ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.30
Committed: Thu Jun 9 17:09:39 2011 UTC (12 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.29: +2 -1 lines
Log Message:
Fixes for Windows and bug fix in bsdf_m.c

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.30 static const char RCSid[] = "$Id: bsdf.c,v 2.29 2011/06/03 18:12:58 greg Exp $";
3 greg 2.1 #endif
4     /*
5 greg 2.15 * bsdf.c
6     *
7     * Definitions for bidirectional scattering distribution functions.
8     *
9     * Created by Greg Ward on 1/10/11.
10     *
11     */
12    
13 greg 2.30 #define _USE_MATH_DEFINES
14 greg 2.15 #include <stdio.h>
15     #include <stdlib.h>
16     #include <math.h>
17     #include "ezxml.h"
18     #include "hilbert.h"
19     #include "bsdf.h"
20     #include "bsdf_m.h"
21     #include "bsdf_t.h"
22    
23     /* English ASCII strings corresponding to ennumerated errors */
24     const char *SDerrorEnglish[] = {
25     "No error",
26     "Memory error",
27     "File input/output error",
28     "File format error",
29     "Illegal argument",
30     "Invalid data",
31     "Unsupported feature",
32     "Internal program error",
33     "Unknown error"
34     };
35    
36     /* Additional information on last error (ASCII English) */
37     char SDerrorDetail[256];
38    
39     /* Cache of loaded BSDFs */
40     struct SDCache_s *SDcacheList = NULL;
41    
42     /* Retain BSDFs in cache list */
43     int SDretainSet = SDretainNone;
44    
45     /* Report any error to the indicated stream (in English) */
46     SDError
47     SDreportEnglish(SDError ec, FILE *fp)
48     {
49 greg 2.21 if (!ec)
50     return SDEnone;
51     if ((ec < SDEnone) | (ec > SDEunknown)) {
52     SDerrorDetail[0] = '\0';
53     ec = SDEunknown;
54     }
55 greg 2.15 if (fp == NULL)
56     return ec;
57     fputs(SDerrorEnglish[ec], fp);
58     if (SDerrorDetail[0]) {
59     fputs(": ", fp);
60     fputs(SDerrorDetail, fp);
61     }
62     fputc('\n', fp);
63     if (fp != stderr)
64     fflush(fp);
65     return ec;
66     }
67    
68     static double
69     to_meters( /* return factor to convert given unit to meters */
70     const char *unit
71     )
72     {
73     if (unit == NULL) return(1.); /* safe assumption? */
74     if (!strcasecmp(unit, "Meter")) return(1.);
75     if (!strcasecmp(unit, "Foot")) return(.3048);
76     if (!strcasecmp(unit, "Inch")) return(.0254);
77     if (!strcasecmp(unit, "Centimeter")) return(.01);
78     if (!strcasecmp(unit, "Millimeter")) return(.001);
79     sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
80     return(-1.);
81     }
82    
83     /* Load geometric dimensions and description (if any) */
84     static SDError
85 greg 2.16 SDloadGeometry(SDData *sd, ezxml_t wdb)
86 greg 2.15 {
87     ezxml_t geom;
88     double cfact;
89     const char *fmt, *mgfstr;
90    
91 greg 2.16 if (wdb == NULL) /* no geometry section? */
92     return SDEnone;
93     sd->dim[0] = sd->dim[1] = sd->dim[2] = .0;
94 greg 2.15 if ((geom = ezxml_child(wdb, "Width")) != NULL)
95 greg 2.16 sd->dim[0] = atof(ezxml_txt(geom)) *
96 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
97     if ((geom = ezxml_child(wdb, "Height")) != NULL)
98 greg 2.16 sd->dim[1] = atof(ezxml_txt(geom)) *
99 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
100     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
101 greg 2.16 sd->dim[2] = atof(ezxml_txt(geom)) *
102 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
103 greg 2.23 if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) {
104 greg 2.17 sprintf(SDerrorDetail, "Negative size in \"%s\"", sd->name);
105 greg 2.15 return SDEdata;
106 greg 2.17 }
107 greg 2.15 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
108     (mgfstr = ezxml_txt(geom)) == NULL)
109     return SDEnone;
110     if ((fmt = ezxml_attr(geom, "format")) != NULL &&
111     strcasecmp(fmt, "MGF")) {
112     sprintf(SDerrorDetail,
113     "Unrecognized geometry format '%s' in \"%s\"",
114 greg 2.16 fmt, sd->name);
115 greg 2.15 return SDEsupport;
116     }
117     cfact = to_meters(ezxml_attr(geom, "unit"));
118 greg 2.16 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
119     if (sd->mgf == NULL) {
120 greg 2.15 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
