ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.31
Committed: Fri Jun 10 01:11:26 2011 UTC (12 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.30: +2 -1 lines
Log Message:
Added missing header

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.31 static const char RCSid[] = "$Id: bsdf.c,v 2.30 2011/06/09 17:09:39 greg Exp $";
3 greg 2.1 #endif
4     /*
5 greg 2.15 * bsdf.c
6     *
7     * Definitions for bidirectional scattering distribution functions.
8     *
9     * Created by Greg Ward on 1/10/11.
10     *
11     */
12    
13 greg 2.30 #define _USE_MATH_DEFINES
14 greg 2.15 #include <stdio.h>
15     #include <stdlib.h>
16 greg 2.31 #include <string.h>
17 greg 2.15 #include <math.h>
18     #include "ezxml.h"
19     #include "hilbert.h"
20     #include "bsdf.h"
21     #include "bsdf_m.h"
22     #include "bsdf_t.h"
23    
24     /* English ASCII strings corresponding to ennumerated errors */
25     const char *SDerrorEnglish[] = {
26     "No error",
27     "Memory error",
28     "File input/output error",
29     "File format error",
30     "Illegal argument",
31     "Invalid data",
32     "Unsupported feature",
33     "Internal program error",
34     "Unknown error"
35     };
36    
37     /* Additional information on last error (ASCII English) */
38     char SDerrorDetail[256];
39    
40     /* Cache of loaded BSDFs */
41     struct SDCache_s *SDcacheList = NULL;
42    
43     /* Retain BSDFs in cache list */
44     int SDretainSet = SDretainNone;
45    
46     /* Report any error to the indicated stream (in English) */
47     SDError
48     SDreportEnglish(SDError ec, FILE *fp)
49     {
50 greg 2.21 if (!ec)
51     return SDEnone;
52     if ((ec < SDEnone) | (ec > SDEunknown)) {
53     SDerrorDetail[0] = '\0';
54     ec = SDEunknown;
55     }
56 greg 2.15 if (fp == NULL)
57     return ec;
58     fputs(SDerrorEnglish[ec], fp);
59     if (SDerrorDetail[0]) {
60     fputs(": ", fp);
61     fputs(SDerrorDetail, fp);
62     }
63     fputc('\n', fp);
64     if (fp != stderr)
65     fflush(fp);
66     return ec;
67     }
68    
69     static double
70     to_meters( /* return factor to convert given unit to meters */
71     const char *unit
72     )
73     {
74     if (unit == NULL) return(1.); /* safe assumption? */
75     if (!strcasecmp(unit, "Meter")) return(1.);
76     if (!strcasecmp(unit, "Foot")) return(.3048);
77     if (!strcasecmp(unit, "Inch")) return(.0254);
78     if (!strcasecmp(unit, "Centimeter")) return(.01);
79     if (!strcasecmp(unit, "Millimeter")) return(.001);
80     sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
81     return(-1.);
82     }
83    
84     /* Load geometric dimensions and description (if any) */
85     static SDError
86 greg 2.16 SDloadGeometry(SDData *sd, ezxml_t wdb)
87 greg 2.15 {
88     ezxml_t geom;
89     double cfact;
90     const char *fmt, *mgfstr;
91    
92 greg 2.16 if (wdb == NULL) /* no geometry section? */
93     return SDEnone;
94     sd->dim[0] = sd->dim[1] = sd->dim[2] = .0;
95 greg 2.15 if ((geom = ezxml_child(wdb, "Width")) != NULL)
96 greg 2.16 sd->dim[0] = atof(ezxml_txt(geom)) *
97 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
98     if ((geom = ezxml_child(wdb, "Height")) != NULL)
99 greg 2.16 sd->dim[1] = atof(ezxml_txt(geom)) *
100 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
101     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
102 greg 2.16 sd->dim[2] = atof(ezxml_txt(geom)) *
103 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
104 greg 2.23 if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) {
105 greg 2.17 sprintf(SDerrorDetail, "Negative size in \"%s\"", sd->name);
106 greg 2.15 return SDEdata;
107 greg 2.17 }
108 greg 2.15 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
109     (mgfstr = ezxml_txt(geom)) == NULL)
110     return SDEnone;
111     if ((fmt = ezxml_attr(geom, "format")) != NULL &&
112     strcasecmp(fmt, "MGF")) {
113     sprintf(SDerrorDetail,
114     "Unrecognized geometry format '%s' in \"%s\"",
115 greg 2.16 fmt, sd->name);
116 greg 2.15 return SDEsupport;
117     }
118     cfact = to_meters(ezxml_attr(geom, "unit"));
119 greg 2.16 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
120     if (sd->mgf == NULL) {
121 greg 2.15 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
122     return SDEmemory;
123     }
124     if (cfact < 0.99 || cfact > 1.01)
125 greg 2.16 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
126 greg 2.15 else
127 greg 2.16 strcpy(sd->mgf, mgfstr);
128 greg 2.15 return SDEnone;
129     }
130    
131     /* Load a BSDF struct from the given file (free first and keep name) */
132     SDError
133     SDloadFile(SDData *sd, const char *fname)
134     {
135     SDError lastErr;
136 greg 2.16 ezxml_t fl, wtl;
137 greg 2.15
138     if ((sd == NULL) | (fname == NULL || !*fname))
139     return SDEargument;
140     /* free old data, keeping name */
141     SDfreeBSDF(sd);
142     /* parse XML file */
143     fl = ezxml_parse_file(fname);
144     if (fl == NULL) {
145     sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
146     return SDEfile;
147     }
148     if (ezxml_error(fl)[0]) {
149     sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
150     ezxml_free(fl);
151     return SDEformat;
152     }
153 greg 2.16 if (strcmp(ezxml_name(fl), "WindowElement")) {
154     sprintf(SDerrorDetail,
155     "BSDF \"%s\": top level node not 'WindowElement'",
156     sd->name);
157     ezxml_free(fl);
158     return SDEformat;
159     }
160     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
161     if (wtl == NULL) {
162     sprintf(SDerrorDetail, "BSDF \"%s\": no optical layer'",
163     sd->name);
164     ezxml_free(fl);
165     return SDEformat;
166     }
167 greg 2.15 /* load geometry if present */
168 greg 2.16 lastErr = SDloadGeometry(sd, ezxml_child(wtl, "Material"));
169     if (lastErr)
170 greg 2.15 return lastErr;
171     /* try loading variable resolution data */
172 greg 2.16 lastErr = SDloadTre(sd, wtl);
173 greg 2.15 /* check our result */
