
1035     FVECT v2;
1036    
1037     v2[0] = -v[0];
1038     v2[1] = -v[1];
1039     v2[2] = -v[2];
1040    
1041     return ab_getndx(v2, p);
1042     }
1043    
1044    
1045     static void
1046 greg 2.4 load_angle_basis( /* load custom BSDF angle basis */
1047 greg 2.3 ezxml_t wab
1048     )
1049     {
1050     char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
1051     ezxml_t wbb;
1052     int i;
1053    
1054 greg 2.4 if (!abname || !*abname)
1055 greg 2.3 return;
1056     for (i = nabases; i--; )
1057 greg 2.12 if (!strcasecmp(abname, abase_list[i].name))
1058 greg 2.4 return; /* assume it's the same */
1059 greg 2.3 if (nabases >= MAXABASES)
1060     error(INTERNAL, "too many angle bases");
1061     strcpy(abase_list[nabases].name, abname);
1062     abase_list[nabases].nangles = 0;
1063     for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
1064     wbb != NULL; i++, wbb = wbb->next) {
1065     if (i >= MAXLATS)
1066     error(INTERNAL, "too many latitudes in custom basis");
1067     abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
1068     ezxml_child(ezxml_child(wbb,
1069     "ThetaBounds"), "UpperTheta")));
1070     if (!i)
1071     abase_list[nabases].lat[i].tmin =
1072     -abase_list[nabases].lat[i+1].tmin;
1073 greg 2.9 else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
1074 greg 2.3 "ThetaBounds"), "LowerTheta"))),
1075     abase_list[nabases].lat[i].tmin))
1076     error(WARNING, "theta values disagree in custom basis");
1077     abase_list[nabases].nangles +=
1078     abase_list[nabases].lat[i].nphis =
1079     atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
1080     }
1081     abase_list[nabases++].lat[i].nphis = 0;
1082     }
1083    
1084    
1085 greg 2.6 static void
1086     load_geometry( /* load geometric dimensions and description (if any) */
1087     struct BSDF_data *dp,
1088     ezxml_t wdb
1089     )
1090     {
1091     ezxml_t geom;
1092     double cfact;
1093     const char *fmt, *mgfstr;
1094    
1095     dp->dim[0] = dp->dim[1] = dp->dim[2] = 0;
1096     dp->mgf = NULL;
1097     if ((geom = ezxml_child(wdb, "Width")) != NULL)
1098     dp->dim[0] = atof(ezxml_txt(geom)) *
1099     to_meters(ezxml_attr(geom, "unit"));
1100     if ((geom = ezxml_child(wdb, "Height")) != NULL)
1101     dp->dim[1] = atof(ezxml_txt(geom)) *
1102     to_meters(ezxml_attr(geom, "unit"));
1103     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
1104     dp->dim[2] = atof(ezxml_txt(geom)) *
1105     to_meters(ezxml_attr(geom, "unit"));
1106     if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
1107     (mgfstr = ezxml_txt(geom)) == NULL)
1108     return;
1109     if ((fmt = ezxml_attr(geom, "format")) != NULL &&
1110     strcasecmp(fmt, "MGF")) {
1111     sprintf(errmsg, "unrecognized geometry format '%s'", fmt);
1112     error(WARNING, errmsg);
1113     return;
1114     }
1115     cfact = to_meters(ezxml_attr(geom, "unit"));
1116     dp->mgf = (char *)malloc(strlen(mgfstr)+32);
1117     if (dp->mgf == NULL)
1118     error(SYSTEM, "out of memory in load_geometry");
1119     if (cfact < 0.99 || cfact > 1.01)
1120     sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
1121     else
1122     strcpy(dp->mgf, mgfstr);
1123     }
1124    
1125    
1126 greg 2.3 static void
1127 greg 2.1 load_bsdf_data( /* load BSDF distribution for this wavelength */
