ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.36
Committed: Sat Sep 17 22:09:33 2011 UTC (12 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad4R1
Changes since 2.35: +4 -2 lines
Log Message:
Added missing call to free EZXML structures on error

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.36 static const char RCSid[] = "$Id: bsdf.c,v 2.35 2011/08/21 22:38:12 greg Exp $";
3 greg 2.1 #endif
4     /*
5 greg 2.15 * bsdf.c
6     *
7     * Definitions for bidirectional scattering distribution functions.
8     *
9     * Created by Greg Ward on 1/10/11.
10     *
11     */
12    
13 greg 2.30 #define _USE_MATH_DEFINES
14 greg 2.15 #include <stdio.h>
15     #include <stdlib.h>
16 greg 2.31 #include <string.h>
17 greg 2.15 #include <math.h>
18 greg 2.32 #include <ctype.h>
19 greg 2.15 #include "ezxml.h"
20     #include "hilbert.h"
21     #include "bsdf.h"
22     #include "bsdf_m.h"
23     #include "bsdf_t.h"
24    
25     /* English ASCII strings corresponding to ennumerated errors */
26     const char *SDerrorEnglish[] = {
27     "No error",
28     "Memory error",
29     "File input/output error",
30     "File format error",
31     "Illegal argument",
32     "Invalid data",
33     "Unsupported feature",
34     "Internal program error",
35     "Unknown error"
36     };
37    
38     /* Additional information on last error (ASCII English) */
39     char SDerrorDetail[256];
40    
41     /* Cache of loaded BSDFs */
42     struct SDCache_s *SDcacheList = NULL;
43    
44     /* Retain BSDFs in cache list */
45     int SDretainSet = SDretainNone;
46    
47     /* Report any error to the indicated stream (in English) */
48     SDError
49     SDreportEnglish(SDError ec, FILE *fp)
50     {
51 greg 2.21 if (!ec)
52     return SDEnone;
53     if ((ec < SDEnone) | (ec > SDEunknown)) {
54     SDerrorDetail[0] = '\0';
55     ec = SDEunknown;
56     }
57 greg 2.15 if (fp == NULL)
58     return ec;
59     fputs(SDerrorEnglish[ec], fp);
60     if (SDerrorDetail[0]) {
61     fputs(": ", fp);
62     fputs(SDerrorDetail, fp);
63     }
64     fputc('\n', fp);
65     if (fp != stderr)
66     fflush(fp);
67     return ec;
68     }
69    
70     static double
71     to_meters( /* return factor to convert given unit to meters */
72     const char *unit
73     )
74     {
75     if (unit == NULL) return(1.); /* safe assumption? */
76     if (!strcasecmp(unit, "Meter")) return(1.);
77     if (!strcasecmp(unit, "Foot")) return(.3048);
78     if (!strcasecmp(unit, "Inch")) return(.0254);
79     if (!strcasecmp(unit, "Centimeter")) return(.01);
80     if (!strcasecmp(unit, "Millimeter")) return(.001);
81     sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
82     return(-1.);
83     }
84    
85     /* Load geometric dimensions and description (if any) */
86     static SDError
87 greg 2.16 SDloadGeometry(SDData *sd, ezxml_t wdb)
88 greg 2.15 {
89     ezxml_t geom;
90     double cfact;
91     const char *fmt, *mgfstr;
92    
93 greg 2.16 if (wdb == NULL) /* no geometry section? */
94     return SDEnone;
95     sd->dim[0] = sd->dim[1] = sd->dim[2] = .0;
96 greg 2.15 if ((geom = ezxml_child(wdb, "Width")) != NULL)
97 greg 2.16 sd->dim[0] = atof(ezxml_txt(geom)) *
98 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
99     if ((geom = ezxml_child(wdb, "Height")) != NULL)
100 greg 2.16 sd->dim[1] = atof(ezxml_txt(geom)) *
101 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
102     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
103 greg 2.16 sd->dim[2] = atof(ezxml_txt(geom)) *
104 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
105 greg 2.23 if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) {
106 greg 2.17 sprintf(SDerrorDetail, "Negative size in \"%s\"", sd->name);
107 greg 2.15 return SDEdata;
108 greg 2.17 }
109 greg 2.15 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
110     (mgfstr = ezxml_txt(geom)) == NULL)
111     return SDEnone;
112 greg 2.32 while (isspace(*mgfstr))
113     ++mgfstr;
114     if (!*mgfstr)
115     return SDEnone;
116 greg 2.15 if ((fmt = ezxml_attr(geom, "format")) != NULL &&
117     strcasecmp(fmt, "MGF")) {
118     sprintf(SDerrorDetail,
119     "Unrecognized geometry format '%s' in \"%s\"",
120 greg 2.16 fmt, sd->name);
121 greg 2.15 return SDEsupport;
122     }
123     cfact = to_meters(ezxml_attr(geom, "unit"));
124 greg 2.16 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
125     if (sd->mgf == NULL) {
126 greg 2.15 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
127     return SDEmemory;
128     }
129     if (cfact < 0.99 || cfact > 1.01)
130 greg 2.16 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
131 greg 2.15 else
132 greg 2.16 strcpy(sd->mgf, mgfstr);
133 greg 2.15 return SDEnone;
134     }
135    
136     /* Load a BSDF struct from the given file (free first and keep name) */
137     SDError
138     SDloadFile(SDData *sd, const char *fname)
139     {
140     SDError lastErr;
141 greg 2.16 ezxml_t fl, wtl;
142 greg 2.15
143     if ((sd == NULL) | (fname == NULL || !*fname))
144     return SDEargument;
145     /* free old data, keeping name */
146     SDfreeBSDF(sd);
147     /* parse XML file */
148     fl = ezxml_parse_file(fname);
149     if (fl == NULL) {
150     sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
151     return SDEfile;
152     }
153     if (ezxml_error(fl)[0]) {
154     sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
155     ezxml_free(fl);
156     return SDEformat;
157     }
158 greg 2.16 if (strcmp(ezxml_name(fl), "WindowElement")) {
159     sprintf(SDerrorDetail,
160     "BSDF \"%s\": top level node not 'WindowElement'",
161     sd->name);
162     ezxml_free(fl);
163     return SDEformat;
164     }
165     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
166     if (wtl == NULL) {
167     sprintf(SDerrorDetail, "BSDF \"%s\": no optical layer'",
168     sd->name);
169     ezxml_free(fl);
170     return SDEformat;
171     }
172 greg 2.15 /* load geometry if present */
173 greg 2.16 lastErr = SDloadGeometry(sd, ezxml_child(wtl, "Material"));
174 greg 2.36 if (lastErr) {
175     ezxml_free(fl);