174 greg 2.29 if (lastErr == SDEsupport) /* try matrix BSDF if not tree data */
175 greg 2.16 lastErr = SDloadMtx(sd, wtl);
176 greg 2.29
177 greg 2.15 /* done with XML file */
178     ezxml_free(fl);
179 greg 2.16
180     if (lastErr) { /* was there a load error? */
181     SDfreeBSDF(sd);
182     return lastErr;
183     }
184     /* remove any insignificant components */
185     if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
186     SDfreeSpectralDF(sd->rf); sd->rf = NULL;
187     }
188     if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
189     SDfreeSpectralDF(sd->rb); sd->rb = NULL;
190     }
191     if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
192     SDfreeSpectralDF(sd->tf); sd->tf = NULL;
193     }
194     /* return success */
195     return SDEnone;
196 greg 2.15 }
197    
198     /* Allocate new spectral distribution function */
199     SDSpectralDF *
200     SDnewSpectralDF(int nc)
201     {
202     SDSpectralDF *df;
203    
204     if (nc <= 0) {
205     strcpy(SDerrorDetail, "Zero component spectral DF request");
206     return NULL;
207     }
208     df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
209     (nc-1)*sizeof(SDComponent));
210     if (df == NULL) {
211     sprintf(SDerrorDetail,
212     "Cannot allocate %d component spectral DF", nc);
213     return NULL;
214     }
215     df->minProjSA = .0;
216     df->maxHemi = .0;
217     df->ncomp = nc;
218     memset(df->comp, 0, nc*sizeof(SDComponent));
219     return df;
220     }
221    
222     /* Free cached cumulative distributions for BSDF component */
223     void
224     SDfreeCumulativeCache(SDSpectralDF *df)
225     {
226     int n;
227     SDCDst *cdp;
228    
229     if (df == NULL)
230     return;
231     for (n = df->ncomp; n-- > 0; )
232     while ((cdp = df->comp[n].cdList) != NULL) {
233     df->comp[n].cdList = cdp->next;
234     free(cdp);
235     }
236     }
237    
238     /* Free a spectral distribution function */
239     void
240     SDfreeSpectralDF(SDSpectralDF *df)
241     {
242     int n;
243    
244     if (df == NULL)
245     return;
246     SDfreeCumulativeCache(df);
247     for (n = df->ncomp; n-- > 0; )
248     (*df->comp[n].func->freeSC)(df->comp[n].dist);
249     free(df);
250     }
251    
252     /* Shorten file path to useable BSDF name, removing suffix */
253     void
254 greg 2.16 SDclipName(char *res, const char *fname)
255 greg 2.15 {
256     const char *cp, *dot = NULL;
257    
258     for (cp = fname; *cp; cp++)
259     if (*cp == '.')
260     dot = cp;
261     if ((dot == NULL) | (dot < fname+2))
262     dot = cp;
263     if (dot - fname >= SDnameLn)
264     fname = dot - SDnameLn + 1;
265     while (fname < dot)
266     *res++ = *fname++;
267     *res = '\0';
268     }
269    
270     /* Initialize an unused BSDF struct (simply clears to zeroes) */
271     void
272 greg 2.20 SDclearBSDF(SDData *sd, const char *fname)
273 greg 2.15 {
274 greg 2.20 if (sd == NULL)
275     return;
276     memset(sd, 0, sizeof(SDData));
277     if (fname == NULL)
278     return;
279     SDclipName(sd->name, fname);
280 greg 2.15 }
281    
282     /* Free data associated with BSDF struct */
283     void
284     SDfreeBSDF(SDData *sd)
285     {
286     if (sd == NULL)
287     return;
288     if (sd->mgf != NULL) {
289     free(sd->mgf);
290     sd->mgf = NULL;
291     }
292     if (sd->rf != NULL) {
293     SDfreeSpectralDF(sd->rf);
294     sd->rf = NULL;
295     }
296     if (sd->rb != NULL) {
297     SDfreeSpectralDF(sd->rb);
298     sd->rb = NULL;
299     }
300     if (sd->tf != NULL) {
301     SDfreeSpectralDF(sd->tf);
302     sd->tf = NULL;
303     }
304     sd->rLambFront.cieY = .0;
305 greg 2.16 sd->rLambFront.spec.flags = 0;
306 greg 2.15 sd->rLambBack.cieY = .0;
307 greg 2.16 sd->rLambBack.spec.flags = 0;
308 greg 2.15 sd->tLamb.cieY = .0;
309 greg 2.16 sd->tLamb.spec.flags = 0;
310 greg 2.15 }
311    
312     /* Find writeable BSDF by name, or allocate new cache entry if absent */
313     SDData *
314     SDgetCache(const char *bname)
315     {
316     struct SDCache_s *sdl;
317     char sdnam[SDnameLn];
318    
319     if (bname == NULL)
320     return NULL;
321    
322     SDclipName(sdnam, bname);
323     for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
324     if (!strcmp(sdl->bsdf.name, sdnam)) {
325     sdl->refcnt++;
326     return &sdl->bsdf;
327     }
328    
329     sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
330     if (sdl == NULL)
331     return NULL;
332    
333     strcpy(sdl->bsdf.name, sdnam);
334     sdl->next = SDcacheList;
335     SDcacheList = sdl;
336    
337 greg 2.21 sdl->refcnt = 1;
338 greg 2.15 return &sdl->bsdf;
339     }
340    
341     /* Get loaded BSDF from cache (or load and cache it on first call) */
342     /* Report any problem to stderr and return NULL on failure */
343     const SDData *
344     SDcacheFile(const char *fname)
345     {
346     SDData *sd;
347     SDError ec;
348    
349     if (fname == NULL || !*fname)
350     return NULL;
351     SDerrorDetail[0] = '\0';
352     if ((sd = SDgetCache(fname)) == NULL) {
353     SDreportEnglish(SDEmemory, stderr);
354     return NULL;
355     }
356     if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
357     SDreportEnglish(ec, stderr);
358     SDfreeCache(sd);
359     return NULL;
360     }
361     return sd;
362     }
363    
364     /* Free a BSDF from our cache (clear all if NULL) */
365     void
366     SDfreeCache(const SDData *sd)
367     {
368     struct SDCache_s *sdl, *sdLast = NULL;
369    
370     if (sd == NULL) { /* free entire list */
371     while ((sdl = SDcacheList) != NULL) {
372     SDcacheList = sdl->next;
373     SDfreeBSDF(&sdl->bsdf);
374     free(sdl);
375     }
376     return;
377     }
378     for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
379     if (&sdl->bsdf == sd)
380     break;
381 greg 2.21 if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
382 greg 2.15 return; /* missing or still in use */
383     /* keep unreferenced data? */
384     if (SDisLoaded(sd) && SDretainSet) {