121     return SDEmemory;
122     }
123     if (cfact < 0.99 || cfact > 1.01)
124 greg 2.16 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
125 greg 2.15 else
126 greg 2.16 strcpy(sd->mgf, mgfstr);
127 greg 2.15 return SDEnone;
128     }
129    
130     /* Load a BSDF struct from the given file (free first and keep name) */
131     SDError
132     SDloadFile(SDData *sd, const char *fname)
133     {
134     SDError lastErr;
135 greg 2.16 ezxml_t fl, wtl;
136 greg 2.15
137     if ((sd == NULL) | (fname == NULL || !*fname))
138     return SDEargument;
139     /* free old data, keeping name */
140     SDfreeBSDF(sd);
141     /* parse XML file */
142     fl = ezxml_parse_file(fname);
143     if (fl == NULL) {
144     sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
145     return SDEfile;
146     }
147     if (ezxml_error(fl)[0]) {
148     sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
149     ezxml_free(fl);
150     return SDEformat;
151     }
152 greg 2.16 if (strcmp(ezxml_name(fl), "WindowElement")) {
153     sprintf(SDerrorDetail,
154     "BSDF \"%s\": top level node not 'WindowElement'",
155     sd->name);
156     ezxml_free(fl);
157     return SDEformat;
158     }
159     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
160     if (wtl == NULL) {
161     sprintf(SDerrorDetail, "BSDF \"%s\": no optical layer'",
162     sd->name);
163     ezxml_free(fl);
164     return SDEformat;
165     }
166 greg 2.15 /* load geometry if present */
167 greg 2.16 lastErr = SDloadGeometry(sd, ezxml_child(wtl, "Material"));
168     if (lastErr)
169 greg 2.15 return lastErr;
170     /* try loading variable resolution data */
171 greg 2.16 lastErr = SDloadTre(sd, wtl);
172 greg 2.15 /* check our result */
173 greg 2.29 if (lastErr == SDEsupport) /* try matrix BSDF if not tree data */
174 greg 2.16 lastErr = SDloadMtx(sd, wtl);
175 greg 2.29
176 greg 2.15 /* done with XML file */
177     ezxml_free(fl);
178 greg 2.16
179     if (lastErr) { /* was there a load error? */
180     SDfreeBSDF(sd);
181     return lastErr;
182     }
183     /* remove any insignificant components */
184     if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
185     SDfreeSpectralDF(sd->rf); sd->rf = NULL;
186     }
187     if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
188     SDfreeSpectralDF(sd->rb); sd->rb = NULL;
189     }
190     if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
191     SDfreeSpectralDF(sd->tf); sd->tf = NULL;
192     }
193     /* return success */
194     return SDEnone;
195 greg 2.15 }
196    
197     /* Allocate new spectral distribution function */
198     SDSpectralDF *
199     SDnewSpectralDF(int nc)
200     {
201     SDSpectralDF *df;
202    
203     if (nc <= 0) {
204     strcpy(SDerrorDetail, "Zero component spectral DF request");
205     return NULL;
206     }
207     df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
208     (nc-1)*sizeof(SDComponent));
209     if (df == NULL) {
210     sprintf(SDerrorDetail,
211     "Cannot allocate %d component spectral DF", nc);
212     return NULL;
213     }
214     df->minProjSA = .0;
215     df->maxHemi = .0;
216     df->ncomp = nc;
217     memset(df->comp, 0, nc*sizeof(SDComponent));
218     return df;
219     }
220    
221     /* Free cached cumulative distributions for BSDF component */
222     void
223     SDfreeCumulativeCache(SDSpectralDF *df)
224     {
225     int n;
226     SDCDst *cdp;
227    
228     if (df == NULL)
229     return;
230     for (n = df->ncomp; n-- > 0; )
231     while ((cdp = df->comp[n].cdList) != NULL) {
232     df->comp[n].cdList = cdp->next;
233     free(cdp);
234     }
235     }
236    
237     /* Free a spectral distribution function */
238     void
239     SDfreeSpectralDF(SDSpectralDF *df)
240     {
241     int n;
242    
243     if (df == NULL)
244     return;
245     SDfreeCumulativeCache(df);
246     for (n = df->ncomp; n-- > 0; )
247     (*df->comp[n].func->freeSC)(df->comp[n].dist);
248     free(df);
249     }
250    
251     /* Shorten file path to useable BSDF name, removing suffix */
252     void
253 greg 2.16 SDclipName(char *res, const char *fname)
254 greg 2.15 {
255     const char *cp, *dot = NULL;
256    
257     for (cp = fname; *cp; cp++)
258     if (*cp == '.')