176 greg 2.15 return lastErr;
177 greg 2.36 }
178 greg 2.15 /* try loading variable resolution data */
179 greg 2.16 lastErr = SDloadTre(sd, wtl);
180 greg 2.15 /* check our result */
181 greg 2.29 if (lastErr == SDEsupport) /* try matrix BSDF if not tree data */
182 greg 2.16 lastErr = SDloadMtx(sd, wtl);
183 greg 2.29
184 greg 2.15 /* done with XML file */
185     ezxml_free(fl);
186 greg 2.16
187     if (lastErr) { /* was there a load error? */
188     SDfreeBSDF(sd);
189     return lastErr;
190     }
191     /* remove any insignificant components */
192     if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
193     SDfreeSpectralDF(sd->rf); sd->rf = NULL;
194     }
195     if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
196     SDfreeSpectralDF(sd->rb); sd->rb = NULL;
197     }
198     if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
199     SDfreeSpectralDF(sd->tf); sd->tf = NULL;
200     }
201     /* return success */
202     return SDEnone;
203 greg 2.15 }
204    
205     /* Allocate new spectral distribution function */
206     SDSpectralDF *
207     SDnewSpectralDF(int nc)
208     {
209     SDSpectralDF *df;
210    
211     if (nc <= 0) {
212     strcpy(SDerrorDetail, "Zero component spectral DF request");
213     return NULL;
214     }
215     df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
216     (nc-1)*sizeof(SDComponent));
217     if (df == NULL) {
218     sprintf(SDerrorDetail,
219     "Cannot allocate %d component spectral DF", nc);
220     return NULL;
221     }
222     df->minProjSA = .0;
223     df->maxHemi = .0;
224     df->ncomp = nc;
225     memset(df->comp, 0, nc*sizeof(SDComponent));
226     return df;
227     }
228    
229     /* Free cached cumulative distributions for BSDF component */
230     void
231     SDfreeCumulativeCache(SDSpectralDF *df)
232     {
233     int n;
234     SDCDst *cdp;
235    
236     if (df == NULL)
237     return;
238     for (n = df->ncomp; n-- > 0; )
239     while ((cdp = df->comp[n].cdList) != NULL) {
240     df->comp[n].cdList = cdp->next;
241     free(cdp);
242     }
243     }
244    
245     /* Free a spectral distribution function */
246     void
247     SDfreeSpectralDF(SDSpectralDF *df)
248     {
249     int n;
250    
251     if (df == NULL)
252     return;
253     SDfreeCumulativeCache(df);
254     for (n = df->ncomp; n-- > 0; )
255 greg 2.34 if (df->comp[n].dist != NULL)
256     (*df->comp[n].func->freeSC)(df->comp[n].dist);
257 greg 2.15 free(df);
258     }
259    
260     /* Shorten file path to useable BSDF name, removing suffix */
261     void
262 greg 2.16 SDclipName(char *res, const char *fname)
263 greg 2.15 {
264     const char *cp, *dot = NULL;
265    
266     for (cp = fname; *cp; cp++)
267     if (*cp == '.')
268     dot = cp;
269     if ((dot == NULL) | (dot < fname+2))
270     dot = cp;
271     if (dot - fname >= SDnameLn)
272     fname = dot - SDnameLn + 1;
273     while (fname < dot)
274     *res++ = *fname++;
275     *res = '\0';
276     }
277    
278     /* Initialize an unused BSDF struct (simply clears to zeroes) */
279     void
280 greg 2.20 SDclearBSDF(SDData *sd, const char *fname)
281 greg 2.15 {
282 greg 2.20 if (sd == NULL)
283     return;
284     memset(sd, 0, sizeof(SDData));
285     if (fname == NULL)
286     return;
287     SDclipName(sd->name, fname);
288 greg 2.15 }
289    
290     /* Free data associated with BSDF struct */
291     void
292     SDfreeBSDF(SDData *sd)
293     {
294     if (sd == NULL)
295     return;
296     if (sd->mgf != NULL) {
297     free(sd->mgf);
298     sd->mgf = NULL;
299     }
300     if (sd->rf != NULL) {
301     SDfreeSpectralDF(sd->rf);
302     sd->rf = NULL;
303     }
304     if (sd->rb != NULL) {
305     SDfreeSpectralDF(sd->rb);
306     sd->rb = NULL;
307     }
308     if (sd->tf != NULL) {
309     SDfreeSpectralDF(sd->tf);
310     sd->tf = NULL;
311     }
312     sd->rLambFront.cieY = .0;
313 greg 2.16 sd->rLambFront.spec.flags = 0;
314 greg 2.15 sd->rLambBack.cieY = .0;
315 greg 2.16 sd->rLambBack.spec.flags = 0;
316 greg 2.15 sd->tLamb.cieY = .0;
317 greg 2.16 sd->tLamb.spec.flags = 0;
318 greg 2.15 }
319    
320     /* Find writeable BSDF by name, or allocate new cache entry if absent */
321     SDData *
322     SDgetCache(const char *bname)
323     {
324     struct SDCache_s *sdl;
325     char sdnam[SDnameLn];
326    
327     if (bname == NULL)
328     return NULL;
329    
330     SDclipName(sdnam, bname);
331     for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
332     if (!strcmp(sdl->bsdf.name, sdnam)) {
333     sdl->refcnt++;
334     return &sdl->bsdf;
335     }
336    
337     sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
338     if (sdl == NULL)
339     return NULL;
340    
341     strcpy(sdl->bsdf.name, sdnam);
342     sdl->next = SDcacheList;
343     SDcacheList = sdl;
344    
345 greg 2.21 sdl->refcnt = 1;
346 greg 2.15 return &sdl->bsdf;
347     }
348    
349     /* Get loaded BSDF from cache (or load and cache it on first call) */
350     /* Report any problem to stderr and return NULL on failure */
351     const SDData *
352     SDcacheFile(const char *fname)
353     {
354     SDData *sd;
355     SDError ec;
356    
357     if (fname == NULL || !*fname)
358     return NULL;
359     SDerrorDetail[0] = '\0';
360     if ((sd = SDgetCache(fname)) == NULL) {
361     SDreportEnglish(SDEmemory, stderr);
362     return NULL;
363     }
364     if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
365     SDreportEnglish(ec, stderr);
366     SDfreeCache(sd);
367     return NULL;
368     }
369     return sd;
370     }
371    
372     /* Free a BSDF from our cache (clear all if NULL) */
373     void
374     SDfreeCache(const SDData *sd)
375     {
376     struct SDCache_s *sdl, *sdLast = NULL;
377    
378     if (sd == NULL) { /* free entire list */
379     while ((sdl = SDcacheList) != NULL) {
380     SDcacheList = sdl->next;
381     SDfreeBSDF(&sdl->bsdf);
382     free(sdl);
383     }
384     return;
385     }
386     for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
387     if (&sdl->bsdf == sd)
