ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.33
Committed: Tue Jun 28 21:11:04 2011 UTC (12 years, 10 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.32: +3 -3 lines
Log Message:
Minor compile fixes

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.33 static const char RCSid[] = "$Id: bsdf.c,v 2.32 2011/06/23 16:00:37 greg Exp $";
3 greg 2.1 #endif
4     /*
5 greg 2.15 * bsdf.c
6     *
7     * Definitions for bidirectional scattering distribution functions.
8     *
9     * Created by Greg Ward on 1/10/11.
10     *
11     */
12    
13 greg 2.30 #define _USE_MATH_DEFINES
14 greg 2.15 #include <stdio.h>
15     #include <stdlib.h>
16 greg 2.31 #include <string.h>
17 greg 2.15 #include <math.h>
18 greg 2.32 #include <ctype.h>
19 greg 2.15 #include "ezxml.h"
20     #include "hilbert.h"
21     #include "bsdf.h"
22     #include "bsdf_m.h"
23     #include "bsdf_t.h"
24    
25     /* English ASCII strings corresponding to ennumerated errors */
26     const char *SDerrorEnglish[] = {
27     "No error",
28     "Memory error",
29     "File input/output error",
30     "File format error",
31     "Illegal argument",
32     "Invalid data",
33     "Unsupported feature",
34     "Internal program error",
35     "Unknown error"
36     };
37    
38     /* Additional information on last error (ASCII English) */
39     char SDerrorDetail[256];
40    
41     /* Cache of loaded BSDFs */
42     struct SDCache_s *SDcacheList = NULL;
43    
44     /* Retain BSDFs in cache list */
45     int SDretainSet = SDretainNone;
46    
47     /* Report any error to the indicated stream (in English) */
48     SDError
49     SDreportEnglish(SDError ec, FILE *fp)
50     {
51 greg 2.21 if (!ec)
52     return SDEnone;
53     if ((ec < SDEnone) | (ec > SDEunknown)) {
54     SDerrorDetail[0] = '\0';
55     ec = SDEunknown;
56     }
57 greg 2.15 if (fp == NULL)
58     return ec;
59     fputs(SDerrorEnglish[ec], fp);
60     if (SDerrorDetail[0]) {
61     fputs(": ", fp);
62     fputs(SDerrorDetail, fp);
63     }
64     fputc('\n', fp);
65     if (fp != stderr)
66     fflush(fp);
67     return ec;
68     }
69    
70     static double
71     to_meters( /* return factor to convert given unit to meters */
72     const char *unit
73     )
74     {
75     if (unit == NULL) return(1.); /* safe assumption? */
76     if (!strcasecmp(unit, "Meter")) return(1.);
77     if (!strcasecmp(unit, "Foot")) return(.3048);
78     if (!strcasecmp(unit, "Inch")) return(.0254);
79     if (!strcasecmp(unit, "Centimeter")) return(.01);
80     if (!strcasecmp(unit, "Millimeter")) return(.001);
81     sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
82     return(-1.);
83     }
84    
85     /* Load geometric dimensions and description (if any) */
86     static SDError
87 greg 2.16 SDloadGeometry(SDData *sd, ezxml_t wdb)
88 greg 2.15 {
89     ezxml_t geom;
90     double cfact;
91     const char *fmt, *mgfstr;
92    
93 greg 2.16 if (wdb == NULL) /* no geometry section? */
94     return SDEnone;
95     sd->dim[0] = sd->dim[1] = sd->dim[2] = .0;
96 greg 2.15 if ((geom = ezxml_child(wdb, "Width")) != NULL)
97 greg 2.16 sd->dim[0] = atof(ezxml_txt(geom)) *
98 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
99     if ((geom = ezxml_child(wdb, "Height")) != NULL)
100 greg 2.16 sd->dim[1] = atof(ezxml_txt(geom)) *
101 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
102     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
103 greg 2.16 sd->dim[2] = atof(ezxml_txt(geom)) *
104 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
105 greg 2.23 if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) {
106 greg 2.17 sprintf(SDerrorDetail, "Negative size in \"%s\"", sd->name);
107 greg 2.15 return SDEdata;
108 greg 2.17 }
109 greg 2.15 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
110     (mgfstr = ezxml_txt(geom)) == NULL)
111     return SDEnone;
112 greg 2.32 while (isspace(*mgfstr))
113     ++mgfstr;
114     if (!*mgfstr)
115     return SDEnone;
116 greg 2.15 if ((fmt = ezxml_attr(geom, "format")) != NULL &&
117     strcasecmp(fmt, "MGF")) {
118     sprintf(SDerrorDetail,
119     "Unrecognized geometry format '%s' in \"%s\"",
120 greg 2.16 fmt, sd->name);
121 greg 2.15 return SDEsupport;
122     }
123     cfact = to_meters(ezxml_attr(geom, "unit"));
124 greg 2.16 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
125     if (sd->mgf == NULL) {
126 greg 2.15 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
127     return SDEmemory;
128     }
129     if (cfact < 0.99 || cfact > 1.01)
130 greg 2.16 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
131 greg 2.15 else
132 greg 2.16 strcpy(sd->mgf, mgfstr);
133 greg 2.15 return SDEnone;
134     }
135    
136     /* Load a BSDF struct from the given file (free first and keep name) */
137     SDError
138     SDloadFile(SDData *sd, const char *fname)
139     {
140     SDError lastErr;
141 greg 2.16 ezxml_t fl, wtl;
142 greg 2.15
143     if ((sd == NULL) | (fname == NULL || !*fname))
144     return SDEargument;
145     /* free old data, keeping name */
146     SDfreeBSDF(sd);
147     /* parse XML file */
148     fl = ezxml_parse_file(fname);
149     if (fl == NULL) {
150     sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
151     return SDEfile;
152     }
153     if (ezxml_error(fl)[0]) {
154     sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
155     ezxml_free(fl);
156     return SDEformat;
157     }
158 greg 2.16 if (strcmp(ezxml_name(fl), "WindowElement")) {
159     sprintf(SDerrorDetail,
160     "BSDF \"%s\": top level node not 'WindowElement'",
161     sd->name);
162     ezxml_free(fl);
163     return SDEformat;
164     }
165     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
166     if (wtl == NULL) {
167     sprintf(SDerrorDetail, "BSDF \"%s\": no optical layer'",
168     sd->name);
169     ezxml_free(fl);
170     return SDEformat;
171     }
172 greg 2.15 /* load geometry if present */
173 greg 2.16 lastErr = SDloadGeometry(sd, ezxml_child(wtl, "Material"));
174     if (lastErr)
175 greg 2.15 return lastErr;