385     if (SDretainSet == SDretainAll)
386     return; /* keep everything */
387     /* else free cumulative data */
388     SDfreeCumulativeCache(sd->rf);
389     SDfreeCumulativeCache(sd->rb);
390     SDfreeCumulativeCache(sd->tf);
391     return;
392     }
393     /* remove from list and free */
394     if (sdLast == NULL)
395     SDcacheList = sdl->next;
396     else
397     sdLast->next = sdl->next;
398     SDfreeBSDF(&sdl->bsdf);
399     free(sdl);
400     }
401    
402     /* Sample an individual BSDF component */
403     SDError
404 greg 2.24 SDsampComponent(SDValue *sv, FVECT ioVec, double randX, SDComponent *sdc)
405 greg 2.15 {
406     float coef[SDmaxCh];
407     SDError ec;
408 greg 2.24 FVECT inVec;
409 greg 2.15 const SDCDst *cd;
410     double d;
411     int n;
412     /* check arguments */
413 greg 2.24 if ((sv == NULL) | (ioVec == NULL) | (sdc == NULL))
414 greg 2.15 return SDEargument;
415     /* get cumulative distribution */
416 greg 2.24 VCOPY(inVec, ioVec);
417 greg 2.15 cd = (*sdc->func->getCDist)(inVec, sdc);
418     if (cd == NULL)
419     return SDEmemory;
420     if (cd->cTotal <= 1e-7) { /* anything to sample? */
421     sv->spec = c_dfcolor;
422     sv->cieY = .0;
423 greg 2.24 memset(ioVec, 0, 3*sizeof(double));
424 greg 2.15 return SDEnone;
425     }
426     sv->cieY = cd->cTotal;
427     /* compute sample direction */
428 greg 2.24 ec = (*sdc->func->sampCDist)(ioVec, randX, cd);
429 greg 2.15 if (ec)
430     return ec;
431     /* get BSDF color */
432 greg 2.25 n = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
433 greg 2.15 if (n <= 0) {
434     strcpy(SDerrorDetail, "BSDF sample value error");
435     return SDEinternal;
436     }
437     sv->spec = sdc->cspec[0];
438     d = coef[0];
439     while (--n) {
440     c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
441     d += coef[n];
442     }
443     /* make sure everything is set */
444     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
445     return SDEnone;
446     }
447    
448     #define MS_MAXDIM 15
449    
450     /* Convert 1-dimensional random variable to N-dimensional */
451     void
452     SDmultiSamp(double t[], int n, double randX)
453     {
454     unsigned nBits;
455     double scale;
456     bitmask_t ndx, coord[MS_MAXDIM];
457    
458     while (n > MS_MAXDIM) /* punt for higher dimensions */
459 greg 2.19 t[--n] = rand()*(1./(RAND_MAX+.5));
460 greg 2.15 nBits = (8*sizeof(bitmask_t) - 1) / n;
461     ndx = randX * (double)((bitmask_t)1 << (nBits*n));
462     /* get coordinate on Hilbert curve */
463     hilbert_i2c(n, nBits, ndx, coord);
464     /* convert back to [0,1) range */
465     scale = 1. / (double)((bitmask_t)1 << nBits);
466     while (n--)
467 greg 2.19 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
468 greg 2.15 }
469    
470     #undef MS_MAXDIM
471    
472     /* Generate diffuse hemispherical sample */
473     static void
474     SDdiffuseSamp(FVECT outVec, int outFront, double randX)
475     {
476     /* convert to position on hemisphere */
477     SDmultiSamp(outVec, 2, randX);
478     SDsquare2disk(outVec, outVec[0], outVec[1]);
479     outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
480 greg 2.23 if (outVec[2] > 0) /* a bit of paranoia */
481 greg 2.15 outVec[2] = sqrt(outVec[2]);
482     if (!outFront) /* going out back? */
483     outVec[2] = -outVec[2];
484     }
485    
486     /* Query projected solid angle coverage for non-diffuse BSDF direction */
487     SDError
488 greg 2.22 SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2,
489     int qflags, const SDData *sd)
490 greg 2.15 {
491 greg 2.23 SDSpectralDF *rdf, *tdf;
492 greg 2.15 SDError ec;
493     int i;
494     /* check arguments */
495 greg 2.26 if ((projSA == NULL) | (v1 == NULL) | (sd == NULL))
496 greg 2.15 return SDEargument;
497     /* initialize extrema */
498 greg 2.17 switch (qflags) {
499 greg 2.15 case SDqueryMax:
500     projSA[0] = .0;
501     break;
502     case SDqueryMin+SDqueryMax:
503     projSA[1] = .0;
504     /* fall through */
505     case SDqueryMin:
506     projSA[0] = 10.;
507     break;
508     case 0:
509     return SDEargument;
510     }
511 greg 2.23 if (v1[2] > 0) /* front surface query? */
512 greg 2.15 rdf = sd->rf;
513     else
514     rdf = sd->rb;
515 greg 2.26 tdf = sd->tf;
516     if (v2 != NULL) /* bidirectional? */
517     if (v1[2] > 0 ^ v2[2] > 0)
518     rdf = NULL;
519     else
520     tdf = NULL;
521 greg 2.15 ec = SDEdata; /* run through components */
522     for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
523 greg 2.22 ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2,
524 greg 2.25 qflags, &rdf->comp[i]);
525 greg 2.15 if (ec)
526     return ec;
527     }
528 greg 2.23 for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) {
529     ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2,
530 greg 2.25 qflags, &tdf->comp[i]);
531 greg 2.15 if (ec)
532     return ec;
533     }
534 greg 2.17 if (ec) { /* all diffuse? */
535     projSA[0] = M_PI;
536     if (qflags == SDqueryMin+SDqueryMax)
537     projSA[1] = M_PI;
538     }
539     return SDEnone;
540 greg 2.15 }
541    
542     /* Return BSDF for the given incident and scattered ray vectors */
543     SDError
544     SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
545     {
546     int inFront, outFront;
547     SDSpectralDF *sdf;
548     float coef[SDmaxCh];
549     int nch, i;
550     /* check arguments */
551     if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
552     return SDEargument;
553     /* whose side are we on? */
554 greg 2.23 inFront = (inVec[2] > 0);
555     outFront = (outVec[2] > 0);
556 greg 2.15 /* start with diffuse portion */
557     if (inFront & outFront) {
558     *sv = sd->rLambFront;
559     sdf = sd->rf;
560     } else if (!(inFront | outFront)) {
561     *sv = sd->rLambBack;
562     sdf = sd->rb;
563     } else /* inFront ^ outFront */ {
564     *sv = sd->tLamb;
565     sdf = sd->tf;
566     }
567     sv->cieY *= 1./M_PI;
568     /* add non-diffuse components */