259     dot = cp;
260     if ((dot == NULL) | (dot < fname+2))
261     dot = cp;
262     if (dot - fname >= SDnameLn)
263     fname = dot - SDnameLn + 1;
264     while (fname < dot)
265     *res++ = *fname++;
266     *res = '\0';
267     }
268    
269     /* Initialize an unused BSDF struct (simply clears to zeroes) */
270     void
271 greg 2.20 SDclearBSDF(SDData *sd, const char *fname)
272 greg 2.15 {
273 greg 2.20 if (sd == NULL)
274     return;
275     memset(sd, 0, sizeof(SDData));
276     if (fname == NULL)
277     return;
278     SDclipName(sd->name, fname);
279 greg 2.15 }
280    
281     /* Free data associated with BSDF struct */
282     void
283     SDfreeBSDF(SDData *sd)
284     {
285     if (sd == NULL)
286     return;
287     if (sd->mgf != NULL) {
288     free(sd->mgf);
289     sd->mgf = NULL;
290     }
291     if (sd->rf != NULL) {
292     SDfreeSpectralDF(sd->rf);
293     sd->rf = NULL;
294     }
295     if (sd->rb != NULL) {
296     SDfreeSpectralDF(sd->rb);
297     sd->rb = NULL;
298     }
299     if (sd->tf != NULL) {
300     SDfreeSpectralDF(sd->tf);
301     sd->tf = NULL;
302     }
303     sd->rLambFront.cieY = .0;
304 greg 2.16 sd->rLambFront.spec.flags = 0;
305 greg 2.15 sd->rLambBack.cieY = .0;
306 greg 2.16 sd->rLambBack.spec.flags = 0;
307 greg 2.15 sd->tLamb.cieY = .0;
308 greg 2.16 sd->tLamb.spec.flags = 0;
309 greg 2.15 }
310    
311     /* Find writeable BSDF by name, or allocate new cache entry if absent */
312     SDData *
313     SDgetCache(const char *bname)
314     {
315     struct SDCache_s *sdl;
316     char sdnam[SDnameLn];
317    
318     if (bname == NULL)
319     return NULL;
320    
321     SDclipName(sdnam, bname);
322     for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
323     if (!strcmp(sdl->bsdf.name, sdnam)) {
324     sdl->refcnt++;
325     return &sdl->bsdf;
326     }
327    
328     sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
329     if (sdl == NULL)
330     return NULL;
331    
332     strcpy(sdl->bsdf.name, sdnam);
333     sdl->next = SDcacheList;
334     SDcacheList = sdl;
335    
336 greg 2.21 sdl->refcnt = 1;
337 greg 2.15 return &sdl->bsdf;
338     }
339    
340     /* Get loaded BSDF from cache (or load and cache it on first call) */
341     /* Report any problem to stderr and return NULL on failure */
342     const SDData *
343     SDcacheFile(const char *fname)
344     {
345     SDData *sd;
346     SDError ec;
347    
348     if (fname == NULL || !*fname)
349     return NULL;
350     SDerrorDetail[0] = '\0';
351     if ((sd = SDgetCache(fname)) == NULL) {
352     SDreportEnglish(SDEmemory, stderr);
353     return NULL;
354     }
355     if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
356     SDreportEnglish(ec, stderr);
357     SDfreeCache(sd);
358     return NULL;
359     }
360     return sd;
361     }
362    
363     /* Free a BSDF from our cache (clear all if NULL) */
364     void
365     SDfreeCache(const SDData *sd)
366     {
367     struct SDCache_s *sdl, *sdLast = NULL;
368    
369     if (sd == NULL) { /* free entire list */
370     while ((sdl = SDcacheList) != NULL) {
371     SDcacheList = sdl->next;
372     SDfreeBSDF(&sdl->bsdf);
373     free(sdl);
374     }
375     return;
376     }
377     for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
378     if (&sdl->bsdf == sd)
379     break;
380 greg 2.21 if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
381 greg 2.15 return; /* missing or still in use */
382     /* keep unreferenced data? */
383     if (SDisLoaded(sd) && SDretainSet) {
384     if (SDretainSet == SDretainAll)
385     return; /* keep everything */
386     /* else free cumulative data */
387     SDfreeCumulativeCache(sd->rf);
388     SDfreeCumulativeCache(sd->rb);
389     SDfreeCumulativeCache(sd->tf);
390     return;
391     }
392     /* remove from list and free */
393     if (sdLast == NULL)
394     SDcacheList = sdl->next;
395     else
396     sdLast->next = sdl->next;
397     SDfreeBSDF(&sdl->bsdf);
398     free(sdl);
399     }
400    