176     /* try loading variable resolution data */
177 greg 2.16 lastErr = SDloadTre(sd, wtl);
178 greg 2.15 /* check our result */
179 greg 2.29 if (lastErr == SDEsupport) /* try matrix BSDF if not tree data */
180 greg 2.16 lastErr = SDloadMtx(sd, wtl);
181 greg 2.29
182 greg 2.15 /* done with XML file */
183     ezxml_free(fl);
184 greg 2.16
185     if (lastErr) { /* was there a load error? */
186     SDfreeBSDF(sd);
187     return lastErr;
188     }
189     /* remove any insignificant components */
190     if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
191     SDfreeSpectralDF(sd->rf); sd->rf = NULL;
192     }
193     if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
194     SDfreeSpectralDF(sd->rb); sd->rb = NULL;
195     }
196     if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
197     SDfreeSpectralDF(sd->tf); sd->tf = NULL;
198     }
199     /* return success */
200     return SDEnone;
201 greg 2.15 }
202    
203     /* Allocate new spectral distribution function */
204     SDSpectralDF *
205     SDnewSpectralDF(int nc)
206     {
207     SDSpectralDF *df;
208    
209     if (nc <= 0) {
210     strcpy(SDerrorDetail, "Zero component spectral DF request");
211     return NULL;
212     }
213     df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
214     (nc-1)*sizeof(SDComponent));
215     if (df == NULL) {
216     sprintf(SDerrorDetail,
217     "Cannot allocate %d component spectral DF", nc);
218     return NULL;
219     }
220     df->minProjSA = .0;
221     df->maxHemi = .0;
222     df->ncomp = nc;
223     memset(df->comp, 0, nc*sizeof(SDComponent));
224     return df;
225     }
226    
227     /* Free cached cumulative distributions for BSDF component */
228     void
229     SDfreeCumulativeCache(SDSpectralDF *df)
230     {
231     int n;
232     SDCDst *cdp;
233    
234     if (df == NULL)
235     return;
236     for (n = df->ncomp; n-- > 0; )
237     while ((cdp = df->comp[n].cdList) != NULL) {
238     df->comp[n].cdList = cdp->next;
239     free(cdp);
240     }
241     }
242    
243     /* Free a spectral distribution function */
244     void
245     SDfreeSpectralDF(SDSpectralDF *df)
246     {
247     int n;
248    
249     if (df == NULL)
250     return;
251     SDfreeCumulativeCache(df);
252     for (n = df->ncomp; n-- > 0; )
253     (*df->comp[n].func->freeSC)(df->comp[n].dist);
254     free(df);
255     }
256    
257     /* Shorten file path to useable BSDF name, removing suffix */
258     void
259 greg 2.16 SDclipName(char *res, const char *fname)
260 greg 2.15 {
261     const char *cp, *dot = NULL;
262    
263     for (cp = fname; *cp; cp++)
264     if (*cp == '.')
265     dot = cp;
266     if ((dot == NULL) | (dot < fname+2))
267     dot = cp;
268     if (dot - fname >= SDnameLn)
269     fname = dot - SDnameLn + 1;
270     while (fname < dot)
271     *res++ = *fname++;
272     *res = '\0';
273     }
274    
275     /* Initialize an unused BSDF struct (simply clears to zeroes) */
276     void
277 greg 2.20 SDclearBSDF(SDData *sd, const char *fname)
278 greg 2.15 {
279 greg 2.20 if (sd == NULL)
280     return;
281     memset(sd, 0, sizeof(SDData));
282     if (fname == NULL)
283     return;
284     SDclipName(sd->name, fname);
285 greg 2.15 }
286    
287     /* Free data associated with BSDF struct */
288     void
289     SDfreeBSDF(SDData *sd)
290     {
291     if (sd == NULL)
292     return;
293     if (sd->mgf != NULL) {
294     free(sd->mgf);
295     sd->mgf = NULL;
296     }
297     if (sd->rf != NULL) {
298     SDfreeSpectralDF(sd->rf);
299     sd->rf = NULL;
300     }
301     if (sd->rb != NULL) {
302     SDfreeSpectralDF(sd->rb);
303     sd->rb = NULL;
304     }
305     if (sd->tf != NULL) {
306     SDfreeSpectralDF(sd->tf);
307     sd->tf = NULL;
308     }
309     sd->rLambFront.cieY = .0;
310 greg 2.16 sd->rLambFront.spec.flags = 0;
311 greg 2.15 sd->rLambBack.cieY = .0;
312 greg 2.16 sd->rLambBack.spec.flags = 0;
313 greg 2.15 sd->tLamb.cieY = .0;
314 greg 2.16 sd->tLamb.spec.flags = 0;
315 greg 2.15 }
316    
317     /* Find writeable BSDF by name, or allocate new cache entry if absent */
318     SDData *
319     SDgetCache(const char *bname)
320     {
321     struct SDCache_s *sdl;
322     char sdnam[SDnameLn];
323    
324     if (bname == NULL)
325     return NULL;
326    
327     SDclipName(sdnam, bname);
328     for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
329     if (!strcmp(sdl->bsdf.name, sdnam)) {
330     sdl->refcnt++;
331     return &sdl->bsdf;
332     }
333    
334     sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
335     if (sdl == NULL)
336     return NULL;
337    
338     strcpy(sdl->bsdf.name, sdnam);
339     sdl->next = SDcacheList;
340     SDcacheList = sdl;
341    
342 greg 2.21 sdl->refcnt = 1;
343 greg 2.15 return &sdl->bsdf;
344     }
345    
346     /* Get loaded BSDF from cache (or load and cache it on first call) */
347     /* Report any problem to stderr and return NULL on failure */
348     const SDData *
349     SDcacheFile(const char *fname)
350     {
351     SDData *sd;
352     SDError ec;
353    
354     if (fname == NULL || !*fname)
355     return NULL;
356     SDerrorDetail[0] = '\0';
357     if ((sd = SDgetCache(fname)) == NULL) {
358     SDreportEnglish(SDEmemory, stderr);
359     return NULL;
360     }
361     if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
362     SDreportEnglish(ec, stderr);
363     SDfreeCache(sd);
364     return NULL;
365     }
366     return sd;
367     }
368    
369     /* Free a BSDF from our cache (clear all if NULL) */
370     void
371     SDfreeCache(const SDData *sd)
372     {
373     struct SDCache_s *sdl, *sdLast = NULL;
374    
375     if (sd == NULL) { /* free entire list */
376     while ((sdl = SDcacheList) != NULL) {
377     SDcacheList = sdl->next;
378     SDfreeBSDF(&sdl->bsdf);
379     free(sdl);
380     }
381     return;
382     }
383     for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
384     if (&sdl->bsdf == sd)
385     break;
386 greg 2.21 if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