569     i = (sdf != NULL) ? sdf->ncomp : 0;
570     while (i-- > 0) {
571     nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
572 greg 2.25 &sdf->comp[i]);
573 greg 2.15 while (nch-- > 0) {
574     c_cmix(&sv->spec, sv->cieY, &sv->spec,
575     coef[nch], &sdf->comp[i].cspec[nch]);
576     sv->cieY += coef[nch];
577     }
578     }
579     /* make sure everything is set */
580     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
581     return SDEnone;
582     }
583    
584     /* Compute directional hemispherical scattering at this incident angle */
585     double
586     SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
587     {
588     double hsum;
589     SDSpectralDF *rdf;
590     const SDCDst *cd;
591     int i;
592     /* check arguments */
593     if ((inVec == NULL) | (sd == NULL))
594     return .0;
595     /* gather diffuse components */
596 greg 2.23 if (inVec[2] > 0) {
597 greg 2.15 hsum = sd->rLambFront.cieY;
598     rdf = sd->rf;
599     } else /* !inFront */ {
600     hsum = sd->rLambBack.cieY;
601     rdf = sd->rb;
602     }
603     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
604     hsum = .0;
605     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
606     hsum += sd->tLamb.cieY;
607     /* gather non-diffuse components */
608     i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
609     rdf != NULL) ? rdf->ncomp : 0;
610     while (i-- > 0) { /* non-diffuse reflection */
611     cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
612     if (cd != NULL)
613     hsum += cd->cTotal;
614     }
615     i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
616     sd->tf != NULL) ? sd->tf->ncomp : 0;
617     while (i-- > 0) { /* non-diffuse transmission */
618     cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]);
619     if (cd != NULL)
620     hsum += cd->cTotal;
621     }
622     return hsum;
623     }
624    
625     /* Sample BSDF direction based on the given random variable */
626     SDError
627 greg 2.24 SDsampBSDF(SDValue *sv, FVECT ioVec, double randX, int sflags, const SDData *sd)
628 greg 2.15 {
629     SDError ec;
630 greg 2.24 FVECT inVec;
631 greg 2.15 int inFront;
632     SDSpectralDF *rdf;
633     double rdiff;
634     float coef[SDmaxCh];
635     int i, j, n, nr;
636     SDComponent *sdc;
637     const SDCDst **cdarr = NULL;
638     /* check arguments */
639 greg 2.24 if ((sv == NULL) | (ioVec == NULL) | (sd == NULL) |
640 greg 2.23 (randX < 0) | (randX >= 1.))
641 greg 2.15 return SDEargument;
642     /* whose side are we on? */
643 greg 2.24 VCOPY(inVec, ioVec);
644 greg 2.23 inFront = (inVec[2] > 0);
645 greg 2.15 /* remember diffuse portions */
646     if (inFront) {
647     *sv = sd->rLambFront;
648     rdf = sd->rf;
649     } else /* !inFront */ {
650     *sv = sd->rLambBack;
651     rdf = sd->rb;
652     }
653     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
654     sv->cieY = .0;
655     rdiff = sv->cieY;
656     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
657     sv->cieY += sd->tLamb.cieY;
658     /* gather non-diffuse components */
659     i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
660     rdf != NULL) ? rdf->ncomp : 0;
661     j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
662     sd->tf != NULL) ? sd->tf->ncomp : 0;
663     n = i + j;
664     if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
665     return SDEmemory;
666     while (j-- > 0) { /* non-diffuse transmission */
667     cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]);
668     if (cdarr[i+j] == NULL) {
669     free(cdarr);
670     return SDEmemory;
671     }
672     sv->cieY += cdarr[i+j]->cTotal;
673     }
674     while (i-- > 0) { /* non-diffuse reflection */
675     cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
676     if (cdarr[i] == NULL) {
677     free(cdarr);
678     return SDEmemory;
679     }
680     sv->cieY += cdarr[i]->cTotal;
681     }
682     if (sv->cieY <= 1e-7) { /* anything to sample? */
683     sv->cieY = .0;
684 greg 2.24 memset(ioVec, 0, 3*sizeof(double));
685 greg 2.15 return SDEnone;
686     }
687     /* scale random variable */
688     randX *= sv->cieY;
689     /* diffuse reflection? */
690     if (randX < rdiff) {
691 greg 2.24 SDdiffuseSamp(ioVec, inFront, randX/rdiff);
692 greg 2.15 goto done;
693     }
694     randX -= rdiff;
695     /* diffuse transmission? */
696     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
697     if (randX < sd->tLamb.cieY) {
698     sv->spec = sd->tLamb.spec;
699 greg 2.24 SDdiffuseSamp(ioVec, !inFront, randX/sd->tLamb.cieY);
700 greg 2.15 goto done;
701     }
702     randX -= sd->tLamb.cieY;
703     }
704     /* else one of cumulative dist. */
705     for (i = 0; i < n && randX < cdarr[i]->cTotal; i++)
706     randX -= cdarr[i]->cTotal;
707     if (i >= n)
708     return SDEinternal;
709     /* compute sample direction */
710     sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr];
711 greg 2.24 ec = (*sdc->func->sampCDist)(ioVec, randX/cdarr[i]->cTotal, cdarr[i]);
712 greg 2.15 if (ec)
713     return ec;
714     /* compute color */
715 greg 2.25 j = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
716 greg 2.15 if (j <= 0) {
717     sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
718     sd->name);
719     return SDEinternal;
720     }
721     sv->spec = sdc->cspec[0];
722     rdiff = coef[0];
723     while (--j) {
724     c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
725     rdiff += coef[j];
726     }
727     done:
728     if (cdarr != NULL)
729     free(cdarr);
730     /* make sure everything is set */
731     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
732     return SDEnone;
733     }
734    
735     /* Compute World->BSDF transform from surface normal and up (Y) vector */
736     SDError
737     SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
738     {
739     if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
740     return SDEargument;
741     VCOPY(vMtx[2], sNrm);
742 greg 2.23 if (normalize(vMtx[2]) == 0)