1128     struct BSDF_data *dp,
1129     ezxml_t wdb
1130     )
1131     {
1132     char *cbasis = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
1133     char *rbasis = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
1134     char *sdata;
1135     int i;
1136    
1137 greg 2.4 if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) {
1138 greg 2.1 error(WARNING, "missing column/row basis for BSDF");
1139     return;
1140     }
1141     for (i = nabases; i--; )
1142 greg 2.12 if (!strcasecmp(cbasis, abase_list[i].name)) {
1143 greg 2.1 dp->ninc = abase_list[i].nangles;
1144     dp->ib_priv = (void *)&abase_list[i];
1145     dp->ib_vec = ab_getvecR;
1146     dp->ib_ndx = ab_getndxR;
1147     dp->ib_ohm = ab_getohm;
1148     break;
1149     }
1150     if (i < 0) {
1151 greg 2.4 sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis);
1152 greg 2.1 error(WARNING, errmsg);
1153     return;
1154     }
1155     for (i = nabases; i--; )
1156 greg 2.12 if (!strcasecmp(rbasis, abase_list[i].name)) {
1157 greg 2.1 dp->nout = abase_list[i].nangles;
1158     dp->ob_priv = (void *)&abase_list[i];
1159     dp->ob_vec = ab_getvec;
1160     dp->ob_ndx = ab_getndx;
1161     dp->ob_ohm = ab_getohm;
1162     break;
1163     }
1164     if (i < 0) {
1165 greg 2.16 sprintf(errmsg, "undefined RowAngleBasis '%s'", rbasis);
1166 greg 2.1 error(WARNING, errmsg);
1167     return;
1168     }
1169     /* read BSDF data */
1170     sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
1171 greg 2.4 if (!sdata || !*sdata) {
1172 greg 2.1 error(WARNING, "missing BSDF ScatteringData");
1173     return;
1174     }
1175     dp->bsdf = (float *)malloc(sizeof(float)*dp->ninc*dp->nout);
1176     if (dp->bsdf == NULL)
1177     error(SYSTEM, "out of memory in load_bsdf_data");
1178     for (i = 0; i < dp->ninc*dp->nout; i++) {
1179     char *sdnext = fskip(sdata);
1180     if (sdnext == NULL) {
1181     error(WARNING, "bad/missing BSDF ScatteringData");
1182     free(dp->bsdf); dp->bsdf = NULL;
1183     return;
1184     }
1185     while (*sdnext && isspace(*sdnext))
1186     sdnext++;
1187     if (*sdnext == ',') sdnext++;
1188     dp->bsdf[i] = atof(sdata);
1189     sdata = sdnext;
1190     }
1191     while (isspace(*sdata))
1192     sdata++;
1193     if (*sdata) {
1194     sprintf(errmsg, "%d extra characters after BSDF ScatteringData",
1195 greg 2.5 (int)strlen(sdata));
1196 greg 2.1 error(WARNING, errmsg);
1197     }
1198     }
1199    
1200    
1201     static int
1202     check_bsdf_data( /* check that BSDF data is sane */
1203     struct BSDF_data *dp
1204     )
1205     {
1206 greg 2.2 double *omega_iarr, *omega_oarr;
1207 greg 2.33 double dom, hemi_total, full_total;
1208 greg 2.1 int nneg;
1209 greg 2.2 FVECT v;
1210 greg 2.1 int i, o;
1211    
1212     if (dp == NULL || dp->bsdf == NULL)
1213     return(0);
1214 greg 2.2 omega_iarr = (double *)calloc(dp->ninc, sizeof(double));
1215     omega_oarr = (double *)calloc(dp->nout, sizeof(double));
1216     if ((omega_iarr == NULL) | (omega_oarr == NULL))
1217 greg 2.1 error(SYSTEM, "out of memory in check_bsdf_data");
1218 greg 2.2 /* incoming projected solid angles */
1219     hemi_total = .0;
1220     for (i = dp->ninc; i--; ) {
1221     dom = getBSDF_incohm(dp,i);
1222 greg 2.23 if (dom <= 0) {
1223 greg 2.2 error(WARNING, "zero/negative incoming solid angle");
1224     continue;