387 greg 2.15 return; /* missing or still in use */
388     /* keep unreferenced data? */
389     if (SDisLoaded(sd) && SDretainSet) {
390     if (SDretainSet == SDretainAll)
391     return; /* keep everything */
392     /* else free cumulative data */
393     SDfreeCumulativeCache(sd->rf);
394     SDfreeCumulativeCache(sd->rb);
395     SDfreeCumulativeCache(sd->tf);
396     return;
397     }
398     /* remove from list and free */
399     if (sdLast == NULL)
400     SDcacheList = sdl->next;
401     else
402     sdLast->next = sdl->next;
403     SDfreeBSDF(&sdl->bsdf);
404     free(sdl);
405     }
406    
407     /* Sample an individual BSDF component */
408     SDError
409 greg 2.24 SDsampComponent(SDValue *sv, FVECT ioVec, double randX, SDComponent *sdc)
410 greg 2.15 {
411     float coef[SDmaxCh];
412     SDError ec;
413 greg 2.24 FVECT inVec;
414 greg 2.15 const SDCDst *cd;
415     double d;
416     int n;
417     /* check arguments */
418 greg 2.24 if ((sv == NULL) | (ioVec == NULL) | (sdc == NULL))
419 greg 2.15 return SDEargument;
420     /* get cumulative distribution */
421 greg 2.24 VCOPY(inVec, ioVec);
422 greg 2.15 cd = (*sdc->func->getCDist)(inVec, sdc);
423     if (cd == NULL)
424     return SDEmemory;
425     if (cd->cTotal <= 1e-7) { /* anything to sample? */
426     sv->spec = c_dfcolor;
427     sv->cieY = .0;
428 greg 2.24 memset(ioVec, 0, 3*sizeof(double));
429 greg 2.15 return SDEnone;
430     }
431     sv->cieY = cd->cTotal;
432     /* compute sample direction */
433 greg 2.24 ec = (*sdc->func->sampCDist)(ioVec, randX, cd);
434 greg 2.15 if (ec)
435     return ec;
436     /* get BSDF color */
437 greg 2.25 n = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
438 greg 2.15 if (n <= 0) {
439     strcpy(SDerrorDetail, "BSDF sample value error");
440     return SDEinternal;
441     }
442     sv->spec = sdc->cspec[0];
443     d = coef[0];
444     while (--n) {
445     c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
446     d += coef[n];
447     }
448     /* make sure everything is set */
449     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
450     return SDEnone;
451     }
452    
453     #define MS_MAXDIM 15
454    
455     /* Convert 1-dimensional random variable to N-dimensional */
456     void
457     SDmultiSamp(double t[], int n, double randX)
458     {
459     unsigned nBits;
460     double scale;
461     bitmask_t ndx, coord[MS_MAXDIM];
462    
463     while (n > MS_MAXDIM) /* punt for higher dimensions */
464 greg 2.19 t[--n] = rand()*(1./(RAND_MAX+.5));
465 greg 2.15 nBits = (8*sizeof(bitmask_t) - 1) / n;
466     ndx = randX * (double)((bitmask_t)1 << (nBits*n));
467     /* get coordinate on Hilbert curve */
468     hilbert_i2c(n, nBits, ndx, coord);
469     /* convert back to [0,1) range */
470     scale = 1. / (double)((bitmask_t)1 << nBits);
471     while (n--)
472 greg 2.19 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
473 greg 2.15 }
474    
475     #undef MS_MAXDIM
476    
477     /* Generate diffuse hemispherical sample */
478     static void
479     SDdiffuseSamp(FVECT outVec, int outFront, double randX)
480     {
481     /* convert to position on hemisphere */
482     SDmultiSamp(outVec, 2, randX);
483     SDsquare2disk(outVec, outVec[0], outVec[1]);
484     outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
485 greg 2.23 if (outVec[2] > 0) /* a bit of paranoia */
486 greg 2.15 outVec[2] = sqrt(outVec[2]);
487     if (!outFront) /* going out back? */
488     outVec[2] = -outVec[2];
489     }
490    
491     /* Query projected solid angle coverage for non-diffuse BSDF direction */
492     SDError
493 greg 2.22 SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2,
494     int qflags, const SDData *sd)
495 greg 2.15 {
496 greg 2.23 SDSpectralDF *rdf, *tdf;
497 greg 2.15 SDError ec;
498     int i;
499     /* check arguments */
500 greg 2.26 if ((projSA == NULL) | (v1 == NULL) | (sd == NULL))
501 greg 2.15 return SDEargument;
502     /* initialize extrema */
503 greg 2.17 switch (qflags) {
504 greg 2.15 case SDqueryMax:
505     projSA[0] = .0;
506     break;
507     case SDqueryMin+SDqueryMax:
508     projSA[1] = .0;
509     /* fall through */
510     case SDqueryMin:
511     projSA[0] = 10.;
512     break;
513     case 0:
514     return SDEargument;
515     }
516 greg 2.23 if (v1[2] > 0) /* front surface query? */
517 greg 2.15 rdf = sd->rf;
518     else
519     rdf = sd->rb;
520 greg 2.26 tdf = sd->tf;
521     if (v2 != NULL) /* bidirectional? */
522     if (v1[2] > 0 ^ v2[2] > 0)
523     rdf = NULL;
524     else
525     tdf = NULL;
526 greg 2.15 ec = SDEdata; /* run through components */
527     for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
528 greg 2.22 ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2,
529 greg 2.25 qflags, &rdf->comp[i]);
530 greg 2.15 if (ec)
531     return ec;
532     }
533 greg 2.23 for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) {
534     ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2,
535 greg 2.25 qflags, &tdf->comp[i]);
536 greg 2.15 if (ec)
537     return ec;
538     }
539 greg 2.17 if (ec) { /* all diffuse? */
540     projSA[0] = M_PI;
541     if (qflags == SDqueryMin+SDqueryMax)
542     projSA[1] = M_PI;
543     }
544     return SDEnone;
545 greg 2.15 }
546    
547     /* Return BSDF for the given incident and scattered ray vectors */
548     SDError
549     SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
550     {
551     int inFront, outFront;
552     SDSpectralDF *sdf;
553     float coef[SDmaxCh];
554     int nch, i;
555     /* check arguments */
556     if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
557     return SDEargument;
558     /* whose side are we on? */
559 greg 2.23 inFront = (inVec[2] > 0);
560     outFront = (outVec[2] > 0);
561 greg 2.15 /* start with diffuse portion */
562     if (inFront & outFront) {
563     *sv = sd->rLambFront;
564     sdf = sd->rf;
565     } else if (!(inFront | outFront)) {
566     *sv = sd->rLambBack;
567     sdf = sd->rb;
568     } else /* inFront ^ outFront */ {
569     *sv = sd->tLamb;