388     break;
389 greg 2.21 if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
390 greg 2.15 return; /* missing or still in use */
391     /* keep unreferenced data? */
392     if (SDisLoaded(sd) && SDretainSet) {
393     if (SDretainSet == SDretainAll)
394     return; /* keep everything */
395     /* else free cumulative data */
396     SDfreeCumulativeCache(sd->rf);
397     SDfreeCumulativeCache(sd->rb);
398     SDfreeCumulativeCache(sd->tf);
399     return;
400     }
401     /* remove from list and free */
402     if (sdLast == NULL)
403     SDcacheList = sdl->next;
404     else
405     sdLast->next = sdl->next;
406     SDfreeBSDF(&sdl->bsdf);
407     free(sdl);
408     }
409    
410     /* Sample an individual BSDF component */
411     SDError
412 greg 2.24 SDsampComponent(SDValue *sv, FVECT ioVec, double randX, SDComponent *sdc)
413 greg 2.15 {
414     float coef[SDmaxCh];
415     SDError ec;
416 greg 2.24 FVECT inVec;
417 greg 2.15 const SDCDst *cd;
418     double d;
419     int n;
420     /* check arguments */
421 greg 2.24 if ((sv == NULL) | (ioVec == NULL) | (sdc == NULL))
422 greg 2.15 return SDEargument;
423     /* get cumulative distribution */
424 greg 2.24 VCOPY(inVec, ioVec);
425 greg 2.15 cd = (*sdc->func->getCDist)(inVec, sdc);
426     if (cd == NULL)
427     return SDEmemory;
428 greg 2.35 if (cd->cTotal <= 1e-6) { /* anything to sample? */
429 greg 2.15 sv->spec = c_dfcolor;
430     sv->cieY = .0;
431 greg 2.24 memset(ioVec, 0, 3*sizeof(double));
432 greg 2.15 return SDEnone;
433     }
434     sv->cieY = cd->cTotal;
435     /* compute sample direction */
436 greg 2.24 ec = (*sdc->func->sampCDist)(ioVec, randX, cd);
437 greg 2.15 if (ec)
438     return ec;
439     /* get BSDF color */
440 greg 2.25 n = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
441 greg 2.15 if (n <= 0) {
442     strcpy(SDerrorDetail, "BSDF sample value error");
443     return SDEinternal;
444     }
445     sv->spec = sdc->cspec[0];
446     d = coef[0];
447     while (--n) {
448     c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
449     d += coef[n];
450     }
451     /* make sure everything is set */
452     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
453     return SDEnone;
454     }
455    
456     #define MS_MAXDIM 15
457    
458     /* Convert 1-dimensional random variable to N-dimensional */
459     void
460     SDmultiSamp(double t[], int n, double randX)
461     {
462     unsigned nBits;
463     double scale;
464     bitmask_t ndx, coord[MS_MAXDIM];
465    
466     while (n > MS_MAXDIM) /* punt for higher dimensions */
467 greg 2.19 t[--n] = rand()*(1./(RAND_MAX+.5));
468 greg 2.15 nBits = (8*sizeof(bitmask_t) - 1) / n;
469     ndx = randX * (double)((bitmask_t)1 << (nBits*n));
470     /* get coordinate on Hilbert curve */
471     hilbert_i2c(n, nBits, ndx, coord);
472     /* convert back to [0,1) range */
473     scale = 1. / (double)((bitmask_t)1 << nBits);
474     while (n--)
475 greg 2.19 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
476 greg 2.15 }
477    
478     #undef MS_MAXDIM
479    
480     /* Generate diffuse hemispherical sample */
481     static void
482     SDdiffuseSamp(FVECT outVec, int outFront, double randX)
483     {
484     /* convert to position on hemisphere */
485     SDmultiSamp(outVec, 2, randX);
486     SDsquare2disk(outVec, outVec[0], outVec[1]);
487     outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
488 greg 2.23 if (outVec[2] > 0) /* a bit of paranoia */
489 greg 2.15 outVec[2] = sqrt(outVec[2]);
490     if (!outFront) /* going out back? */
491     outVec[2] = -outVec[2];
492     }
493    
494     /* Query projected solid angle coverage for non-diffuse BSDF direction */
495     SDError
496 greg 2.22 SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2,
497     int qflags, const SDData *sd)
498 greg 2.15 {
499 greg 2.23 SDSpectralDF *rdf, *tdf;
500 greg 2.15 SDError ec;
501     int i;
502     /* check arguments */
503 greg 2.26 if ((projSA == NULL) | (v1 == NULL) | (sd == NULL))
504 greg 2.15 return SDEargument;
505     /* initialize extrema */
506 greg 2.17 switch (qflags) {
507 greg 2.15 case SDqueryMax:
508     projSA[0] = .0;
509     break;
510     case SDqueryMin+SDqueryMax:
511     projSA[1] = .0;
512     /* fall through */
513     case SDqueryMin:
514     projSA[0] = 10.;
515     break;
516     case 0:
517     return SDEargument;
518     }
519 greg 2.23 if (v1[2] > 0) /* front surface query? */
520 greg 2.15 rdf = sd->rf;
521     else
522     rdf = sd->rb;
523 greg 2.26 tdf = sd->tf;
524     if (v2 != NULL) /* bidirectional? */
525     if (v1[2] > 0 ^ v2[2] > 0)
526     rdf = NULL;
527     else
528     tdf = NULL;
529 greg 2.15 ec = SDEdata; /* run through components */
530     for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
531 greg 2.22 ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2,
532 greg 2.25 qflags, &rdf->comp[i]);
533 greg 2.15 if (ec)
534     return ec;
535     }
536 greg 2.23 for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) {
537     ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2,
538 greg 2.25 qflags, &tdf->comp[i]);
539 greg 2.15 if (ec)
540     return ec;
541     }
542 greg 2.17 if (ec) { /* all diffuse? */
543     projSA[0] = M_PI;
544     if (qflags == SDqueryMin+SDqueryMax)
545     projSA[1] = M_PI;
546     }
547     return SDEnone;
548 greg 2.15 }
549    
550     /* Return BSDF for the given incident and scattered ray vectors */
551     SDError
552     SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
553     {
554     int inFront, outFront;
555     SDSpectralDF *sdf;
556     float coef[SDmaxCh];
557     int nch, i;
558     /* check arguments */
559     if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
560     return SDEargument;
561     /* whose side are we on? */
562 greg 2.23 inFront = (inVec[2] > 0);
563     outFront = (outVec[2] > 0);
564 greg 2.15 /* start with diffuse portion */
565     if (inFront & outFront) {
566     *sv = sd->rLambFront;
567     sdf = sd->rf;
568     } else if (!(inFront | outFront)) {
569     *sv = sd->rLambBack;
570     sdf = sd->rb;