401     /* Sample an individual BSDF component */
402     SDError
403 greg 2.24 SDsampComponent(SDValue *sv, FVECT ioVec, double randX, SDComponent *sdc)
404 greg 2.15 {
405     float coef[SDmaxCh];
406     SDError ec;
407 greg 2.24 FVECT inVec;
408 greg 2.15 const SDCDst *cd;
409     double d;
410     int n;
411     /* check arguments */
412 greg 2.24 if ((sv == NULL) | (ioVec == NULL) | (sdc == NULL))
413 greg 2.15 return SDEargument;
414     /* get cumulative distribution */
415 greg 2.24 VCOPY(inVec, ioVec);
416 greg 2.15 cd = (*sdc->func->getCDist)(inVec, sdc);
417     if (cd == NULL)
418     return SDEmemory;
419     if (cd->cTotal <= 1e-7) { /* anything to sample? */
420     sv->spec = c_dfcolor;
421     sv->cieY = .0;
422 greg 2.24 memset(ioVec, 0, 3*sizeof(double));
423 greg 2.15 return SDEnone;
424     }
425     sv->cieY = cd->cTotal;
426     /* compute sample direction */
427 greg 2.24 ec = (*sdc->func->sampCDist)(ioVec, randX, cd);
428 greg 2.15 if (ec)
429     return ec;
430     /* get BSDF color */
431 greg 2.25 n = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
432 greg 2.15 if (n <= 0) {
433     strcpy(SDerrorDetail, "BSDF sample value error");
434     return SDEinternal;
435     }
436     sv->spec = sdc->cspec[0];
437     d = coef[0];
438     while (--n) {
439     c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
440     d += coef[n];
441     }
442     /* make sure everything is set */
443     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
444     return SDEnone;
445     }
446    
447     #define MS_MAXDIM 15
448    
449     /* Convert 1-dimensional random variable to N-dimensional */
450     void
451     SDmultiSamp(double t[], int n, double randX)
452     {
453     unsigned nBits;
454     double scale;
455     bitmask_t ndx, coord[MS_MAXDIM];
456    
457     while (n > MS_MAXDIM) /* punt for higher dimensions */
458 greg 2.19 t[--n] = rand()*(1./(RAND_MAX+.5));
459 greg 2.15 nBits = (8*sizeof(bitmask_t) - 1) / n;
460     ndx = randX * (double)((bitmask_t)1 << (nBits*n));
461     /* get coordinate on Hilbert curve */
462     hilbert_i2c(n, nBits, ndx, coord);
463     /* convert back to [0,1) range */
464     scale = 1. / (double)((bitmask_t)1 << nBits);
465     while (n--)
466 greg 2.19 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
467 greg 2.15 }
468    
469     #undef MS_MAXDIM
470    
471     /* Generate diffuse hemispherical sample */
472     static void
473     SDdiffuseSamp(FVECT outVec, int outFront, double randX)
474     {
475     /* convert to position on hemisphere */
476     SDmultiSamp(outVec, 2, randX);
477     SDsquare2disk(outVec, outVec[0], outVec[1]);
478     outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
479 greg 2.23 if (outVec[2] > 0) /* a bit of paranoia */
480 greg 2.15 outVec[2] = sqrt(outVec[2]);
481     if (!outFront) /* going out back? */
482     outVec[2] = -outVec[2];
483     }
484    
485     /* Query projected solid angle coverage for non-diffuse BSDF direction */
486     SDError
487 greg 2.22 SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2,
488     int qflags, const SDData *sd)
489 greg 2.15 {
490 greg 2.23 SDSpectralDF *rdf, *tdf;
491 greg 2.15 SDError ec;
492     int i;
493     /* check arguments */
494 greg 2.26 if ((projSA == NULL) | (v1 == NULL) | (sd == NULL))
495 greg 2.15 return SDEargument;
496     /* initialize extrema */
497 greg 2.17 switch (qflags) {
498 greg 2.15 case SDqueryMax:
499     projSA[0] = .0;
500     break;
501     case SDqueryMin+SDqueryMax:
502     projSA[1] = .0;
503     /* fall through */
504     case SDqueryMin:
505     projSA[0] = 10.;
506     break;
507     case 0:
508     return SDEargument;
509     }
510 greg 2.23 if (v1[2] > 0) /* front surface query? */
511 greg 2.15 rdf = sd->rf;
512     else
513     rdf = sd->rb;
514 greg 2.26 tdf = sd->tf;
515     if (v2 != NULL) /* bidirectional? */
516     if (v1[2] > 0 ^ v2[2] > 0)
517     rdf = NULL;
518     else
519     tdf = NULL;
520 greg 2.15 ec = SDEdata; /* run through components */