570     sdf = sd->tf;
571     }
572     sv->cieY *= 1./M_PI;
573     /* add non-diffuse components */
574     i = (sdf != NULL) ? sdf->ncomp : 0;
575     while (i-- > 0) {
576     nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
577 greg 2.25 &sdf->comp[i]);
578 greg 2.15 while (nch-- > 0) {
579     c_cmix(&sv->spec, sv->cieY, &sv->spec,
580     coef[nch], &sdf->comp[i].cspec[nch]);
581     sv->cieY += coef[nch];
582     }
583     }
584     /* make sure everything is set */
585     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
586     return SDEnone;
587     }
588    
589     /* Compute directional hemispherical scattering at this incident angle */
590     double
591     SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
592     {
593     double hsum;
594     SDSpectralDF *rdf;
595     const SDCDst *cd;
596     int i;
597     /* check arguments */
598     if ((inVec == NULL) | (sd == NULL))
599     return .0;
600     /* gather diffuse components */
601 greg 2.23 if (inVec[2] > 0) {
602 greg 2.15 hsum = sd->rLambFront.cieY;
603     rdf = sd->rf;
604     } else /* !inFront */ {
605     hsum = sd->rLambBack.cieY;
606     rdf = sd->rb;
607     }
608     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
609     hsum = .0;
610     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
611     hsum += sd->tLamb.cieY;
612     /* gather non-diffuse components */
613     i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
614     rdf != NULL) ? rdf->ncomp : 0;
615     while (i-- > 0) { /* non-diffuse reflection */
616     cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
617     if (cd != NULL)
618     hsum += cd->cTotal;
619     }
620     i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
621     sd->tf != NULL) ? sd->tf->ncomp : 0;
622     while (i-- > 0) { /* non-diffuse transmission */
623     cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]);
624     if (cd != NULL)
625     hsum += cd->cTotal;
626     }
627     return hsum;
628     }
629    
630     /* Sample BSDF direction based on the given random variable */
631     SDError
632 greg 2.24 SDsampBSDF(SDValue *sv, FVECT ioVec, double randX, int sflags, const SDData *sd)
633 greg 2.15 {
634     SDError ec;
635 greg 2.24 FVECT inVec;
636 greg 2.15 int inFront;
637     SDSpectralDF *rdf;
638     double rdiff;
639     float coef[SDmaxCh];
640     int i, j, n, nr;
641     SDComponent *sdc;
642     const SDCDst **cdarr = NULL;
643     /* check arguments */
644 greg 2.24 if ((sv == NULL) | (ioVec == NULL) | (sd == NULL) |
645 greg 2.23 (randX < 0) | (randX >= 1.))
646 greg 2.15 return SDEargument;
647     /* whose side are we on? */
648 greg 2.24 VCOPY(inVec, ioVec);
649 greg 2.23 inFront = (inVec[2] > 0);
650 greg 2.15 /* remember diffuse portions */
651     if (inFront) {
652     *sv = sd->rLambFront;
653     rdf = sd->rf;
654     } else /* !inFront */ {
655     *sv = sd->rLambBack;
656     rdf = sd->rb;
657     }
658     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
659     sv->cieY = .0;
660     rdiff = sv->cieY;
661     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
662     sv->cieY += sd->tLamb.cieY;
663     /* gather non-diffuse components */
664     i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
665     rdf != NULL) ? rdf->ncomp : 0;
666     j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
667     sd->tf != NULL) ? sd->tf->ncomp : 0;
668     n = i + j;
669     if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
670     return SDEmemory;
671     while (j-- > 0) { /* non-diffuse transmission */
672     cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]);
673     if (cdarr[i+j] == NULL) {
674     free(cdarr);
675     return SDEmemory;
676     }
677     sv->cieY += cdarr[i+j]->cTotal;
678     }
679     while (i-- > 0) { /* non-diffuse reflection */
680     cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
681     if (cdarr[i] == NULL) {
682     free(cdarr);
683     return SDEmemory;
684     }
685     sv->cieY += cdarr[i]->cTotal;
686     }
687     if (sv->cieY <= 1e-7) { /* anything to sample? */
688     sv->cieY = .0;
689 greg 2.24 memset(ioVec, 0, 3*sizeof(double));
690 greg 2.15 return SDEnone;
691     }
692     /* scale random variable */
693     randX *= sv->cieY;
694     /* diffuse reflection? */
695     if (randX < rdiff) {
696 greg 2.24 SDdiffuseSamp(ioVec, inFront, randX/rdiff);
697 greg 2.15 goto done;
698     }
699     randX -= rdiff;
700     /* diffuse transmission? */
701     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
702     if (randX < sd->tLamb.cieY) {
703     sv->spec = sd->tLamb.spec;
704 greg 2.24 SDdiffuseSamp(ioVec, !inFront, randX/sd->tLamb.cieY);
705 greg 2.15 goto done;
706     }
707     randX -= sd->tLamb.cieY;
708     }
709     /* else one of cumulative dist. */
710     for (i = 0; i < n && randX < cdarr[i]->cTotal; i++)
711     randX -= cdarr[i]->cTotal;
712     if (i >= n)
713     return SDEinternal;
714     /* compute sample direction */
715     sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr];
716 greg 2.24 ec = (*sdc->func->sampCDist)(ioVec, randX/cdarr[i]->cTotal, cdarr[i]);
717 greg 2.15 if (ec)
718     return ec;
719     /* compute color */
720 greg 2.25 j = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
721 greg 2.15 if (j <= 0) {
722     sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
723     sd->name);
724     return SDEinternal;
725     }
726     sv->spec = sdc->cspec[0];
727     rdiff = coef[0];
728     while (--j) {
729     c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
730     rdiff += coef[j];
731     }
732     done:
733     if (cdarr != NULL)
734     free(cdarr);
735     /* make sure everything is set */
736     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
737     return SDEnone;
738     }
739    
740     /* Compute World->BSDF transform from surface normal and up (Y) vector */
741     SDError
742     SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
743     {
744     if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
745     return SDEargument;