1225     }
1226     if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) {
1227     error(WARNING, "illegal incoming BSDF direction");
1228     free(omega_iarr); free(omega_oarr);
1229     return(0);
1230     }
1231     hemi_total += omega_iarr[i] = dom * -v[2];
1232     }
1233     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1234     sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%",
1235     100.*(hemi_total/PI - 1.));
1236     error(WARNING, errmsg);
1237     }
1238     dom = PI / hemi_total; /* fix normalization */
1239     for (i = dp->ninc; i--; )
1240     omega_iarr[i] *= dom;
1241     /* outgoing projected solid angles */
1242 greg 2.1 hemi_total = .0;
1243     for (o = dp->nout; o--; ) {
1244     dom = getBSDF_outohm(dp,o);
1245 greg 2.23 if (dom <= 0) {
1246 greg 2.2 error(WARNING, "zero/negative outgoing solid angle");
1247 greg 2.1 continue;
1248     }
1249     if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) {
1250     error(WARNING, "illegal outgoing BSDF direction");
1251 greg 2.2 free(omega_iarr); free(omega_oarr);
1252 greg 2.1 return(0);
1253     }
1254 greg 2.2 hemi_total += omega_oarr[o] = dom * v[2];
1255 greg 2.1 }
1256     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1257     sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%",
1258     100.*(hemi_total/PI - 1.));
1259     error(WARNING, errmsg);
1260     }
1261 greg 2.2 dom = PI / hemi_total; /* fix normalization */
1262 greg 2.1 for (o = dp->nout; o--; )
1263 greg 2.2 omega_oarr[o] *= dom;
1264     nneg = 0; /* check outgoing totals */
1265     for (i = 0; i < dp->ninc; i++) {
1266 greg 2.1 hemi_total = .0;
1267     for (o = dp->nout; o--; ) {
1268     double f = BSDF_value(dp,i,o);
1269 greg 2.23 if (f >= 0)
1270 greg 2.2 hemi_total += f*omega_oarr[o];
1271     else {
1272     nneg += (f < -FTINY);
1273     BSDF_value(dp,i,o) = .0f;
1274     }
1275 greg 2.1 }
1276 greg 2.8 if (hemi_total > 1.01) {
1277 greg 2.2 sprintf(errmsg,
1278     "incoming BSDF direction %d passes %.1f%% of light",
1279     i, 100.*hemi_total);
1280 greg 2.1 error(WARNING, errmsg);
1281     }
1282     }
1283 greg 2.2 if (nneg) {
1284     sprintf(errmsg, "%d negative BSDF values (ignored)", nneg);
1285 greg 2.1 error(WARNING, errmsg);
1286     }
1287 greg 2.7 full_total = .0; /* reverse roles and check again */
1288 greg 2.2 for (o = 0; o < dp->nout; o++) {
1289     hemi_total = .0;
1290     for (i = dp->ninc; i--; )
1291     hemi_total += BSDF_value(dp,i,o) * omega_iarr[i];
1292    
1293 greg 2.8 if (hemi_total > 1.01) {
1294 greg 2.2 sprintf(errmsg,
1295     "outgoing BSDF direction %d collects %.1f%% of light",
1296     o, 100.*hemi_total);
1297     error(WARNING, errmsg);
1298     }
1299 greg 2.7 full_total += hemi_total*omega_oarr[o];
1300     }
1301     full_total /= PI;
1302 greg 2.8 if (full_total > 1.00001) {
1303     sprintf(errmsg, "BSDF transfers %.4f%% of light",
1304 greg 2.7 100.*full_total);
1305     error(WARNING, errmsg);
1306 greg 2.2 }
1307     free(omega_iarr); free(omega_oarr);
1308 greg 2.1 return(1);
1309     }
1310    
1311 greg 2.6
1312 greg 2.1 struct BSDF_data *
1313     load_BSDF( /* load BSDF data from file */
1314     char *fname
1315     )
1316     {
1317     char *path;
1318     ezxml_t fl, wtl, wld, wdb;
1319     struct BSDF_data *dp;
1320    
1321     path = getpath(fname, getrlibpath(), R_OK);