521     for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
522 greg 2.22 ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2,
523 greg 2.25 qflags, &rdf->comp[i]);
524 greg 2.15 if (ec)
525     return ec;
526     }
527 greg 2.23 for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) {
528     ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2,
529 greg 2.25 qflags, &tdf->comp[i]);
530 greg 2.15 if (ec)
531     return ec;
532     }
533 greg 2.17 if (ec) { /* all diffuse? */
534     projSA[0] = M_PI;
535     if (qflags == SDqueryMin+SDqueryMax)
536     projSA[1] = M_PI;
537     }
538     return SDEnone;
539 greg 2.15 }
540    
541     /* Return BSDF for the given incident and scattered ray vectors */
542     SDError
543     SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
544     {
545     int inFront, outFront;
546     SDSpectralDF *sdf;
547     float coef[SDmaxCh];
548     int nch, i;
549     /* check arguments */
550     if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
551     return SDEargument;
552     /* whose side are we on? */
553 greg 2.23 inFront = (inVec[2] > 0);
554     outFront = (outVec[2] > 0);
555 greg 2.15 /* start with diffuse portion */
556     if (inFront & outFront) {
557     *sv = sd->rLambFront;
558     sdf = sd->rf;
559     } else if (!(inFront | outFront)) {
560     *sv = sd->rLambBack;
561     sdf = sd->rb;
562     } else /* inFront ^ outFront */ {
563     *sv = sd->tLamb;
564     sdf = sd->tf;
565     }
566     sv->cieY *= 1./M_PI;
567     /* add non-diffuse components */
568     i = (sdf != NULL) ? sdf->ncomp : 0;
569     while (i-- > 0) {
570     nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
571 greg 2.25 &sdf->comp[i]);
572 greg 2.15 while (nch-- > 0) {
573     c_cmix(&sv->spec, sv->cieY, &sv->spec,
574     coef[nch], &sdf->comp[i].cspec[nch]);
575     sv->cieY += coef[nch];
576     }
577     }
578     /* make sure everything is set */
579     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
580     return SDEnone;
581     }
582    
583     /* Compute directional hemispherical scattering at this incident angle */
584     double
585     SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
586     {
587     double hsum;
588     SDSpectralDF *rdf;
589     const SDCDst *cd;
590     int i;
591     /* check arguments */
592     if ((inVec == NULL) | (sd == NULL))
593     return .0;
594     /* gather diffuse components */
595 greg 2.23 if (inVec[2] > 0) {
596 greg 2.15 hsum = sd->rLambFront.cieY;
597     rdf = sd->rf;
598     } else /* !inFront */ {
599     hsum = sd->rLambBack.cieY;
600     rdf = sd->rb;
601     }
602     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
603     hsum = .0;
604     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
605     hsum += sd->tLamb.cieY;
606     /* gather non-diffuse components */
607     i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
608     rdf != NULL) ? rdf->ncomp : 0;
609     while (i-- > 0) { /* non-diffuse reflection */
610     cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
611     if (cd != NULL)
612     hsum += cd->cTotal;
613     }
614     i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
615     sd->tf != NULL) ? sd->tf->ncomp : 0;
616     while (i-- > 0) { /* non-diffuse transmission */
617     cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]);
618     if (cd != NULL)
619     hsum += cd->cTotal;
620     }
621     return hsum;
622     }
623    
624     /* Sample BSDF direction based on the given random variable */
625     SDError
626 greg 2.24 SDsampBSDF(SDValue *sv, FVECT ioVec, double randX, int sflags, const SDData *sd)
627 greg 2.15 {
628     SDError ec;
629 greg 2.24 FVECT inVec;
630 greg 2.15 int inFront;
631     SDSpectralDF *rdf;
632     double rdiff;
633     float coef[SDmaxCh];
634     int i, j, n, nr;
635     SDComponent *sdc;
636     const SDCDst **cdarr = NULL;
637     /* check arguments */
638 greg 2.24 if ((sv == NULL) | (ioVec == NULL) | (sd == NULL) |
639 greg 2.23 (randX < 0) | (randX >= 1.))