746     VCOPY(vMtx[2], sNrm);
747 greg 2.23 if (normalize(vMtx[2]) == 0)
748 greg 2.15 return SDEargument;
749     fcross(vMtx[0], uVec, vMtx[2]);
750 greg 2.23 if (normalize(vMtx[0]) == 0)
751 greg 2.15 return SDEargument;
752     fcross(vMtx[1], vMtx[2], vMtx[0]);
753     return SDEnone;
754     }
755    
756     /* Compute inverse transform */
757     SDError
758     SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
759     {
760     RREAL mTmp[3][3];
761     double d;
762    
763     if ((iMtx == NULL) | (vMtx == NULL))
764     return SDEargument;
765     /* compute determinant */
766     mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
767     mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
768     mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
769     d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
770 greg 2.23 if (d == 0) {
771 greg 2.15 strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
772     return SDEargument;
773     }
774     d = 1./d; /* invert matrix */
775     mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
776     mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
777     mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
778     mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
779     mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
780     mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
781     mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
782     memcpy(iMtx, mTmp, sizeof(mTmp));
783     return SDEnone;
784     }
785    
786     /* Transform and normalize direction (column) vector */
787     SDError
788     SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
789     {
790     FVECT vTmp;
791    
792     if ((resVec == NULL) | (inpVec == NULL))
793     return SDEargument;
794     if (vMtx == NULL) { /* assume they just want to normalize */
795     if (resVec != inpVec)
796     VCOPY(resVec, inpVec);
797 greg 2.23 return (normalize(resVec) > 0) ? SDEnone : SDEargument;
798 greg 2.15 }
799     vTmp[0] = DOT(vMtx[0], inpVec);
800     vTmp[1] = DOT(vMtx[1], inpVec);
801     vTmp[2] = DOT(vMtx[2], inpVec);
802 greg 2.23 if (normalize(vTmp) == 0)
803 greg 2.15 return SDEargument;
804     VCOPY(resVec, vTmp);
805     return SDEnone;
806     }
807    
808     /*################################################################*/
809     /*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/
810    
811     /*
812 greg 2.1 * Routines for handling BSDF data
813     */
814    
815     #include "standard.h"
816     #include "paths.h"
817    
818     #define MAXLATS 46 /* maximum number of latitudes */
819    
820     /* BSDF angle specification */
821     typedef struct {
822     char name[64]; /* basis name */
823     int nangles; /* total number of directions */
824     struct {
825     float tmin; /* starting theta */
826     short nphis; /* number of phis (0 term) */
827     } lat[MAXLATS+1]; /* latitudes */
828     } ANGLE_BASIS;
829    
830 greg 2.4 #define MAXABASES 7 /* limit on defined bases */
831 greg 2.1
832     static ANGLE_BASIS abase_list[MAXABASES] = {
833     {
834     "LBNL/Klems Full", 145,
835     { {-5., 1},
836     {5., 8},
837     {15., 16},
838     {25., 20},
839     {35., 24},
840     {45., 24},
841     {55., 24},
842     {65., 16},
843     {75., 12},
844     {90., 0} }
845     }, {
846     "LBNL/Klems Half", 73,
847     { {-6.5, 1},
848     {6.5, 8},
849     {19.5, 12},
850     {32.5, 16},
851     {46.5, 20},
852     {61.5, 12},
853     {76.5, 4},
854     {90., 0} }
855     }, {
856     "LBNL/Klems Quarter", 41,
857     { {-9., 1},
858     {9., 8},
859     {27., 12},
860     {46., 12},
861     {66., 8},
862     {90., 0} }
863     }
864     };
865    
866     static int nabases = 3; /* current number of defined bases */
867    
868 greg 2.9 #define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6)
869    
870     static int
871     fequal(double a, double b)
872     {
873 greg 2.23 if (b != 0)
874 greg 2.9 a = a/b - 1.;
875     return((a <= 1e-6) & (a >= -1e-6));
876     }
877 greg 2.3
878 greg 2.14 /* Returns the name of the given tag */
879 greg 2.3 #ifdef ezxml_name
880     #undef ezxml_name
881     static char *
882     ezxml_name(ezxml_t xml)
883     {
884     if (xml == NULL)
885     return(NULL);
886     return(xml->name);
887     }
888     #endif
889    
890 greg 2.14 /* Returns the given tag's character content or empty string if none */
891 greg 2.3 #ifdef ezxml_txt
892     #undef ezxml_txt
893     static char *
894     ezxml_txt(ezxml_t xml)
895     {
896     if (xml == NULL)
897     return("");
898     return(xml->txt);
899     }
900     #endif
901    
902 greg 2.1
903     static int
904     ab_getvec( /* get vector for this angle basis index */
905     FVECT v,
906     int ndx,
907     void *p
908     )
909     {
910     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
911     int li;
912 greg 2.2 double pol, azi, d;
913 greg 2.1
914     if ((ndx < 0) | (ndx >= ab->nangles))
915     return(0);
916     for (li = 0; ndx >= ab->lat[li].nphis; li++)
917     ndx -= ab->lat[li].nphis;
918 greg 2.2 pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin);
919 greg 2.1 azi = 2.*PI*ndx/ab->lat[li].nphis;
920 greg 2.2 v[2] = d = cos(pol);
921     d = sqrt(1. - d*d); /* sin(pol) */
922 greg 2.1 v[0] = cos(azi)*d;
923     v[1] = sin(azi)*d;
924     return(1);
925     }
926    
927    
928     static int
929     ab_getndx( /* get index corresponding to the given vector */
930     FVECT v,
931     void *p
932     )
933     {
934     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
935     int li, ndx;
936 greg 2.33 double pol, azi;
937 greg 2.1
938     if ((v[2] < -1.0) | (v[2] > 1.0))
939     return(-1);
940 greg 2.2 pol = 180.0/PI*acos(v[2]);
941 greg 2.1 azi = 180.0/PI*atan2(v[1], v[0]);
942     if (azi < 0.0) azi += 360.0;
943 greg 2.2 for (li = 1; ab->lat[li].tmin <= pol; li++)
944 greg 2.1 if (!ab->lat[li].nphis)
945     return(-1);
946     --li;
947     ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