571     } else /* inFront ^ outFront */ {
572     *sv = sd->tLamb;
573     sdf = sd->tf;
574     }
575     sv->cieY *= 1./M_PI;
576     /* add non-diffuse components */
577     i = (sdf != NULL) ? sdf->ncomp : 0;
578     while (i-- > 0) {
579     nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
580 greg 2.25 &sdf->comp[i]);
581 greg 2.15 while (nch-- > 0) {
582     c_cmix(&sv->spec, sv->cieY, &sv->spec,
583     coef[nch], &sdf->comp[i].cspec[nch]);
584     sv->cieY += coef[nch];
585     }
586     }
587     /* make sure everything is set */
588     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
589     return SDEnone;
590     }
591    
592     /* Compute directional hemispherical scattering at this incident angle */
593     double
594     SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
595     {
596     double hsum;
597     SDSpectralDF *rdf;
598     const SDCDst *cd;
599     int i;
600     /* check arguments */
601     if ((inVec == NULL) | (sd == NULL))
602     return .0;
603     /* gather diffuse components */
604 greg 2.23 if (inVec[2] > 0) {
605 greg 2.15 hsum = sd->rLambFront.cieY;
606     rdf = sd->rf;
607     } else /* !inFront */ {
608     hsum = sd->rLambBack.cieY;
609     rdf = sd->rb;
610     }
611     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
612     hsum = .0;
613     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
614     hsum += sd->tLamb.cieY;
615     /* gather non-diffuse components */
616     i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
617     rdf != NULL) ? rdf->ncomp : 0;
618     while (i-- > 0) { /* non-diffuse reflection */
619     cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
620     if (cd != NULL)
621     hsum += cd->cTotal;
622     }
623     i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
624     sd->tf != NULL) ? sd->tf->ncomp : 0;
625     while (i-- > 0) { /* non-diffuse transmission */
626     cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]);
627     if (cd != NULL)
628     hsum += cd->cTotal;
629     }
630     return hsum;
631     }
632    
633     /* Sample BSDF direction based on the given random variable */
634     SDError
635 greg 2.24 SDsampBSDF(SDValue *sv, FVECT ioVec, double randX, int sflags, const SDData *sd)
636 greg 2.15 {
637     SDError ec;
638 greg 2.24 FVECT inVec;
639 greg 2.15 int inFront;
640     SDSpectralDF *rdf;
641     double rdiff;
642     float coef[SDmaxCh];
643     int i, j, n, nr;
644     SDComponent *sdc;
645     const SDCDst **cdarr = NULL;
646     /* check arguments */
647 greg 2.24 if ((sv == NULL) | (ioVec == NULL) | (sd == NULL) |
648 greg 2.23 (randX < 0) | (randX >= 1.))
649 greg 2.15 return SDEargument;
650     /* whose side are we on? */
651 greg 2.24 VCOPY(inVec, ioVec);
652 greg 2.23 inFront = (inVec[2] > 0);
653 greg 2.15 /* remember diffuse portions */
654     if (inFront) {
655     *sv = sd->rLambFront;
656     rdf = sd->rf;
657     } else /* !inFront */ {
658     *sv = sd->rLambBack;
659     rdf = sd->rb;
660     }
661     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
662     sv->cieY = .0;
663     rdiff = sv->cieY;
664     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
665     sv->cieY += sd->tLamb.cieY;
666     /* gather non-diffuse components */
667     i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
668     rdf != NULL) ? rdf->ncomp : 0;
669     j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
670     sd->tf != NULL) ? sd->tf->ncomp : 0;
671     n = i + j;
672     if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
673     return SDEmemory;
674     while (j-- > 0) { /* non-diffuse transmission */
675     cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]);
676     if (cdarr[i+j] == NULL) {
677     free(cdarr);
678     return SDEmemory;
679     }
680     sv->cieY += cdarr[i+j]->cTotal;
681     }
682     while (i-- > 0) { /* non-diffuse reflection */
683     cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
684     if (cdarr[i] == NULL) {
685     free(cdarr);
686     return SDEmemory;
687     }
688     sv->cieY += cdarr[i]->cTotal;
689     }
690 greg 2.35 if (sv->cieY <= 1e-6) { /* anything to sample? */
691 greg 2.15 sv->cieY = .0;
692 greg 2.24 memset(ioVec, 0, 3*sizeof(double));
693 greg 2.15 return SDEnone;
694     }
695     /* scale random variable */
696     randX *= sv->cieY;
697     /* diffuse reflection? */
698     if (randX < rdiff) {
699 greg 2.24 SDdiffuseSamp(ioVec, inFront, randX/rdiff);
700 greg 2.15 goto done;
701     }
702     randX -= rdiff;
703     /* diffuse transmission? */
704     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
705     if (randX < sd->tLamb.cieY) {
706     sv->spec = sd->tLamb.spec;
707 greg 2.24 SDdiffuseSamp(ioVec, !inFront, randX/sd->tLamb.cieY);
708 greg 2.15 goto done;
709     }
710     randX -= sd->tLamb.cieY;
711     }
712     /* else one of cumulative dist. */
713     for (i = 0; i < n && randX < cdarr[i]->cTotal; i++)
714     randX -= cdarr[i]->cTotal;
715     if (i >= n)
716     return SDEinternal;
717     /* compute sample direction */
718     sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr];
719 greg 2.24 ec = (*sdc->func->sampCDist)(ioVec, randX/cdarr[i]->cTotal, cdarr[i]);
720 greg 2.15 if (ec)
721     return ec;
722     /* compute color */
723 greg 2.25 j = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
724 greg 2.15 if (j <= 0) {
725     sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
726     sd->name);
727     return SDEinternal;
728     }
729     sv->spec = sdc->cspec[0];
730     rdiff = coef[0];
731     while (--j) {
732     c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
733     rdiff += coef[j];
734     }
735     done:
736     if (cdarr != NULL)
737     free(cdarr);
738     /* make sure everything is set */
739     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
740     return SDEnone;
741     }
742    
743     /* Compute World->BSDF transform from surface normal and up (Y) vector */
744     SDError
745     SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
746     {