1322     if (path == NULL) {
1323     sprintf(errmsg, "cannot find BSDF file \"%s\"", fname);
1324     error(WARNING, errmsg);
1325     return(NULL);
1326     }
1327     fl = ezxml_parse_file(path);
1328     if (fl == NULL) {
1329     sprintf(errmsg, "cannot open BSDF \"%s\"", path);
1330     error(WARNING, errmsg);
1331     return(NULL);
1332     }
1333     if (ezxml_error(fl)[0]) {
1334     sprintf(errmsg, "BSDF \"%s\" %s", path, ezxml_error(fl));
1335     error(WARNING, errmsg);
1336     ezxml_free(fl);
1337     return(NULL);
1338     }
1339     if (strcmp(ezxml_name(fl), "WindowElement")) {
1340     sprintf(errmsg,
1341     "BSDF \"%s\": top level node not 'WindowElement'",
1342     path);
1343     error(WARNING, errmsg);
1344     ezxml_free(fl);
1345     return(NULL);
1346     }
1347     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
1348 greg 2.10 if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl,
1349     "DataDefinition"), "IncidentDataStructure")),
1350     "Columns")) {
1351     sprintf(errmsg,
1352     "BSDF \"%s\": unsupported IncidentDataStructure",
1353     path);
1354     error(WARNING, errmsg);
1355     ezxml_free(fl);
1356     return(NULL);
1357 greg 2.34 }
1358     for (wld = ezxml_child(ezxml_child(wtl,
1359     "DataDefinition"), "AngleBasis");
1360     wld != NULL; wld = wld->next)
1361     load_angle_basis(wld);
1362 greg 2.1 dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data));
1363 greg 2.6 load_geometry(dp, ezxml_child(wtl, "Material"));
1364 greg 2.1 for (wld = ezxml_child(wtl, "WavelengthData");
1365     wld != NULL; wld = wld->next) {
1366 greg 2.13 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1367     "Visible"))
1368 greg 2.1 continue;
1369 greg 2.13 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1370     wdb != NULL; wdb = wdb->next)
1371     if (!strcasecmp(ezxml_txt(ezxml_child(wdb,
1372     "WavelengthDataDirection")),
1373 greg 2.1 "Transmission Front"))
1374 greg 2.13 break;
1375     if (wdb != NULL) { /* load front BTDF */
1376     load_bsdf_data(dp, wdb);
1377     break; /* ignore the rest */
1378     }
1379 greg 2.1 }
1380     ezxml_free(fl); /* done with XML file */
1381     if (!check_bsdf_data(dp)) {
1382     sprintf(errmsg, "bad/missing BTDF data in \"%s\"", path);
1383     error(WARNING, errmsg);
1384     free_BSDF(dp);
1385     dp = NULL;
1386     }
1387     return(dp);
1388     }
1389    
1390    
1391     void
1392     free_BSDF( /* free BSDF data structure */
1393     struct BSDF_data *b
1394     )
1395     {
1396     if (b == NULL)
1397     return;
1398 greg 2.6 if (b->mgf != NULL)
1399     free(b->mgf);
1400 greg 2.1 if (b->bsdf != NULL)
1401     free(b->bsdf);
1402     free(b);
1403     }
1404    
1405    
1406     int
1407     r_BSDF_incvec( /* compute random input vector at given location */
1408     FVECT v,
1409     struct BSDF_data *b,
1410     int i,
1411     double rv,
1412     MAT4 xm
1413     )
1414     {
1415     FVECT pert;
1416     double rad;
1417     int j;
1418    
1419     if (!getBSDF_incvec(v, b, i))
1420     return(0);
1421     rad = sqrt(getBSDF_incohm(b, i) / PI);
1422     multisamp(pert, 3, rv);
1423     for (j = 0; j < 3; j++)
1424     v[j] += rad*(2.*pert[j] - 1.);
1425     if (xm != NULL)
1426     multv3(v, v, xm);
1427     return(normalize(v) != 0.0);
1428     }
1429    
1430    
1431     int