948     if (ndx >= ab->lat[li].nphis) ndx = 0;
949     while (li--)
950     ndx += ab->lat[li].nphis;
951     return(ndx);
952     }
953    
954    
955     static double
956     ab_getohm( /* get solid angle for this angle basis index */
957     int ndx,
958     void *p
959     )
960     {
961     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
962     int li;
963     double theta, theta1;
964    
965     if ((ndx < 0) | (ndx >= ab->nangles))
966     return(0);
967     for (li = 0; ndx >= ab->lat[li].nphis; li++)
968     ndx -= ab->lat[li].nphis;
969     theta1 = PI/180. * ab->lat[li+1].tmin;
970     if (ab->lat[li].nphis == 1) { /* special case */
971     if (ab->lat[li].tmin > FTINY)
972     error(USER, "unsupported BSDF coordinate system");
973     return(2.*PI*(1. - cos(theta1)));
974     }
975     theta = PI/180. * ab->lat[li].tmin;
976     return(2.*PI*(cos(theta) - cos(theta1))/(double)ab->lat[li].nphis);
977     }
978    
979    
980     static int
981     ab_getvecR( /* get reverse vector for this angle basis index */
982     FVECT v,
983     int ndx,
984     void *p
985     )
986     {
987     if (!ab_getvec(v, ndx, p))
988     return(0);
989    
990     v[0] = -v[0];
991     v[1] = -v[1];
992     v[2] = -v[2];
993    
994     return(1);
995     }
996    
997    
998     static int
999     ab_getndxR( /* get index corresponding to the reverse vector */
1000     FVECT v,
1001     void *p
1002     )
1003     {
1004     FVECT v2;
1005    
1006     v2[0] = -v[0];
1007     v2[1] = -v[1];
1008     v2[2] = -v[2];
1009    
1010     return ab_getndx(v2, p);
1011     }
1012    
1013    
1014     static void
1015 greg 2.4 load_angle_basis( /* load custom BSDF angle basis */
1016 greg 2.3 ezxml_t wab
1017     )
1018     {
1019     char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
1020     ezxml_t wbb;
1021     int i;
1022    
1023 greg 2.4 if (!abname || !*abname)
1024 greg 2.3 return;
1025     for (i = nabases; i--; )
1026 greg 2.12 if (!strcasecmp(abname, abase_list[i].name))
1027 greg 2.4 return; /* assume it's the same */
1028 greg 2.3 if (nabases >= MAXABASES)
1029     error(INTERNAL, "too many angle bases");
1030     strcpy(abase_list[nabases].name, abname);
1031     abase_list[nabases].nangles = 0;
1032     for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
1033     wbb != NULL; i++, wbb = wbb->next) {
1034     if (i >= MAXLATS)
1035     error(INTERNAL, "too many latitudes in custom basis");
1036     abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
1037     ezxml_child(ezxml_child(wbb,
1038     "ThetaBounds"), "UpperTheta")));
1039     if (!i)
1040     abase_list[nabases].lat[i].tmin =
1041     -abase_list[nabases].lat[i+1].tmin;
1042 greg 2.9 else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
1043 greg 2.3 "ThetaBounds"), "LowerTheta"))),
1044     abase_list[nabases].lat[i].tmin))
1045     error(WARNING, "theta values disagree in custom basis");
1046     abase_list[nabases].nangles +=
1047     abase_list[nabases].lat[i].nphis =
1048     atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
1049     }
1050     abase_list[nabases++].lat[i].nphis = 0;
1051     }
1052    
1053    
1054 greg 2.6 static void
1055     load_geometry( /* load geometric dimensions and description (if any) */
1056     struct BSDF_data *dp,
1057     ezxml_t wdb
1058     )
1059     {
1060     ezxml_t geom;
1061     double cfact;
1062     const char *fmt, *mgfstr;
1063    
1064     dp->dim[0] = dp->dim[1] = dp->dim[2] = 0;
1065     dp->mgf = NULL;
1066     if ((geom = ezxml_child(wdb, "Width")) != NULL)
1067     dp->dim[0] = atof(ezxml_txt(geom)) *
1068     to_meters(ezxml_attr(geom, "unit"));
1069     if ((geom = ezxml_child(wdb, "Height")) != NULL)
1070     dp->dim[1] = atof(ezxml_txt(geom)) *
1071     to_meters(ezxml_attr(geom, "unit"));
1072     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
1073     dp->dim[2] = atof(ezxml_txt(geom)) *
1074     to_meters(ezxml_attr(geom, "unit"));
1075     if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
1076     (mgfstr = ezxml_txt(geom)) == NULL)
1077     return;
1078     if ((fmt = ezxml_attr(geom, "format")) != NULL &&
1079     strcasecmp(fmt, "MGF")) {
1080     sprintf(errmsg, "unrecognized geometry format '%s'", fmt);
1081     error(WARNING, errmsg);
1082     return;
1083     }
1084     cfact = to_meters(ezxml_attr(geom, "unit"));
1085     dp->mgf = (char *)malloc(strlen(mgfstr)+32);
1086     if (dp->mgf == NULL)
1087     error(SYSTEM, "out of memory in load_geometry");
1088     if (cfact < 0.99 || cfact > 1.01)
1089     sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
1090     else
1091     strcpy(dp->mgf, mgfstr);
1092     }
1093    
1094    
1095 greg 2.3 static void
1096 greg 2.1 load_bsdf_data( /* load BSDF distribution for this wavelength */
1097     struct BSDF_data *dp,
1098     ezxml_t wdb
1099     )
1100     {
1101     char *cbasis = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
1102     char *rbasis = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
1103     char *sdata;
1104     int i;
1105    
1106 greg 2.4 if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) {
1107 greg 2.1 error(WARNING, "missing column/row basis for BSDF");
1108     return;
1109     }
1110     for (i = nabases; i--; )
1111 greg 2.12 if (!strcasecmp(cbasis, abase_list[i].name)) {
1112 greg 2.1 dp->ninc = abase_list[i].nangles;
1113     dp->ib_priv = (void *)&abase_list[i];
1114     dp->ib_vec = ab_getvecR;
1115     dp->ib_ndx = ab_getndxR;
1116     dp->ib_ohm = ab_getohm;
1117     break;
1118     }
1119     if (i < 0) {
1120 greg 2.4 sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis);
1121 greg 2.1 error(WARNING, errmsg);
1122     return;
1123     }
1124     for (i = nabases; i--; )
1125 greg 2.12 if (!strcasecmp(rbasis, abase_list[i].name)) {
1126 greg 2.1 dp->nout = abase_list[i].nangles;
1127     dp->ob_priv = (void *)&abase_list[i];
1128     dp->ob_vec = ab_getvec;
1129     dp->ob_ndx = ab_getndx;
1130     dp->ob_ohm = ab_getohm;
1131     break;
1132     }
1133     if (i < 0) {