743 greg 2.15 return SDEargument;
744     fcross(vMtx[0], uVec, vMtx[2]);
745 greg 2.23 if (normalize(vMtx[0]) == 0)
746 greg 2.15 return SDEargument;
747     fcross(vMtx[1], vMtx[2], vMtx[0]);
748     return SDEnone;
749     }
750    
751     /* Compute inverse transform */
752     SDError
753     SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
754     {
755     RREAL mTmp[3][3];
756     double d;
757    
758     if ((iMtx == NULL) | (vMtx == NULL))
759     return SDEargument;
760     /* compute determinant */
761     mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
762     mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
763     mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
764     d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
765 greg 2.23 if (d == 0) {
766 greg 2.15 strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
767     return SDEargument;
768     }
769     d = 1./d; /* invert matrix */
770     mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
771     mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
772     mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
773     mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
774     mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
775     mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
776     mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
777     memcpy(iMtx, mTmp, sizeof(mTmp));
778     return SDEnone;
779     }
780    
781     /* Transform and normalize direction (column) vector */
782     SDError
783     SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
784     {
785     FVECT vTmp;
786    
787     if ((resVec == NULL) | (inpVec == NULL))
788     return SDEargument;
789     if (vMtx == NULL) { /* assume they just want to normalize */
790     if (resVec != inpVec)
791     VCOPY(resVec, inpVec);
792 greg 2.23 return (normalize(resVec) > 0) ? SDEnone : SDEargument;
793 greg 2.15 }
794     vTmp[0] = DOT(vMtx[0], inpVec);
795     vTmp[1] = DOT(vMtx[1], inpVec);
796     vTmp[2] = DOT(vMtx[2], inpVec);
797 greg 2.23 if (normalize(vTmp) == 0)
798 greg 2.15 return SDEargument;
799     VCOPY(resVec, vTmp);
800     return SDEnone;
801     }
802    
803     /*################################################################*/
804     /*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/
805    
806     /*
807 greg 2.1 * Routines for handling BSDF data
808     */
809    
810     #include "standard.h"
811     #include "paths.h"
812     #include <ctype.h>
813    
814     #define MAXLATS 46 /* maximum number of latitudes */
815    
816     /* BSDF angle specification */
817     typedef struct {
818     char name[64]; /* basis name */
819     int nangles; /* total number of directions */
820     struct {
821     float tmin; /* starting theta */
822     short nphis; /* number of phis (0 term) */
823     } lat[MAXLATS+1]; /* latitudes */
824     } ANGLE_BASIS;
825    
826 greg 2.4 #define MAXABASES 7 /* limit on defined bases */
827 greg 2.1
828     static ANGLE_BASIS abase_list[MAXABASES] = {
829     {
830     "LBNL/Klems Full", 145,
831     { {-5., 1},
832     {5., 8},
833     {15., 16},
834     {25., 20},
835     {35., 24},
836     {45., 24},
837     {55., 24},
838     {65., 16},
839     {75., 12},
840     {90., 0} }
841     }, {
842     "LBNL/Klems Half", 73,
843     { {-6.5, 1},
844     {6.5, 8},
845     {19.5, 12},
846     {32.5, 16},
847     {46.5, 20},
848     {61.5, 12},
849     {76.5, 4},
850     {90., 0} }
851     }, {
852     "LBNL/Klems Quarter", 41,
853     { {-9., 1},
854     {9., 8},
855     {27., 12},
856     {46., 12},
857     {66., 8},
858     {90., 0} }
859     }
860     };
861    
862     static int nabases = 3; /* current number of defined bases */
863    
864 greg 2.9 #define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6)
865    
866     static int
867     fequal(double a, double b)
868     {
869 greg 2.23 if (b != 0)
870 greg 2.9 a = a/b - 1.;
871     return((a <= 1e-6) & (a >= -1e-6));
872     }
873 greg 2.3
874 greg 2.14 /* Returns the name of the given tag */
875 greg 2.3 #ifdef ezxml_name
876     #undef ezxml_name
877     static char *
878     ezxml_name(ezxml_t xml)
879     {
880     if (xml == NULL)
881     return(NULL);
882     return(xml->name);
883     }
884     #endif
885    
886 greg 2.14 /* Returns the given tag's character content or empty string if none */
887 greg 2.3 #ifdef ezxml_txt
888     #undef ezxml_txt
889     static char *
890     ezxml_txt(ezxml_t xml)
891     {
892     if (xml == NULL)
893     return("");
894     return(xml->txt);
895     }
896     #endif
897    
898 greg 2.1
899     static int
900     ab_getvec( /* get vector for this angle basis index */
901     FVECT v,
902     int ndx,
903     void *p
904     )
905     {
906     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
907     int li;
908 greg 2.2 double pol, azi, d;
909 greg 2.1
910     if ((ndx < 0) | (ndx >= ab->nangles))
911     return(0);
912     for (li = 0; ndx >= ab->lat[li].nphis; li++)
913     ndx -= ab->lat[li].nphis;
914 greg 2.2 pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin);
915 greg 2.1 azi = 2.*PI*ndx/ab->lat[li].nphis;
916 greg 2.2 v[2] = d = cos(pol);
917     d = sqrt(1. - d*d); /* sin(pol) */
918 greg 2.1 v[0] = cos(azi)*d;
919     v[1] = sin(azi)*d;
920     return(1);
921     }
922    
923    
924     static int
925     ab_getndx( /* get index corresponding to the given vector */
926     FVECT v,
927     void *p
928     )
929     {
930     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
931     int li, ndx;
932 greg 2.2 double pol, azi, d;
933 greg 2.1
934     if ((v[2] < -1.0) | (v[2] > 1.0))
935     return(-1);
936 greg 2.2 pol = 180.0/PI*acos(v[2]);
937 greg 2.1 azi = 180.0/PI*atan2(v[1], v[0]);
938     if (azi < 0.0) azi += 360.0;
939 greg 2.2 for (li = 1; ab->lat[li].tmin <= pol; li++)
940 greg 2.1 if (!ab->lat[li].nphis)
941     return(-1);
942     --li;
943     ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
944     if (ndx >= ab->lat[li].nphis) ndx = 0;