747     if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
748     return SDEargument;
749     VCOPY(vMtx[2], sNrm);
750 greg 2.23 if (normalize(vMtx[2]) == 0)
751 greg 2.15 return SDEargument;
752     fcross(vMtx[0], uVec, vMtx[2]);
753 greg 2.23 if (normalize(vMtx[0]) == 0)
754 greg 2.15 return SDEargument;
755     fcross(vMtx[1], vMtx[2], vMtx[0]);
756     return SDEnone;
757     }
758    
759     /* Compute inverse transform */
760     SDError
761     SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
762     {
763     RREAL mTmp[3][3];
764     double d;
765    
766     if ((iMtx == NULL) | (vMtx == NULL))
767     return SDEargument;
768     /* compute determinant */
769     mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
770     mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
771     mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
772     d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
773 greg 2.23 if (d == 0) {
774 greg 2.15 strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
775     return SDEargument;
776     }
777     d = 1./d; /* invert matrix */
778     mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
779     mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
780     mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
781     mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
782     mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
783     mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
784     mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
785     memcpy(iMtx, mTmp, sizeof(mTmp));
786     return SDEnone;
787     }
788    
789     /* Transform and normalize direction (column) vector */
790     SDError
791     SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
792     {
793     FVECT vTmp;
794    
795     if ((resVec == NULL) | (inpVec == NULL))
796     return SDEargument;
797     if (vMtx == NULL) { /* assume they just want to normalize */
798     if (resVec != inpVec)
799     VCOPY(resVec, inpVec);
800 greg 2.23 return (normalize(resVec) > 0) ? SDEnone : SDEargument;
801 greg 2.15 }
802     vTmp[0] = DOT(vMtx[0], inpVec);
803     vTmp[1] = DOT(vMtx[1], inpVec);
804     vTmp[2] = DOT(vMtx[2], inpVec);
805 greg 2.23 if (normalize(vTmp) == 0)
806 greg 2.15 return SDEargument;
807     VCOPY(resVec, vTmp);
808     return SDEnone;
809     }
810    
811     /*################################################################*/
812     /*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/
813    
814     /*
815 greg 2.1 * Routines for handling BSDF data
816     */
817    
818     #include "standard.h"
819     #include "paths.h"
820    
821     #define MAXLATS 46 /* maximum number of latitudes */
822    
823     /* BSDF angle specification */
824     typedef struct {
825     char name[64]; /* basis name */
826     int nangles; /* total number of directions */
827     struct {
828     float tmin; /* starting theta */
829     short nphis; /* number of phis (0 term) */
830     } lat[MAXLATS+1]; /* latitudes */
831     } ANGLE_BASIS;
832    
833 greg 2.4 #define MAXABASES 7 /* limit on defined bases */
834 greg 2.1
835     static ANGLE_BASIS abase_list[MAXABASES] = {
836     {
837     "LBNL/Klems Full", 145,
838     { {-5., 1},
839     {5., 8},
840     {15., 16},
841     {25., 20},
842     {35., 24},
843     {45., 24},
844     {55., 24},
845     {65., 16},
846     {75., 12},
847     {90., 0} }
848     }, {
849     "LBNL/Klems Half", 73,
850     { {-6.5, 1},
851     {6.5, 8},
852     {19.5, 12},
853     {32.5, 16},
854     {46.5, 20},
855     {61.5, 12},
856     {76.5, 4},
857     {90., 0} }
858     }, {
859     "LBNL/Klems Quarter", 41,
860     { {-9., 1},
861     {9., 8},
862     {27., 12},
863     {46., 12},
864     {66., 8},
865     {90., 0} }
866     }
867     };
868    
869     static int nabases = 3; /* current number of defined bases */
870    
871 greg 2.9 #define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6)
872    
873     static int
874     fequal(double a, double b)
875     {
876 greg 2.23 if (b != 0)
877 greg 2.9 a = a/b - 1.;
878     return((a <= 1e-6) & (a >= -1e-6));
879     }
880 greg 2.3
881 greg 2.14 /* Returns the name of the given tag */
882 greg 2.3 #ifdef ezxml_name
883     #undef ezxml_name
884     static char *
885     ezxml_name(ezxml_t xml)
886     {
887     if (xml == NULL)
888     return(NULL);
889     return(xml->name);
890     }
891     #endif
892    
893 greg 2.14 /* Returns the given tag's character content or empty string if none */
894 greg 2.3 #ifdef ezxml_txt
895     #undef ezxml_txt
896     static char *
897     ezxml_txt(ezxml_t xml)
898     {
899     if (xml == NULL)
900     return("");
901     return(xml->txt);
902     }
903     #endif
904    
905 greg 2.1
906     static int
907     ab_getvec( /* get vector for this angle basis index */
908     FVECT v,
909     int ndx,
910     void *p
911     )
912     {
913     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
914     int li;
915 greg 2.2 double pol, azi, d;
916 greg 2.1
917     if ((ndx < 0) | (ndx >= ab->nangles))
918     return(0);
919     for (li = 0; ndx >= ab->lat[li].nphis; li++)
920     ndx -= ab->lat[li].nphis;
921 greg 2.2 pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin);
922 greg 2.1 azi = 2.*PI*ndx/ab->lat[li].nphis;
923 greg 2.2 v[2] = d = cos(pol);
924     d = sqrt(1. - d*d); /* sin(pol) */
925 greg 2.1 v[0] = cos(azi)*d;
926     v[1] = sin(azi)*d;
927     return(1);
928     }
929    
930    
931     static int
932     ab_getndx( /* get index corresponding to the given vector */
933     FVECT v,
934     void *p
935     )
936     {
937     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
938     int li, ndx;
939 greg 2.33 double pol, azi;
940 greg 2.1
941     if ((v[2] < -1.0) | (v[2] > 1.0))
942     return(-1);
943 greg 2.2 pol = 180.0/PI*acos(v[2]);
944 greg 2.1 azi = 180.0/PI*atan2(v[1], v[0]);
945     if (azi < 0.0) azi += 360.0;
946 greg 2.2 for (li = 1; ab->lat[li].tmin <= pol; li++)
947 greg 2.1 if (!ab->lat[li].nphis)
948     return(-1);
949     --li;
950     ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