1134 greg 2.16 sprintf(errmsg, "undefined RowAngleBasis '%s'", rbasis);
1135 greg 2.1 error(WARNING, errmsg);
1136     return;
1137     }
1138     /* read BSDF data */
1139     sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
1140 greg 2.4 if (!sdata || !*sdata) {
1141 greg 2.1 error(WARNING, "missing BSDF ScatteringData");
1142     return;
1143     }
1144     dp->bsdf = (float *)malloc(sizeof(float)*dp->ninc*dp->nout);
1145     if (dp->bsdf == NULL)
1146     error(SYSTEM, "out of memory in load_bsdf_data");
1147     for (i = 0; i < dp->ninc*dp->nout; i++) {
1148     char *sdnext = fskip(sdata);
1149     if (sdnext == NULL) {
1150     error(WARNING, "bad/missing BSDF ScatteringData");
1151     free(dp->bsdf); dp->bsdf = NULL;
1152     return;
1153     }
1154     while (*sdnext && isspace(*sdnext))
1155     sdnext++;
1156     if (*sdnext == ',') sdnext++;
1157     dp->bsdf[i] = atof(sdata);
1158     sdata = sdnext;
1159     }
1160     while (isspace(*sdata))
1161     sdata++;
1162     if (*sdata) {
1163     sprintf(errmsg, "%d extra characters after BSDF ScatteringData",
1164 greg 2.5 (int)strlen(sdata));
1165 greg 2.1 error(WARNING, errmsg);
1166     }
1167     }
1168    
1169    
1170     static int
1171     check_bsdf_data( /* check that BSDF data is sane */
1172     struct BSDF_data *dp
1173     )
1174     {
1175 greg 2.2 double *omega_iarr, *omega_oarr;
1176 greg 2.33 double dom, hemi_total, full_total;
1177 greg 2.1 int nneg;
1178 greg 2.2 FVECT v;
1179 greg 2.1 int i, o;
1180    
1181     if (dp == NULL || dp->bsdf == NULL)
1182     return(0);
1183 greg 2.2 omega_iarr = (double *)calloc(dp->ninc, sizeof(double));
1184     omega_oarr = (double *)calloc(dp->nout, sizeof(double));
1185     if ((omega_iarr == NULL) | (omega_oarr == NULL))
1186 greg 2.1 error(SYSTEM, "out of memory in check_bsdf_data");
1187 greg 2.2 /* incoming projected solid angles */
1188     hemi_total = .0;
1189     for (i = dp->ninc; i--; ) {
1190     dom = getBSDF_incohm(dp,i);
1191 greg 2.23 if (dom <= 0) {
1192 greg 2.2 error(WARNING, "zero/negative incoming solid angle");
1193     continue;
1194     }
1195     if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) {
1196     error(WARNING, "illegal incoming BSDF direction");
1197     free(omega_iarr); free(omega_oarr);
1198     return(0);
1199     }
1200     hemi_total += omega_iarr[i] = dom * -v[2];
1201     }
1202     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1203     sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%",
1204     100.*(hemi_total/PI - 1.));
1205     error(WARNING, errmsg);
1206     }
1207     dom = PI / hemi_total; /* fix normalization */
1208     for (i = dp->ninc; i--; )
1209     omega_iarr[i] *= dom;
1210     /* outgoing projected solid angles */
1211 greg 2.1 hemi_total = .0;
1212     for (o = dp->nout; o--; ) {
1213     dom = getBSDF_outohm(dp,o);
1214 greg 2.23 if (dom <= 0) {
1215 greg 2.2 error(WARNING, "zero/negative outgoing solid angle");
1216 greg 2.1 continue;
1217     }
1218     if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) {
1219     error(WARNING, "illegal outgoing BSDF direction");
1220 greg 2.2 free(omega_iarr); free(omega_oarr);
1221 greg 2.1 return(0);
1222     }
1223 greg 2.2 hemi_total += omega_oarr[o] = dom * v[2];
1224 greg 2.1 }
1225     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1226     sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%",
1227     100.*(hemi_total/PI - 1.));
1228     error(WARNING, errmsg);
1229     }
1230 greg 2.2 dom = PI / hemi_total; /* fix normalization */
1231 greg 2.1 for (o = dp->nout; o--; )
1232 greg 2.2 omega_oarr[o] *= dom;
1233     nneg = 0; /* check outgoing totals */
1234     for (i = 0; i < dp->ninc; i++) {
1235 greg 2.1 hemi_total = .0;
1236     for (o = dp->nout; o--; ) {
1237     double f = BSDF_value(dp,i,o);
1238 greg 2.23 if (f >= 0)
1239 greg 2.2 hemi_total += f*omega_oarr[o];
1240     else {
1241     nneg += (f < -FTINY);
1242     BSDF_value(dp,i,o) = .0f;
1243     }
1244 greg 2.1 }
1245 greg 2.8 if (hemi_total > 1.01) {
1246 greg 2.2 sprintf(errmsg,
1247     "incoming BSDF direction %d passes %.1f%% of light",
1248     i, 100.*hemi_total);
1249 greg 2.1 error(WARNING, errmsg);
1250     }
1251     }
1252 greg 2.2 if (nneg) {
1253     sprintf(errmsg, "%d negative BSDF values (ignored)", nneg);
1254 greg 2.1 error(WARNING, errmsg);
1255     }
1256 greg 2.7 full_total = .0; /* reverse roles and check again */
1257 greg 2.2 for (o = 0; o < dp->nout; o++) {
1258     hemi_total = .0;
1259     for (i = dp->ninc; i--; )
1260     hemi_total += BSDF_value(dp,i,o) * omega_iarr[i];
1261    
1262 greg 2.8 if (hemi_total > 1.01) {
1263 greg 2.2 sprintf(errmsg,
1264     "outgoing BSDF direction %d collects %.1f%% of light",
1265     o, 100.*hemi_total);
1266     error(WARNING, errmsg);
1267     }
1268 greg 2.7 full_total += hemi_total*omega_oarr[o];
1269     }
1270     full_total /= PI;
1271 greg 2.8 if (full_total > 1.00001) {
1272     sprintf(errmsg, "BSDF transfers %.4f%% of light",
1273 greg 2.7 100.*full_total);
1274     error(WARNING, errmsg);
1275 greg 2.2 }
1276     free(omega_iarr); free(omega_oarr);
1277 greg 2.1 return(1);
1278     }
1279    
1280 greg 2.6
1281 greg 2.1 struct BSDF_data *
1282     load_BSDF( /* load BSDF data from file */
1283     char *fname
1284     )
1285     {
1286     char *path;
1287     ezxml_t fl, wtl, wld, wdb;
1288     struct BSDF_data *dp;
1289    
1290     path = getpath(fname, getrlibpath(), R_OK);
1291     if (path == NULL) {
1292     sprintf(errmsg, "cannot find BSDF file \"%s\"", fname);
1293     error(WARNING, errmsg);
1294     return(NULL);
1295     }
1296     fl = ezxml_parse_file(path);
1297     if (fl == NULL) {
1298     sprintf(errmsg, "cannot open BSDF \"%s\"", path);
1299     error(WARNING, errmsg);
1300     return(NULL);
1301     }
1302     if (ezxml_error(fl)[0]) {
1303     sprintf(errmsg, "BSDF \"%s\" %s", path, ezxml_error(fl));
1304     error(WARNING, errmsg);
1305     ezxml_free(fl);
1306     return(NULL);
1307     }
1308     if (strcmp(ezxml_name(fl), "WindowElement")) {