640 greg 2.15 return SDEargument;
641     /* whose side are we on? */
642 greg 2.24 VCOPY(inVec, ioVec);
643 greg 2.23 inFront = (inVec[2] > 0);
644 greg 2.15 /* remember diffuse portions */
645     if (inFront) {
646     *sv = sd->rLambFront;
647     rdf = sd->rf;
648     } else /* !inFront */ {
649     *sv = sd->rLambBack;
650     rdf = sd->rb;
651     }
652     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
653     sv->cieY = .0;
654     rdiff = sv->cieY;
655     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
656     sv->cieY += sd->tLamb.cieY;
657     /* gather non-diffuse components */
658     i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
659     rdf != NULL) ? rdf->ncomp : 0;
660     j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
661     sd->tf != NULL) ? sd->tf->ncomp : 0;
662     n = i + j;
663     if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
664     return SDEmemory;
665     while (j-- > 0) { /* non-diffuse transmission */
666     cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]);
667     if (cdarr[i+j] == NULL) {
668     free(cdarr);
669     return SDEmemory;
670     }
671     sv->cieY += cdarr[i+j]->cTotal;
672     }
673     while (i-- > 0) { /* non-diffuse reflection */
674     cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
675     if (cdarr[i] == NULL) {
676     free(cdarr);
677     return SDEmemory;
678     }
679     sv->cieY += cdarr[i]->cTotal;
680     }
681     if (sv->cieY <= 1e-7) { /* anything to sample? */
682     sv->cieY = .0;
683 greg 2.24 memset(ioVec, 0, 3*sizeof(double));
684 greg 2.15 return SDEnone;
685     }
686     /* scale random variable */
687     randX *= sv->cieY;
688     /* diffuse reflection? */
689     if (randX < rdiff) {
690 greg 2.24 SDdiffuseSamp(ioVec, inFront, randX/rdiff);
691 greg 2.15 goto done;
692     }
693     randX -= rdiff;
694     /* diffuse transmission? */
695     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
696     if (randX < sd->tLamb.cieY) {
697     sv->spec = sd->tLamb.spec;
698 greg 2.24 SDdiffuseSamp(ioVec, !inFront, randX/sd->tLamb.cieY);
699 greg 2.15 goto done;
700     }
701     randX -= sd->tLamb.cieY;
702     }
703     /* else one of cumulative dist. */
704     for (i = 0; i < n && randX < cdarr[i]->cTotal; i++)
705     randX -= cdarr[i]->cTotal;
706     if (i >= n)
707     return SDEinternal;
708     /* compute sample direction */
709     sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr];
710 greg 2.24 ec = (*sdc->func->sampCDist)(ioVec, randX/cdarr[i]->cTotal, cdarr[i]);
711 greg 2.15 if (ec)
712     return ec;
713     /* compute color */
714 greg 2.25 j = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
715 greg 2.15 if (j <= 0) {
716     sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
717     sd->name);
718     return SDEinternal;
719     }
720     sv->spec = sdc->cspec[0];
721     rdiff = coef[0];
722     while (--j) {
723     c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
724     rdiff += coef[j];
725     }
726     done:
727     if (cdarr != NULL)
728     free(cdarr);
729     /* make sure everything is set */
730     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
731     return SDEnone;
732     }
733    
734     /* Compute World->BSDF transform from surface normal and up (Y) vector */
735     SDError
736     SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
737     {
738     if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
739     return SDEargument;
740     VCOPY(vMtx[2], sNrm);
741 greg 2.23 if (normalize(vMtx[2]) == 0)
742 greg 2.15 return SDEargument;
743     fcross(vMtx[0], uVec, vMtx[2]);
744 greg 2.23 if (normalize(vMtx[0]) == 0)
745 greg 2.15 return SDEargument;
746     fcross(vMtx[1], vMtx[2], vMtx[0]);
747     return SDEnone;
748     }
749    
750     /* Compute inverse transform */
751     SDError
752     SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
753     {
754     RREAL mTmp[3][3];
755     double d;
756    
757     if ((iMtx == NULL) | (vMtx == NULL))
758     return SDEargument;
759     /* compute determinant */
760     mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
761     mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
762     mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
763     d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
764 greg 2.23 if (d == 0) {
765 greg 2.15 strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
766     return SDEargument;
767     }
768     d = 1./d; /* invert matrix */
769     mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
770     mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
771     mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
772     mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
773     mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
774     mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
775     mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