945     while (li--)
946     ndx += ab->lat[li].nphis;
947     return(ndx);
948     }
949    
950    
951     static double
952     ab_getohm( /* get solid angle for this angle basis index */
953     int ndx,
954     void *p
955     )
956     {
957     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
958     int li;
959     double theta, theta1;
960    
961     if ((ndx < 0) | (ndx >= ab->nangles))
962     return(0);
963     for (li = 0; ndx >= ab->lat[li].nphis; li++)
964     ndx -= ab->lat[li].nphis;
965     theta1 = PI/180. * ab->lat[li+1].tmin;
966     if (ab->lat[li].nphis == 1) { /* special case */
967     if (ab->lat[li].tmin > FTINY)
968     error(USER, "unsupported BSDF coordinate system");
969     return(2.*PI*(1. - cos(theta1)));
970     }
971     theta = PI/180. * ab->lat[li].tmin;
972     return(2.*PI*(cos(theta) - cos(theta1))/(double)ab->lat[li].nphis);
973     }
974    
975    
976     static int
977     ab_getvecR( /* get reverse vector for this angle basis index */
978     FVECT v,
979     int ndx,
980     void *p
981     )
982     {
983     if (!ab_getvec(v, ndx, p))
984     return(0);
985    
986     v[0] = -v[0];
987     v[1] = -v[1];
988     v[2] = -v[2];
989    
990     return(1);
991     }
992    
993    
994     static int
995     ab_getndxR( /* get index corresponding to the reverse vector */
996     FVECT v,
997     void *p
998     )
999     {
1000     FVECT v2;
1001    
1002     v2[0] = -v[0];
1003     v2[1] = -v[1];
1004     v2[2] = -v[2];
1005    
1006     return ab_getndx(v2, p);
1007     }
1008    
1009    
1010     static void
1011 greg 2.4 load_angle_basis( /* load custom BSDF angle basis */
1012 greg 2.3 ezxml_t wab
1013     )
1014     {
1015     char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
1016     ezxml_t wbb;
1017     int i;
1018    
1019 greg 2.4 if (!abname || !*abname)
1020 greg 2.3 return;
1021     for (i = nabases; i--; )
1022 greg 2.12 if (!strcasecmp(abname, abase_list[i].name))
1023 greg 2.4 return; /* assume it's the same */
1024 greg 2.3 if (nabases >= MAXABASES)
1025     error(INTERNAL, "too many angle bases");
1026     strcpy(abase_list[nabases].name, abname);
1027     abase_list[nabases].nangles = 0;
1028     for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
1029     wbb != NULL; i++, wbb = wbb->next) {
1030     if (i >= MAXLATS)
1031     error(INTERNAL, "too many latitudes in custom basis");
1032     abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
1033     ezxml_child(ezxml_child(wbb,
1034     "ThetaBounds"), "UpperTheta")));
1035     if (!i)
1036     abase_list[nabases].lat[i].tmin =
1037     -abase_list[nabases].lat[i+1].tmin;
1038 greg 2.9 else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
1039 greg 2.3 "ThetaBounds"), "LowerTheta"))),
1040     abase_list[nabases].lat[i].tmin))
1041     error(WARNING, "theta values disagree in custom basis");
1042     abase_list[nabases].nangles +=
1043     abase_list[nabases].lat[i].nphis =
1044     atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
1045     }
1046     abase_list[nabases++].lat[i].nphis = 0;
1047     }
1048    
1049    
1050 greg 2.6 static void
1051     load_geometry( /* load geometric dimensions and description (if any) */
1052     struct BSDF_data *dp,
1053     ezxml_t wdb
1054     )
1055     {
1056     ezxml_t geom;
1057     double cfact;
1058     const char *fmt, *mgfstr;
1059    
1060     dp->dim[0] = dp->dim[1] = dp->dim[2] = 0;
1061     dp->mgf = NULL;
1062     if ((geom = ezxml_child(wdb, "Width")) != NULL)
1063     dp->dim[0] = atof(ezxml_txt(geom)) *
1064     to_meters(ezxml_attr(geom, "unit"));
1065     if ((geom = ezxml_child(wdb, "Height")) != NULL)
1066     dp->dim[1] = atof(ezxml_txt(geom)) *
1067     to_meters(ezxml_attr(geom, "unit"));
1068     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
1069     dp->dim[2] = atof(ezxml_txt(geom)) *
1070     to_meters(ezxml_attr(geom, "unit"));
1071     if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
1072     (mgfstr = ezxml_txt(geom)) == NULL)
1073     return;
1074     if ((fmt = ezxml_attr(geom, "format")) != NULL &&
1075     strcasecmp(fmt, "MGF")) {
1076     sprintf(errmsg, "unrecognized geometry format '%s'", fmt);
1077     error(WARNING, errmsg);
1078     return;
1079     }
1080     cfact = to_meters(ezxml_attr(geom, "unit"));
1081     dp->mgf = (char *)malloc(strlen(mgfstr)+32);
1082     if (dp->mgf == NULL)
1083     error(SYSTEM, "out of memory in load_geometry");
1084     if (cfact < 0.99 || cfact > 1.01)
1085     sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
1086     else
1087     strcpy(dp->mgf, mgfstr);
1088     }
1089    
1090    
1091 greg 2.3 static void
1092 greg 2.1 load_bsdf_data( /* load BSDF distribution for this wavelength */
1093     struct BSDF_data *dp,
1094     ezxml_t wdb
1095     )
1096     {
1097     char *cbasis = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
1098     char *rbasis = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
1099     char *sdata;
1100     int i;
1101    
1102 greg 2.4 if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) {
1103 greg 2.1 error(WARNING, "missing column/row basis for BSDF");
1104     return;
1105     }
1106     for (i = nabases; i--; )
1107 greg 2.12 if (!strcasecmp(cbasis, abase_list[i].name)) {
1108 greg 2.1 dp->ninc = abase_list[i].nangles;
1109     dp->ib_priv = (void *)&abase_list[i];
1110     dp->ib_vec = ab_getvecR;
1111     dp->ib_ndx = ab_getndxR;
1112     dp->ib_ohm = ab_getohm;
1113     break;
1114     }
1115     if (i < 0) {
1116 greg 2.4 sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis);
1117 greg 2.1 error(WARNING, errmsg);
1118     return;
1119     }
1120     for (i = nabases; i--; )
1121 greg 2.12 if (!strcasecmp(rbasis, abase_list[i].name)) {
1122 greg 2.1 dp->nout = abase_list[i].nangles;
1123     dp->ob_priv = (void *)&abase_list[i];
1124     dp->ob_vec = ab_getvec;
1125     dp->ob_ndx = ab_getndx;
1126     dp->ob_ohm = ab_getohm;
1127     break;
1128     }
1129     if (i < 0) {
1130 greg 2.16 sprintf(errmsg, "undefined RowAngleBasis '%s'", rbasis);