951     if (ndx >= ab->lat[li].nphis) ndx = 0;
952     while (li--)
953     ndx += ab->lat[li].nphis;
954     return(ndx);
955     }
956    
957    
958     static double
959     ab_getohm( /* get solid angle for this angle basis index */
960     int ndx,
961     void *p
962     )
963     {
964     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
965     int li;
966     double theta, theta1;
967    
968     if ((ndx < 0) | (ndx >= ab->nangles))
969     return(0);
970     for (li = 0; ndx >= ab->lat[li].nphis; li++)
971     ndx -= ab->lat[li].nphis;
972     theta1 = PI/180. * ab->lat[li+1].tmin;
973     if (ab->lat[li].nphis == 1) { /* special case */
974     if (ab->lat[li].tmin > FTINY)
975     error(USER, "unsupported BSDF coordinate system");
976     return(2.*PI*(1. - cos(theta1)));
977     }
978     theta = PI/180. * ab->lat[li].tmin;
979     return(2.*PI*(cos(theta) - cos(theta1))/(double)ab->lat[li].nphis);
980     }
981    
982    
983     static int
984     ab_getvecR( /* get reverse vector for this angle basis index */
985     FVECT v,
986     int ndx,
987     void *p
988     )
989     {
990     if (!ab_getvec(v, ndx, p))
991     return(0);
992    
993     v[0] = -v[0];
994     v[1] = -v[1];
995     v[2] = -v[2];
996    
997     return(1);
998     }
999    
1000    
1001     static int
1002     ab_getndxR( /* get index corresponding to the reverse vector */
1003     FVECT v,
1004     void *p
1005     )
1006     {
1007     FVECT v2;
1008    
1009     v2[0] = -v[0];
1010     v2[1] = -v[1];
1011     v2[2] = -v[2];
1012    
1013     return ab_getndx(v2, p);
1014     }
1015    
1016    
1017     static void
1018 greg 2.4 load_angle_basis( /* load custom BSDF angle basis */
1019 greg 2.3 ezxml_t wab
1020     )
1021     {
1022     char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
1023     ezxml_t wbb;
1024     int i;
1025    
1026 greg 2.4 if (!abname || !*abname)
1027 greg 2.3 return;
1028     for (i = nabases; i--; )
1029 greg 2.12 if (!strcasecmp(abname, abase_list[i].name))
1030 greg 2.4 return; /* assume it's the same */
1031 greg 2.3 if (nabases >= MAXABASES)
1032     error(INTERNAL, "too many angle bases");
1033     strcpy(abase_list[nabases].name, abname);
1034     abase_list[nabases].nangles = 0;
1035     for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
1036     wbb != NULL; i++, wbb = wbb->next) {
1037     if (i >= MAXLATS)
1038     error(INTERNAL, "too many latitudes in custom basis");
1039     abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
1040     ezxml_child(ezxml_child(wbb,
1041     "ThetaBounds"), "UpperTheta")));
1042     if (!i)
1043     abase_list[nabases].lat[i].tmin =
1044     -abase_list[nabases].lat[i+1].tmin;
1045 greg 2.9 else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
1046 greg 2.3 "ThetaBounds"), "LowerTheta"))),
1047     abase_list[nabases].lat[i].tmin))
1048     error(WARNING, "theta values disagree in custom basis");
1049     abase_list[nabases].nangles +=
1050     abase_list[nabases].lat[i].nphis =
1051     atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
1052     }
1053     abase_list[nabases++].lat[i].nphis = 0;
1054     }
1055    
1056    
1057 greg 2.6 static void
1058     load_geometry( /* load geometric dimensions and description (if any) */
1059     struct BSDF_data *dp,
1060     ezxml_t wdb
1061     )
1062     {
1063     ezxml_t geom;
1064     double cfact;
1065     const char *fmt, *mgfstr;
1066    
1067     dp->dim[0] = dp->dim[1] = dp->dim[2] = 0;
1068     dp->mgf = NULL;
1069     if ((geom = ezxml_child(wdb, "Width")) != NULL)
1070     dp->dim[0] = atof(ezxml_txt(geom)) *
1071     to_meters(ezxml_attr(geom, "unit"));
1072     if ((geom = ezxml_child(wdb, "Height")) != NULL)
1073     dp->dim[1] = atof(ezxml_txt(geom)) *
1074     to_meters(ezxml_attr(geom, "unit"));
1075     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
1076     dp->dim[2] = atof(ezxml_txt(geom)) *
1077     to_meters(ezxml_attr(geom, "unit"));
1078     if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
1079     (mgfstr = ezxml_txt(geom)) == NULL)
1080     return;
1081     if ((fmt = ezxml_attr(geom, "format")) != NULL &&
1082     strcasecmp(fmt, "MGF")) {
1083     sprintf(errmsg, "unrecognized geometry format '%s'", fmt);
1084     error(WARNING, errmsg);
1085     return;
1086     }
1087     cfact = to_meters(ezxml_attr(geom, "unit"));
1088     dp->mgf = (char *)malloc(strlen(mgfstr)+32);
1089     if (dp->mgf == NULL)
1090     error(SYSTEM, "out of memory in load_geometry");
1091     if (cfact < 0.99 || cfact > 1.01)
1092     sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
1093     else
1094     strcpy(dp->mgf, mgfstr);
1095     }
1096    
1097    
1098 greg 2.3 static void
1099 greg 2.1 load_bsdf_data( /* load BSDF distribution for this wavelength */
1100     struct BSDF_data *dp,
1101     ezxml_t wdb
1102     )
1103     {
1104     char *cbasis = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
1105     char *rbasis = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
1106     char *sdata;
1107     int i;
1108    
1109 greg 2.4 if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) {
1110 greg 2.1 error(WARNING, "missing column/row basis for BSDF");
1111     return;
1112     }
1113     for (i = nabases; i--; )
1114 greg 2.12 if (!strcasecmp(cbasis, abase_list[i].name)) {
1115 greg 2.1 dp->ninc = abase_list[i].nangles;
1116     dp->ib_priv = (void *)&abase_list[i];
1117     dp->ib_vec = ab_getvecR;
1118     dp->ib_ndx = ab_getndxR;
1119     dp->ib_ohm = ab_getohm;
1120     break;
1121     }
1122     if (i < 0) {
1123 greg 2.4 sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis);
1124 greg 2.1 error(WARNING, errmsg);
1125     return;
1126     }
1127     for (i = nabases; i--; )
1128 greg 2.12 if (!strcasecmp(rbasis, abase_list[i].name)) {
1129 greg 2.1 dp->nout = abase_list[i].nangles;
1130     dp->ob_priv = (void *)&abase_list[i];
1131     dp->ob_vec = ab_getvec;
1132     dp->ob_ndx = ab_getndx;
1133     dp->ob_ohm = ab_getohm;
1134     break;
1135     }
1136     if (i < 0) {