776     memcpy(iMtx, mTmp, sizeof(mTmp));
777     return SDEnone;
778     }
779    
780     /* Transform and normalize direction (column) vector */
781     SDError
782     SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
783     {
784     FVECT vTmp;
785    
786     if ((resVec == NULL) | (inpVec == NULL))
787     return SDEargument;
788     if (vMtx == NULL) { /* assume they just want to normalize */
789     if (resVec != inpVec)
790     VCOPY(resVec, inpVec);
791 greg 2.23 return (normalize(resVec) > 0) ? SDEnone : SDEargument;
792 greg 2.15 }
793     vTmp[0] = DOT(vMtx[0], inpVec);
794     vTmp[1] = DOT(vMtx[1], inpVec);
795     vTmp[2] = DOT(vMtx[2], inpVec);
796 greg 2.23 if (normalize(vTmp) == 0)
797 greg 2.15 return SDEargument;
798     VCOPY(resVec, vTmp);
799     return SDEnone;
800     }
801    
802     /*################################################################*/
803     /*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/
804    
805     /*
806 greg 2.1 * Routines for handling BSDF data
807     */
808    
809     #include "standard.h"
810     #include "paths.h"
811     #include <ctype.h>
812    
813     #define MAXLATS 46 /* maximum number of latitudes */
814    
815     /* BSDF angle specification */
816     typedef struct {
817     char name[64]; /* basis name */
818     int nangles; /* total number of directions */
819     struct {
820     float tmin; /* starting theta */
821     short nphis; /* number of phis (0 term) */
822     } lat[MAXLATS+1]; /* latitudes */
823     } ANGLE_BASIS;
824    
825 greg 2.4 #define MAXABASES 7 /* limit on defined bases */
826 greg 2.1
827     static ANGLE_BASIS abase_list[MAXABASES] = {
828     {
829     "LBNL/Klems Full", 145,
830     { {-5., 1},
831     {5., 8},
832     {15., 16},
833     {25., 20},
834     {35., 24},
835     {45., 24},
836     {55., 24},
837     {65., 16},
838     {75., 12},
839     {90., 0} }
840     }, {
841     "LBNL/Klems Half", 73,
842     { {-6.5, 1},
843     {6.5, 8},
844     {19.5, 12},
845     {32.5, 16},
846     {46.5, 20},
847     {61.5, 12},
848     {76.5, 4},
849     {90., 0} }
850     }, {
851     "LBNL/Klems Quarter", 41,
852     { {-9., 1},
853     {9., 8},
854     {27., 12},
855     {46., 12},
856     {66., 8},
857     {90., 0} }
858     }
859     };
860    
861     static int nabases = 3; /* current number of defined bases */
862    
863 greg 2.9 #define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6)
864    
865     static int
866     fequal(double a, double b)
867     {
868 greg 2.23 if (b != 0)
869 greg 2.9 a = a/b - 1.;
870     return((a <= 1e-6) & (a >= -1e-6));
871     }
872 greg 2.3
873 greg 2.14 /* Returns the name of the given tag */
874 greg 2.3 #ifdef ezxml_name
875     #undef ezxml_name
876     static char *
877     ezxml_name(ezxml_t xml)
878     {
879     if (xml == NULL)
880     return(NULL);
881     return(xml->name);
882     }
883     #endif
884    
885 greg 2.14 /* Returns the given tag's character content or empty string if none */
886 greg 2.3 #ifdef ezxml_txt
887     #undef ezxml_txt
888     static char *
889     ezxml_txt(ezxml_t xml)
890     {
891     if (xml == NULL)
892     return("");
893     return(xml->txt);
894     }
895     #endif
896    
897 greg 2.1
898     static int
899     ab_getvec( /* get vector for this angle basis index */
900     FVECT v,
901     int ndx,
902     void *p
903     )
904     {
905     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
906     int li;
907 greg 2.2 double pol, azi, d;
908 greg 2.1
909     if ((ndx < 0) | (ndx >= ab->nangles))
910     return(0);
911     for (li = 0; ndx >= ab->lat[li].nphis; li++)
912     ndx -= ab->lat[li].nphis;
913 greg 2.2 pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin);
914 greg 2.1 azi = 2.*PI*ndx/ab->lat[li].nphis;
915 greg 2.2 v[2] = d = cos(pol);
916     d = sqrt(1. - d*d); /* sin(pol) */
917 greg 2.1 v[0] = cos(azi)*d;
918     v[1] = sin(azi)*d;
919     return(1);
920     }
921    
922    
923     static int
924     ab_getndx( /* get index corresponding to the given vector */
925     FVECT v,
926     void *p
927     )
928     {
929     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
930     int li, ndx;
931 greg 2.2 double pol, azi, d;
932 greg 2.1
933     if ((v[2] < -1.0) | (v[2] > 1.0))
934     return(-1);
935 greg 2.2 pol = 180.0/PI*acos(v[2]);
936 greg 2.1 azi = 180.0/PI*atan2(v[1], v[0]);
937     if (azi < 0.0) azi += 360.0;
938 greg 2.2 for (li = 1; ab->lat[li].tmin <= pol; li++)
939 greg 2.1 if (!ab->lat[li].nphis)
940     return(-1);
941     --li;
942     ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
943     if (ndx >= ab->lat[li].nphis) ndx = 0;
944     while (li--)
945     ndx += ab->lat[li].nphis;
946     return(ndx);
947     }
948    
949    
950     static double
951     ab_getohm( /* get solid angle for this angle basis index */
952     int ndx,
953     void *p
954     )
955     {
956     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