1131 greg 2.1 error(WARNING, errmsg);
1132     return;
1133     }
1134     /* read BSDF data */
1135     sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
1136 greg 2.4 if (!sdata || !*sdata) {
1137 greg 2.1 error(WARNING, "missing BSDF ScatteringData");
1138     return;
1139     }
1140     dp->bsdf = (float *)malloc(sizeof(float)*dp->ninc*dp->nout);
1141     if (dp->bsdf == NULL)
1142     error(SYSTEM, "out of memory in load_bsdf_data");
1143     for (i = 0; i < dp->ninc*dp->nout; i++) {
1144     char *sdnext = fskip(sdata);
1145     if (sdnext == NULL) {
1146     error(WARNING, "bad/missing BSDF ScatteringData");
1147     free(dp->bsdf); dp->bsdf = NULL;
1148     return;
1149     }
1150     while (*sdnext && isspace(*sdnext))
1151     sdnext++;
1152     if (*sdnext == ',') sdnext++;
1153     dp->bsdf[i] = atof(sdata);
1154     sdata = sdnext;
1155     }
1156     while (isspace(*sdata))
1157     sdata++;
1158     if (*sdata) {
1159     sprintf(errmsg, "%d extra characters after BSDF ScatteringData",
1160 greg 2.5 (int)strlen(sdata));
1161 greg 2.1 error(WARNING, errmsg);
1162     }
1163     }
1164    
1165    
1166     static int
1167     check_bsdf_data( /* check that BSDF data is sane */
1168     struct BSDF_data *dp
1169     )
1170     {
1171 greg 2.2 double *omega_iarr, *omega_oarr;
1172 greg 2.7 double dom, contrib, hemi_total, full_total;
1173 greg 2.1 int nneg;
1174 greg 2.2 FVECT v;
1175 greg 2.1 int i, o;
1176    
1177     if (dp == NULL || dp->bsdf == NULL)
1178     return(0);
1179 greg 2.2 omega_iarr = (double *)calloc(dp->ninc, sizeof(double));
1180     omega_oarr = (double *)calloc(dp->nout, sizeof(double));
1181     if ((omega_iarr == NULL) | (omega_oarr == NULL))
1182 greg 2.1 error(SYSTEM, "out of memory in check_bsdf_data");
1183 greg 2.2 /* incoming projected solid angles */
1184     hemi_total = .0;
1185     for (i = dp->ninc; i--; ) {
1186     dom = getBSDF_incohm(dp,i);
1187 greg 2.23 if (dom <= 0) {
1188 greg 2.2 error(WARNING, "zero/negative incoming solid angle");
1189     continue;
1190     }
1191     if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) {
1192     error(WARNING, "illegal incoming BSDF direction");
1193     free(omega_iarr); free(omega_oarr);
1194     return(0);
1195     }
1196     hemi_total += omega_iarr[i] = dom * -v[2];
1197     }
1198     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1199     sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%",
1200     100.*(hemi_total/PI - 1.));
1201     error(WARNING, errmsg);
1202     }
1203     dom = PI / hemi_total; /* fix normalization */
1204     for (i = dp->ninc; i--; )
1205     omega_iarr[i] *= dom;
1206     /* outgoing projected solid angles */
1207 greg 2.1 hemi_total = .0;
1208     for (o = dp->nout; o--; ) {
1209     dom = getBSDF_outohm(dp,o);
1210 greg 2.23 if (dom <= 0) {
1211 greg 2.2 error(WARNING, "zero/negative outgoing solid angle");
1212 greg 2.1 continue;
1213     }
1214     if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) {
1215     error(WARNING, "illegal outgoing BSDF direction");
1216 greg 2.2 free(omega_iarr); free(omega_oarr);
1217 greg 2.1 return(0);
1218     }
1219 greg 2.2 hemi_total += omega_oarr[o] = dom * v[2];
1220 greg 2.1 }
1221     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1222     sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%",
1223     100.*(hemi_total/PI - 1.));
1224     error(WARNING, errmsg);
1225     }
1226 greg 2.2 dom = PI / hemi_total; /* fix normalization */
1227 greg 2.1 for (o = dp->nout; o--; )
1228 greg 2.2 omega_oarr[o] *= dom;
1229     nneg = 0; /* check outgoing totals */
1230     for (i = 0; i < dp->ninc; i++) {
1231 greg 2.1 hemi_total = .0;
1232     for (o = dp->nout; o--; ) {
1233     double f = BSDF_value(dp,i,o);
1234 greg 2.23 if (f >= 0)
1235 greg 2.2 hemi_total += f*omega_oarr[o];
1236     else {
1237     nneg += (f < -FTINY);
1238     BSDF_value(dp,i,o) = .0f;
1239     }
1240 greg 2.1 }
1241 greg 2.8 if (hemi_total > 1.01) {
1242 greg 2.2 sprintf(errmsg,
1243     "incoming BSDF direction %d passes %.1f%% of light",
1244     i, 100.*hemi_total);
1245 greg 2.1 error(WARNING, errmsg);
1246     }
1247     }
1248 greg 2.2 if (nneg) {
1249     sprintf(errmsg, "%d negative BSDF values (ignored)", nneg);
1250 greg 2.1 error(WARNING, errmsg);
1251     }
1252 greg 2.7 full_total = .0; /* reverse roles and check again */
1253 greg 2.2 for (o = 0; o < dp->nout; o++) {
1254     hemi_total = .0;
1255     for (i = dp->ninc; i--; )
1256     hemi_total += BSDF_value(dp,i,o) * omega_iarr[i];
1257    
1258 greg 2.8 if (hemi_total > 1.01) {
1259 greg 2.2 sprintf(errmsg,
1260     "outgoing BSDF direction %d collects %.1f%% of light",
1261     o, 100.*hemi_total);
1262     error(WARNING, errmsg);
1263     }
1264 greg 2.7 full_total += hemi_total*omega_oarr[o];
1265     }
1266     full_total /= PI;
1267 greg 2.8 if (full_total > 1.00001) {
1268     sprintf(errmsg, "BSDF transfers %.4f%% of light",
1269 greg 2.7 100.*full_total);
1270     error(WARNING, errmsg);
1271 greg 2.2 }
1272     free(omega_iarr); free(omega_oarr);
1273 greg 2.1 return(1);
1274     }
1275    
1276 greg 2.6
1277 greg 2.1 struct BSDF_data *
1278     load_BSDF( /* load BSDF data from file */
1279     char *fname
1280     )
1281     {
1282     char *path;
1283     ezxml_t fl, wtl, wld, wdb;
1284     struct BSDF_data *dp;
1285    
1286     path = getpath(fname, getrlibpath(), R_OK);
1287     if (path == NULL) {
1288     sprintf(errmsg, "cannot find BSDF file \"%s\"", fname);
1289     error(WARNING, errmsg);
1290     return(NULL);
1291     }
1292     fl = ezxml_parse_file(path);
1293     if (fl == NULL) {
1294     sprintf(errmsg, "cannot open BSDF \"%s\"", path);
1295     error(WARNING, errmsg);
1296     return(NULL);
1297     }
1298     if (ezxml_error(fl)[0]) {
1299     sprintf(errmsg, "BSDF \"%s\" %s", path, ezxml_error(fl));
1300     error(WARNING, errmsg);
1301     ezxml_free(fl);
1302     return(NULL);
1303     }
1304     if (strcmp(ezxml_name(fl), "WindowElement")) {