1432     r_BSDF_outvec( /* compute random output vector at given location */
1433     FVECT v,
1434     struct BSDF_data *b,
1435     int o,
1436     double rv,
1437     MAT4 xm
1438     )
1439     {
1440     FVECT pert;
1441     double rad;
1442     int j;
1443    
1444     if (!getBSDF_outvec(v, b, o))
1445     return(0);
1446     rad = sqrt(getBSDF_outohm(b, o) / PI);
1447     multisamp(pert, 3, rv);
1448     for (j = 0; j < 3; j++)
1449     v[j] += rad*(2.*pert[j] - 1.);
1450     if (xm != NULL)
1451     multv3(v, v, xm);
1452     return(normalize(v) != 0.0);
1453     }
1454    
1455    
1456     static int
1457     addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */
1458     char *xfarg[],
1459     FVECT xp,
1460     FVECT yp,
1461     FVECT zp
1462     )
1463     {
1464     static char bufs[3][16];
1465     int bn = 0;
1466     char **xfp = xfarg;
1467     double theta;
1468    
1469     if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
1470     /* Special case for X' along Z-axis */
1471     theta = -atan2(yp[0], yp[1]);
1472     *xfp++ = "-ry";
1473     *xfp++ = xp[2] < 0.0 ? "90" : "-90";
1474     *xfp++ = "-rz";
1475     sprintf(bufs[bn], "%f", theta*(180./PI));
1476     *xfp++ = bufs[bn++];
1477     return(xfp - xfarg);
1478     }
1479     theta = atan2(yp[2], zp[2]);
1480     if (!FEQ(theta,0.0)) {
1481     *xfp++ = "-rx";
1482     sprintf(bufs[bn], "%f", theta*(180./PI));
1483     *xfp++ = bufs[bn++];
1484     }
1485     theta = asin(-xp[2]);
1486     if (!FEQ(theta,0.0)) {
1487     *xfp++ = "-ry";
1488     sprintf(bufs[bn], " %f", theta*(180./PI));
1489     *xfp++ = bufs[bn++];
1490     }
1491     theta = atan2(xp[1], xp[0]);
1492     if (!FEQ(theta,0.0)) {
1493     *xfp++ = "-rz";
1494     sprintf(bufs[bn], "%f", theta*(180./PI));
1495     *xfp++ = bufs[bn++];
1496     }
1497     *xfp = NULL;
1498     return(xfp - xfarg);
1499     }
1500    
1501    
1502     int
1503     getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */
1504     MAT4 xm,
1505     FVECT nrm,
1506 greg 2.6 UpDir ud,
1507     char *xfbuf
1508 greg 2.1 )
1509     {
1510     char *xfargs[7];
1511     XF myxf;
1512     FVECT updir, xdest, ydest;
1513 greg 2.6 int i;
1514 greg 2.1
1515     updir[0] = updir[1] = updir[2] = 0.;
1516     switch (ud) {
1517     case UDzneg:
1518     updir[2] = -1.;
1519     break;
1520     case UDyneg:
1521     updir[1] = -1.;
1522     break;
1523     case UDxneg:
1524     updir[0] = -1.;
1525     break;
1526     case UDxpos:
1527     updir[0] = 1.;
1528     break;
1529     case UDypos:
1530     updir[1] = 1.;
1531     break;
1532     case UDzpos:
1533     updir[2] = 1.;
1534     break;
1535     case UDunknown:
1536     return(0);
1537     }
1538     fcross(xdest, updir, nrm);
1539     if (normalize(xdest) == 0.0)
1540     return(0);
1541     fcross(ydest, nrm, xdest);
1542     xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs);
1543     copymat4(xm, myxf.xfm);
1544 greg 2.6 if (xfbuf == NULL)
1545     return(1);
1546     /* return xf arguments as well */
1547     for (i = 0; xfargs[i] != NULL; i++) {
1548     *xfbuf++ = ' ';
1549     strcpy(xfbuf, xfargs[i]);
1550     while (*xfbuf) ++xfbuf;
1551     }
1552 greg 2.1 return(1);
1553     }
1554 greg 2.15
1555     /*######### END DEPRECATED ROUTINES #######*/
1556     /*################################################################*/