1137 greg 2.16 sprintf(errmsg, "undefined RowAngleBasis '%s'", rbasis);
1138 greg 2.1 error(WARNING, errmsg);
1139     return;
1140     }
1141     /* read BSDF data */
1142     sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
1143 greg 2.4 if (!sdata || !*sdata) {
1144 greg 2.1 error(WARNING, "missing BSDF ScatteringData");
1145     return;
1146     }
1147     dp->bsdf = (float *)malloc(sizeof(float)*dp->ninc*dp->nout);
1148     if (dp->bsdf == NULL)
1149     error(SYSTEM, "out of memory in load_bsdf_data");
1150     for (i = 0; i < dp->ninc*dp->nout; i++) {
1151     char *sdnext = fskip(sdata);
1152     if (sdnext == NULL) {
1153     error(WARNING, "bad/missing BSDF ScatteringData");
1154     free(dp->bsdf); dp->bsdf = NULL;
1155     return;
1156     }
1157     while (*sdnext && isspace(*sdnext))
1158     sdnext++;
1159     if (*sdnext == ',') sdnext++;
1160     dp->bsdf[i] = atof(sdata);
1161     sdata = sdnext;
1162     }
1163     while (isspace(*sdata))
1164     sdata++;
1165     if (*sdata) {
1166     sprintf(errmsg, "%d extra characters after BSDF ScatteringData",
1167 greg 2.5 (int)strlen(sdata));
1168 greg 2.1 error(WARNING, errmsg);
1169     }
1170     }
1171    
1172    
1173     static int
1174     check_bsdf_data( /* check that BSDF data is sane */
1175     struct BSDF_data *dp
1176     )
1177     {
1178 greg 2.2 double *omega_iarr, *omega_oarr;
1179 greg 2.33 double dom, hemi_total, full_total;
1180 greg 2.1 int nneg;
1181 greg 2.2 FVECT v;
1182 greg 2.1 int i, o;
1183    
1184     if (dp == NULL || dp->bsdf == NULL)
1185     return(0);
1186 greg 2.2 omega_iarr = (double *)calloc(dp->ninc, sizeof(double));
1187     omega_oarr = (double *)calloc(dp->nout, sizeof(double));
1188     if ((omega_iarr == NULL) | (omega_oarr == NULL))
1189 greg 2.1 error(SYSTEM, "out of memory in check_bsdf_data");
1190 greg 2.2 /* incoming projected solid angles */
1191     hemi_total = .0;
1192     for (i = dp->ninc; i--; ) {
1193     dom = getBSDF_incohm(dp,i);
1194 greg 2.23 if (dom <= 0) {
1195 greg 2.2 error(WARNING, "zero/negative incoming solid angle");
1196     continue;
1197     }
1198     if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) {
1199     error(WARNING, "illegal incoming BSDF direction");
1200     free(omega_iarr); free(omega_oarr);
1201     return(0);
1202     }
1203     hemi_total += omega_iarr[i] = dom * -v[2];
1204     }
1205     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1206     sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%",
1207     100.*(hemi_total/PI - 1.));
1208     error(WARNING, errmsg);
1209     }
1210     dom = PI / hemi_total; /* fix normalization */
1211     for (i = dp->ninc; i--; )
1212     omega_iarr[i] *= dom;
1213     /* outgoing projected solid angles */
1214 greg 2.1 hemi_total = .0;
1215     for (o = dp->nout; o--; ) {
1216     dom = getBSDF_outohm(dp,o);
1217 greg 2.23 if (dom <= 0) {
1218 greg 2.2 error(WARNING, "zero/negative outgoing solid angle");
1219 greg 2.1 continue;
1220     }
1221     if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) {
1222     error(WARNING, "illegal outgoing BSDF direction");
1223 greg 2.2 free(omega_iarr); free(omega_oarr);
1224 greg 2.1 return(0);
1225     }
1226 greg 2.2 hemi_total += omega_oarr[o] = dom * v[2];
1227 greg 2.1 }
1228     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1229     sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%",
1230     100.*(hemi_total/PI - 1.));
1231     error(WARNING, errmsg);
1232     }
1233 greg 2.2 dom = PI / hemi_total; /* fix normalization */
1234 greg 2.1 for (o = dp->nout; o--; )
1235 greg 2.2 omega_oarr[o] *= dom;
1236     nneg = 0; /* check outgoing totals */
1237     for (i = 0; i < dp->ninc; i++) {
1238 greg 2.1 hemi_total = .0;
1239     for (o = dp->nout; o--; ) {
1240     double f = BSDF_value(dp,i,o);
1241 greg 2.23 if (f >= 0)
1242 greg 2.2 hemi_total += f*omega_oarr[o];
1243     else {
1244     nneg += (f < -FTINY);
1245     BSDF_value(dp,i,o) = .0f;
1246     }
1247 greg 2.1 }
1248 greg 2.8 if (hemi_total > 1.01) {
1249 greg 2.2 sprintf(errmsg,
1250     "incoming BSDF direction %d passes %.1f%% of light",
1251     i, 100.*hemi_total);
1252 greg 2.1 error(WARNING, errmsg);
1253     }
1254     }
1255 greg 2.2 if (nneg) {
1256     sprintf(errmsg, "%d negative BSDF values (ignored)", nneg);
1257 greg 2.1 error(WARNING, errmsg);
1258     }
1259 greg 2.7 full_total = .0; /* reverse roles and check again */
1260 greg 2.2 for (o = 0; o < dp->nout; o++) {
1261     hemi_total = .0;
1262     for (i = dp->ninc; i--; )
1263     hemi_total += BSDF_value(dp,i,o) * omega_iarr[i];
1264    
1265 greg 2.8 if (hemi_total > 1.01) {
1266 greg 2.2 sprintf(errmsg,
1267     "outgoing BSDF direction %d collects %.1f%% of light",
1268     o, 100.*hemi_total);
1269     error(WARNING, errmsg);
1270     }
1271 greg 2.7 full_total += hemi_total*omega_oarr[o];
1272     }
1273     full_total /= PI;
1274 greg 2.8 if (full_total > 1.00001) {
1275     sprintf(errmsg, "BSDF transfers %.4f%% of light",
1276 greg 2.7 100.*full_total);
1277     error(WARNING, errmsg);
1278 greg 2.2 }
1279     free(omega_iarr); free(omega_oarr);
1280 greg 2.1 return(1);
1281     }
1282    
1283 greg 2.6
1284 greg 2.1 struct BSDF_data *
1285     load_BSDF( /* load BSDF data from file */
1286     char *fname
1287     )
1288     {
1289     char *path;
1290     ezxml_t fl, wtl, wld, wdb;
1291     struct BSDF_data *dp;
1292    
1293     path = getpath(fname, getrlibpath(), R_OK);
1294     if (path == NULL) {
1295     sprintf(errmsg, "cannot find BSDF file \"%s\"", fname);
1296     error(WARNING, errmsg);
1297     return(NULL);
1298     }
1299     fl = ezxml_parse_file(path);
1300     if (fl == NULL) {
1301     sprintf(errmsg, "cannot open BSDF \"%s\"", path);
1302     error(WARNING, errmsg);
1303     return(NULL);
1304     }
1305     if (ezxml_error(fl)[0]) {
1306     sprintf(errmsg, "BSDF \"%s\" %s", path, ezxml_error(fl));
1307     error(WARNING, errmsg);
1308     ezxml_free(fl);
1309     return(NULL);
1310     }
1311     if (strcmp(ezxml_name(fl), "WindowElement")) {
1312     sprintf(errmsg,