1305     sprintf(errmsg,
1306     "BSDF \"%s\": top level node not 'WindowElement'",
1307     path);
1308     error(WARNING, errmsg);
1309     ezxml_free(fl);
1310     return(NULL);
1311     }
1312     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
1313 greg 2.10 if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl,
1314     "DataDefinition"), "IncidentDataStructure")),
1315     "Columns")) {
1316     sprintf(errmsg,
1317     "BSDF \"%s\": unsupported IncidentDataStructure",
1318     path);
1319     error(WARNING, errmsg);
1320     ezxml_free(fl);
1321     return(NULL);
1322     }
1323 greg 2.3 load_angle_basis(ezxml_child(ezxml_child(wtl,
1324     "DataDefinition"), "AngleBasis"));
1325 greg 2.1 dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data));
1326 greg 2.6 load_geometry(dp, ezxml_child(wtl, "Material"));
1327 greg 2.1 for (wld = ezxml_child(wtl, "WavelengthData");
1328     wld != NULL; wld = wld->next) {
1329 greg 2.13 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1330     "Visible"))
1331 greg 2.1 continue;
1332 greg 2.13 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1333     wdb != NULL; wdb = wdb->next)
1334     if (!strcasecmp(ezxml_txt(ezxml_child(wdb,
1335     "WavelengthDataDirection")),
1336 greg 2.1 "Transmission Front"))
1337 greg 2.13 break;
1338     if (wdb != NULL) { /* load front BTDF */
1339     load_bsdf_data(dp, wdb);
1340     break; /* ignore the rest */
1341     }
1342 greg 2.1 }
1343     ezxml_free(fl); /* done with XML file */
1344     if (!check_bsdf_data(dp)) {
1345     sprintf(errmsg, "bad/missing BTDF data in \"%s\"", path);
1346     error(WARNING, errmsg);
1347     free_BSDF(dp);
1348     dp = NULL;
1349     }
1350     return(dp);
1351     }
1352    
1353    
1354     void
1355     free_BSDF( /* free BSDF data structure */
1356     struct BSDF_data *b
1357     )
1358     {
1359     if (b == NULL)
1360     return;
1361 greg 2.6 if (b->mgf != NULL)
1362     free(b->mgf);
1363 greg 2.1 if (b->bsdf != NULL)
1364     free(b->bsdf);
1365     free(b);
1366     }
1367    
1368    
1369     int
1370     r_BSDF_incvec( /* compute random input vector at given location */
1371     FVECT v,
1372     struct BSDF_data *b,
1373     int i,
1374     double rv,
1375     MAT4 xm
1376     )
1377     {
1378     FVECT pert;
1379     double rad;
1380     int j;
1381    
1382     if (!getBSDF_incvec(v, b, i))
1383     return(0);
1384     rad = sqrt(getBSDF_incohm(b, i) / PI);
1385     multisamp(pert, 3, rv);
1386     for (j = 0; j < 3; j++)
1387     v[j] += rad*(2.*pert[j] - 1.);
1388     if (xm != NULL)
1389     multv3(v, v, xm);
1390     return(normalize(v) != 0.0);
1391     }
1392    
1393    
1394     int
1395     r_BSDF_outvec( /* compute random output vector at given location */
1396     FVECT v,
1397     struct BSDF_data *b,
1398     int o,
1399     double rv,
1400     MAT4 xm
1401     )
1402     {
1403     FVECT pert;
1404     double rad;
1405     int j;
1406    
1407     if (!getBSDF_outvec(v, b, o))
1408     return(0);
1409     rad = sqrt(getBSDF_outohm(b, o) / PI);
1410     multisamp(pert, 3, rv);
1411     for (j = 0; j < 3; j++)
1412     v[j] += rad*(2.*pert[j] - 1.);
1413     if (xm != NULL)
1414     multv3(v, v, xm);
1415     return(normalize(v) != 0.0);
1416     }
1417    
1418    
1419     static int
1420     addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */
1421     char *xfarg[],
1422     FVECT xp,
1423     FVECT yp,
1424     FVECT zp
1425     )
1426     {
1427     static char bufs[3][16];
1428     int bn = 0;
1429     char **xfp = xfarg;
1430     double theta;
1431    
1432     if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
1433     /* Special case for X' along Z-axis */
1434     theta = -atan2(yp[0], yp[1]);
1435     *xfp++ = "-ry";
1436     *xfp++ = xp[2] < 0.0 ? "90" : "-90";
1437     *xfp++ = "-rz";
1438     sprintf(bufs[bn], "%f", theta*(180./PI));
1439     *xfp++ = bufs[bn++];
1440     return(xfp - xfarg);
1441     }
1442     theta = atan2(yp[2], zp[2]);
1443     if (!FEQ(theta,0.0)) {
1444     *xfp++ = "-rx";
1445     sprintf(bufs[bn], "%f", theta*(180./PI));
1446     *xfp++ = bufs[bn++];
1447     }
1448     theta = asin(-xp[2]);
1449     if (!FEQ(theta,0.0)) {
1450     *xfp++ = "-ry";
1451     sprintf(bufs[bn], " %f", theta*(180./PI));
1452     *xfp++ = bufs[bn++];
1453     }
1454     theta = atan2(xp[1], xp[0]);
1455     if (!FEQ(theta,0.0)) {
1456     *xfp++ = "-rz";
1457     sprintf(bufs[bn], "%f", theta*(180./PI));
1458     *xfp++ = bufs[bn++];
1459     }
1460     *xfp = NULL;
1461     return(xfp - xfarg);
1462     }
1463    
1464    
1465     int
1466     getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */
1467     MAT4 xm,
1468     FVECT nrm,
1469 greg 2.6 UpDir ud,
1470     char *xfbuf
1471 greg 2.1 )
1472     {
1473     char *xfargs[7];
1474     XF myxf;
1475     FVECT updir, xdest, ydest;
1476 greg 2.6 int i;
1477 greg 2.1
1478     updir[0] = updir[1] = updir[2] = 0.;
1479     switch (ud) {
1480     case UDzneg:
1481     updir[2] = -1.;
1482     break;
1483     case UDyneg:
1484     updir[1] = -1.;
1485     break;
1486     case UDxneg:
1487     updir[0] = -1.;
1488     break;
1489     case UDxpos:
1490     updir[0] = 1.;
1491     break;
1492     case UDypos:
1493     updir[1] = 1.;
1494     break;
1495     case UDzpos:
1496     updir[2] = 1.;
1497     break;
1498     case UDunknown:
1499     return(0);
1500     }
1501     fcross(xdest, updir, nrm);
1502     if (normalize(xdest) == 0.0)
1503     return(0);
1504     fcross(ydest, nrm, xdest);
1505     xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs);
1506     copymat4(xm, myxf.xfm);
1507 greg 2.6 if (xfbuf == NULL)
1508     return(1);
1509     /* return xf arguments as well */
1510     for (i = 0; xfargs[i] != NULL; i++) {
1511     *xfbuf++ = ' ';
1512     strcpy(xfbuf, xfargs[i]);
1513     while (*xfbuf) ++xfbuf;
1514     }
1515 greg 2.1 return(1);
1516     }
1517 greg 2.15
1518     /*######### END DEPRECATED ROUTINES #######*/
1519     /*################################################################*/