1309     sprintf(errmsg,
1310     "BSDF \"%s\": top level node not 'WindowElement'",
1311     path);
1312     error(WARNING, errmsg);
1313     ezxml_free(fl);
1314     return(NULL);
1315     }
1316     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
1317 greg 2.10 if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl,
1318     "DataDefinition"), "IncidentDataStructure")),
1319     "Columns")) {
1320     sprintf(errmsg,
1321     "BSDF \"%s\": unsupported IncidentDataStructure",
1322     path);
1323     error(WARNING, errmsg);
1324     ezxml_free(fl);
1325     return(NULL);
1326     }
1327 greg 2.3 load_angle_basis(ezxml_child(ezxml_child(wtl,
1328     "DataDefinition"), "AngleBasis"));
1329 greg 2.1 dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data));
1330 greg 2.6 load_geometry(dp, ezxml_child(wtl, "Material"));
1331 greg 2.1 for (wld = ezxml_child(wtl, "WavelengthData");
1332     wld != NULL; wld = wld->next) {
1333 greg 2.13 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1334     "Visible"))
1335 greg 2.1 continue;
1336 greg 2.13 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1337     wdb != NULL; wdb = wdb->next)
1338     if (!strcasecmp(ezxml_txt(ezxml_child(wdb,
1339     "WavelengthDataDirection")),
1340 greg 2.1 "Transmission Front"))
1341 greg 2.13 break;
1342     if (wdb != NULL) { /* load front BTDF */
1343     load_bsdf_data(dp, wdb);
1344     break; /* ignore the rest */
1345     }
1346 greg 2.1 }
1347     ezxml_free(fl); /* done with XML file */
1348     if (!check_bsdf_data(dp)) {
1349     sprintf(errmsg, "bad/missing BTDF data in \"%s\"", path);
1350     error(WARNING, errmsg);
1351     free_BSDF(dp);
1352     dp = NULL;
1353     }
1354     return(dp);
1355     }
1356    
1357    
1358     void
1359     free_BSDF( /* free BSDF data structure */
1360     struct BSDF_data *b
1361     )
1362     {
1363     if (b == NULL)
1364     return;
1365 greg 2.6 if (b->mgf != NULL)
1366     free(b->mgf);
1367 greg 2.1 if (b->bsdf != NULL)
1368     free(b->bsdf);
1369     free(b);
1370     }
1371    
1372    
1373     int
1374     r_BSDF_incvec( /* compute random input vector at given location */
1375     FVECT v,
1376     struct BSDF_data *b,
1377     int i,
1378     double rv,
1379     MAT4 xm
1380     )
1381     {
1382     FVECT pert;
1383     double rad;
1384     int j;
1385    
1386     if (!getBSDF_incvec(v, b, i))
1387     return(0);
1388     rad = sqrt(getBSDF_incohm(b, i) / PI);
1389     multisamp(pert, 3, rv);
1390     for (j = 0; j < 3; j++)
1391     v[j] += rad*(2.*pert[j] - 1.);
1392     if (xm != NULL)
1393     multv3(v, v, xm);
1394     return(normalize(v) != 0.0);
1395     }
1396    
1397    
1398     int
1399     r_BSDF_outvec( /* compute random output vector at given location */
1400     FVECT v,
1401     struct BSDF_data *b,
1402     int o,
1403     double rv,
1404     MAT4 xm
1405     )
1406     {
1407     FVECT pert;
1408     double rad;
1409     int j;
1410    
1411     if (!getBSDF_outvec(v, b, o))
1412     return(0);
1413     rad = sqrt(getBSDF_outohm(b, o) / PI);
1414     multisamp(pert, 3, rv);
1415     for (j = 0; j < 3; j++)
1416     v[j] += rad*(2.*pert[j] - 1.);
1417     if (xm != NULL)
1418     multv3(v, v, xm);
1419     return(normalize(v) != 0.0);
1420     }
1421    
1422    
1423     static int
1424     addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */
1425     char *xfarg[],
1426     FVECT xp,
1427     FVECT yp,
1428     FVECT zp
1429     )
1430     {
1431     static char bufs[3][16];
1432     int bn = 0;
1433     char **xfp = xfarg;
1434     double theta;
1435    
1436     if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
1437     /* Special case for X' along Z-axis */
1438     theta = -atan2(yp[0], yp[1]);
1439     *xfp++ = "-ry";
1440     *xfp++ = xp[2] < 0.0 ? "90" : "-90";
1441     *xfp++ = "-rz";
1442     sprintf(bufs[bn], "%f", theta*(180./PI));
1443     *xfp++ = bufs[bn++];
1444     return(xfp - xfarg);
1445     }
1446     theta = atan2(yp[2], zp[2]);
1447     if (!FEQ(theta,0.0)) {
1448     *xfp++ = "-rx";
1449     sprintf(bufs[bn], "%f", theta*(180./PI));
1450     *xfp++ = bufs[bn++];
1451     }
1452     theta = asin(-xp[2]);
1453     if (!FEQ(theta,0.0)) {
1454     *xfp++ = "-ry";
1455     sprintf(bufs[bn], " %f", theta*(180./PI));
1456     *xfp++ = bufs[bn++];
1457     }
1458     theta = atan2(xp[1], xp[0]);
1459     if (!FEQ(theta,0.0)) {
1460     *xfp++ = "-rz";
1461     sprintf(bufs[bn], "%f", theta*(180./PI));
1462     *xfp++ = bufs[bn++];
1463     }
1464     *xfp = NULL;
1465     return(xfp - xfarg);
1466     }
1467    
1468    
1469     int
1470     getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */
1471     MAT4 xm,
1472     FVECT nrm,
1473 greg 2.6 UpDir ud,
1474     char *xfbuf
1475 greg 2.1 )
1476     {
1477     char *xfargs[7];
1478     XF myxf;
1479     FVECT updir, xdest, ydest;
1480 greg 2.6 int i;
1481 greg 2.1
1482     updir[0] = updir[1] = updir[2] = 0.;
1483     switch (ud) {
1484     case UDzneg:
1485     updir[2] = -1.;
1486     break;
1487     case UDyneg:
1488     updir[1] = -1.;
1489     break;
1490     case UDxneg:
1491     updir[0] = -1.;
1492     break;
1493     case UDxpos:
1494     updir[0] = 1.;
1495     break;
1496     case UDypos:
1497     updir[1] = 1.;
1498     break;
1499     case UDzpos:
1500     updir[2] = 1.;
1501     break;
1502     case UDunknown:
1503     return(0);
1504     }
1505     fcross(xdest, updir, nrm);
1506     if (normalize(xdest) == 0.0)
1507     return(0);
1508     fcross(ydest, nrm, xdest);
1509     xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs);
1510     copymat4(xm, myxf.xfm);
1511 greg 2.6 if (xfbuf == NULL)
1512     return(1);
1513     /* return xf arguments as well */
1514     for (i = 0; xfargs[i] != NULL; i++) {
1515     *xfbuf++ = ' ';
1516     strcpy(xfbuf, xfargs[i]);
1517     while (*xfbuf) ++xfbuf;
1518     }
1519 greg 2.1 return(1);
1520     }
1521 greg 2.15
1522     /*######### END DEPRECATED ROUTINES #######*/
1523     /*################################################################*/