1313     "BSDF \"%s\": top level node not 'WindowElement'",
1314     path);
1315     error(WARNING, errmsg);
1316     ezxml_free(fl);
1317     return(NULL);
1318     }
1319     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
1320 greg 2.10 if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl,
1321     "DataDefinition"), "IncidentDataStructure")),
1322     "Columns")) {
1323     sprintf(errmsg,
1324     "BSDF \"%s\": unsupported IncidentDataStructure",
1325     path);
1326     error(WARNING, errmsg);
1327     ezxml_free(fl);
1328     return(NULL);
1329 greg 2.34 }
1330     for (wld = ezxml_child(ezxml_child(wtl,
1331     "DataDefinition"), "AngleBasis");
1332     wld != NULL; wld = wld->next)
1333     load_angle_basis(wld);
1334 greg 2.1 dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data));
1335 greg 2.6 load_geometry(dp, ezxml_child(wtl, "Material"));
1336 greg 2.1 for (wld = ezxml_child(wtl, "WavelengthData");
1337     wld != NULL; wld = wld->next) {
1338 greg 2.13 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1339     "Visible"))
1340 greg 2.1 continue;
1341 greg 2.13 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1342     wdb != NULL; wdb = wdb->next)
1343     if (!strcasecmp(ezxml_txt(ezxml_child(wdb,
1344     "WavelengthDataDirection")),
1345 greg 2.1 "Transmission Front"))
1346 greg 2.13 break;
1347     if (wdb != NULL) { /* load front BTDF */
1348     load_bsdf_data(dp, wdb);
1349     break; /* ignore the rest */
1350     }
1351 greg 2.1 }
1352     ezxml_free(fl); /* done with XML file */
1353     if (!check_bsdf_data(dp)) {
1354     sprintf(errmsg, "bad/missing BTDF data in \"%s\"", path);
1355     error(WARNING, errmsg);
1356     free_BSDF(dp);
1357     dp = NULL;
1358     }
1359     return(dp);
1360     }
1361    
1362    
1363     void
1364     free_BSDF( /* free BSDF data structure */
1365     struct BSDF_data *b
1366     )
1367     {
1368     if (b == NULL)
1369     return;
1370 greg 2.6 if (b->mgf != NULL)
1371     free(b->mgf);
1372 greg 2.1 if (b->bsdf != NULL)
1373     free(b->bsdf);
1374     free(b);
1375     }
1376    
1377    
1378     int
1379     r_BSDF_incvec( /* compute random input vector at given location */
1380     FVECT v,
1381     struct BSDF_data *b,
1382     int i,
1383     double rv,
1384     MAT4 xm
1385     )
1386     {
1387     FVECT pert;
1388     double rad;
1389     int j;
1390    
1391     if (!getBSDF_incvec(v, b, i))
1392     return(0);
1393     rad = sqrt(getBSDF_incohm(b, i) / PI);
1394     multisamp(pert, 3, rv);
1395     for (j = 0; j < 3; j++)
1396     v[j] += rad*(2.*pert[j] - 1.);
1397     if (xm != NULL)
1398     multv3(v, v, xm);
1399     return(normalize(v) != 0.0);
1400     }
1401    
1402    
1403     int
1404     r_BSDF_outvec( /* compute random output vector at given location */
1405     FVECT v,
1406     struct BSDF_data *b,
1407     int o,
1408     double rv,
1409     MAT4 xm
1410     )
1411     {
1412     FVECT pert;
1413     double rad;
1414     int j;
1415    
1416     if (!getBSDF_outvec(v, b, o))
1417     return(0);
1418     rad = sqrt(getBSDF_outohm(b, o) / PI);
1419     multisamp(pert, 3, rv);
1420     for (j = 0; j < 3; j++)
1421     v[j] += rad*(2.*pert[j] - 1.);
1422     if (xm != NULL)
1423     multv3(v, v, xm);
1424     return(normalize(v) != 0.0);
1425     }
1426    
1427    
1428     static int
1429     addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */
1430     char *xfarg[],
1431     FVECT xp,
1432     FVECT yp,
1433     FVECT zp
1434     )
1435     {
1436     static char bufs[3][16];
1437     int bn = 0;
1438     char **xfp = xfarg;
1439     double theta;
1440    
1441     if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
1442     /* Special case for X' along Z-axis */
1443     theta = -atan2(yp[0], yp[1]);
1444     *xfp++ = "-ry";
1445     *xfp++ = xp[2] < 0.0 ? "90" : "-90";
1446     *xfp++ = "-rz";
1447     sprintf(bufs[bn], "%f", theta*(180./PI));
1448     *xfp++ = bufs[bn++];
1449     return(xfp - xfarg);
1450     }
1451     theta = atan2(yp[2], zp[2]);
1452     if (!FEQ(theta,0.0)) {
1453     *xfp++ = "-rx";
1454     sprintf(bufs[bn], "%f", theta*(180./PI));
1455     *xfp++ = bufs[bn++];
1456     }
1457     theta = asin(-xp[2]);
1458     if (!FEQ(theta,0.0)) {
1459     *xfp++ = "-ry";
1460     sprintf(bufs[bn], " %f", theta*(180./PI));
1461     *xfp++ = bufs[bn++];
1462     }
1463     theta = atan2(xp[1], xp[0]);
1464     if (!FEQ(theta,0.0)) {
1465     *xfp++ = "-rz";
1466     sprintf(bufs[bn], "%f", theta*(180./PI));
1467     *xfp++ = bufs[bn++];
1468     }
1469     *xfp = NULL;
1470     return(xfp - xfarg);
1471     }
1472    
1473    
1474     int
1475     getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */
1476     MAT4 xm,
1477     FVECT nrm,
1478 greg 2.6 UpDir ud,
1479     char *xfbuf
1480 greg 2.1 )
1481     {
1482     char *xfargs[7];
1483     XF myxf;
1484     FVECT updir, xdest, ydest;
1485 greg 2.6 int i;
1486 greg 2.1
1487     updir[0] = updir[1] = updir[2] = 0.;
1488     switch (ud) {
1489     case UDzneg:
1490     updir[2] = -1.;
1491     break;
1492     case UDyneg:
1493     updir[1] = -1.;
1494     break;
1495     case UDxneg:
1496     updir[0] = -1.;
1497     break;
1498     case UDxpos:
1499     updir[0] = 1.;
1500     break;
1501     case UDypos:
1502     updir[1] = 1.;
1503     break;
1504     case UDzpos:
1505     updir[2] = 1.;
1506     break;
1507     case UDunknown:
1508     return(0);
1509     }
1510     fcross(xdest, updir, nrm);
1511     if (normalize(xdest) == 0.0)
1512     return(0);
1513     fcross(ydest, nrm, xdest);
1514     xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs);
1515     copymat4(xm, myxf.xfm);
1516 greg 2.6 if (xfbuf == NULL)
1517     return(1);
1518     /* return xf arguments as well */
1519     for (i = 0; xfargs[i] != NULL; i++) {
1520     *xfbuf++ = ' ';
1521     strcpy(xfbuf, xfargs[i]);
1522     while (*xfbuf) ++xfbuf;
1523     }
1524 greg 2.1 return(1);
1525     }
1526 greg 2.15
1527     /*######### END DEPRECATED ROUTINES #######*/
1528     /*################################################################*/