957     int li;
958     double theta, theta1;
959    
960     if ((ndx < 0) | (ndx >= ab->nangles))
961     return(0);
962     for (li = 0; ndx >= ab->lat[li].nphis; li++)
963     ndx -= ab->lat[li].nphis;
964     theta1 = PI/180. * ab->lat[li+1].tmin;
965     if (ab->lat[li].nphis == 1) { /* special case */
966     if (ab->lat[li].tmin > FTINY)
967     error(USER, "unsupported BSDF coordinate system");
968     return(2.*PI*(1. - cos(theta1)));
969     }
970     theta = PI/180. * ab->lat[li].tmin;
971     return(2.*PI*(cos(theta) - cos(theta1))/(double)ab->lat[li].nphis);
972     }
973    
974    
975     static int
976     ab_getvecR( /* get reverse vector for this angle basis index */
977     FVECT v,
978     int ndx,
979     void *p
980     )
981     {
982     if (!ab_getvec(v, ndx, p))
983     return(0);
984    
985     v[0] = -v[0];
986     v[1] = -v[1];
987     v[2] = -v[2];
988    
989     return(1);
990     }
991    
992    
993     static int
994     ab_getndxR( /* get index corresponding to the reverse vector */
995     FVECT v,
996     void *p
997     )
998     {
999     FVECT v2;
1000    
1001     v2[0] = -v[0];
1002     v2[1] = -v[1];
1003     v2[2] = -v[2];
1004    
1005     return ab_getndx(v2, p);
1006     }
1007    
1008    
1009     static void
1010 greg 2.4 load_angle_basis( /* load custom BSDF angle basis */
1011 greg 2.3 ezxml_t wab
1012     )
1013     {
1014     char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
1015     ezxml_t wbb;
1016     int i;
1017    
1018 greg 2.4 if (!abname || !*abname)
1019 greg 2.3 return;
1020     for (i = nabases; i--; )
1021 greg 2.12 if (!strcasecmp(abname, abase_list[i].name))
1022 greg 2.4 return; /* assume it's the same */
1023 greg 2.3 if (nabases >= MAXABASES)
1024     error(INTERNAL, "too many angle bases");
1025     strcpy(abase_list[nabases].name, abname);
1026     abase_list[nabases].nangles = 0;
1027     for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
1028     wbb != NULL; i++, wbb = wbb->next) {
1029     if (i >= MAXLATS)
1030     error(INTERNAL, "too many latitudes in custom basis");
1031     abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
1032     ezxml_child(ezxml_child(wbb,
1033     "ThetaBounds"), "UpperTheta")));
1034     if (!i)
1035     abase_list[nabases].lat[i].tmin =
1036     -abase_list[nabases].lat[i+1].tmin;
1037 greg 2.9 else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
1038 greg 2.3 "ThetaBounds"), "LowerTheta"))),
1039     abase_list[nabases].lat[i].tmin))
1040     error(WARNING, "theta values disagree in custom basis");
1041     abase_list[nabases].nangles +=
1042     abase_list[nabases].lat[i].nphis =
1043     atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
1044     }
1045     abase_list[nabases++].lat[i].nphis = 0;
1046     }
1047    
1048    
1049 greg 2.6 static void
1050     load_geometry( /* load geometric dimensions and description (if any) */
1051     struct BSDF_data *dp,
1052     ezxml_t wdb
1053     )
1054     {
1055     ezxml_t geom;
1056     double cfact;
1057     const char *fmt, *mgfstr;
1058    
1059     dp->dim[0] = dp->dim[1] = dp->dim[2] = 0;
1060     dp->mgf = NULL;
1061     if ((geom = ezxml_child(wdb, "Width")) != NULL)
1062     dp->dim[0] = atof(ezxml_txt(geom)) *
1063     to_meters(ezxml_attr(geom, "unit"));
1064     if ((geom = ezxml_child(wdb, "Height")) != NULL)
1065     dp->dim[1] = atof(ezxml_txt(geom)) *
1066     to_meters(ezxml_attr(geom, "unit"));
1067     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
1068     dp->dim[2] = atof(ezxml_txt(geom)) *
1069     to_meters(ezxml_attr(geom, "unit"));
1070     if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
1071     (mgfstr = ezxml_txt(geom)) == NULL)
1072     return;
1073     if ((fmt = ezxml_attr(geom, "format")) != NULL &&
1074     strcasecmp(fmt, "MGF")) {
1075     sprintf(errmsg, "unrecognized geometry format '%s'", fmt);
1076     error(WARNING, errmsg);
1077     return;
1078     }
1079     cfact = to_meters(ezxml_attr(geom, "unit"));
1080     dp->mgf = (char *)malloc(strlen(mgfstr)+32);
1081     if (dp->mgf == NULL)
1082     error(SYSTEM, "out of memory in load_geometry");
1083     if (cfact < 0.99 || cfact > 1.01)
1084     sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
1085     else
1086     strcpy(dp->mgf, mgfstr);
1087     }
1088    
1089    
1090 greg 2.3 static void
1091 greg 2.1 load_bsdf_data( /* load BSDF distribution for this wavelength */
1092     struct BSDF_data *dp,
1093     ezxml_t wdb
1094     )
1095     {
1096     char *cbasis = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
1097     char *rbasis = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
1098     char *sdata;
1099     int i;
1100    
1101 greg 2.4 if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) {
1102 greg 2.1 error(WARNING, "missing column/row basis for BSDF");
1103     return;
1104     }
1105     for (i = nabases; i--; )
1106 greg 2.12 if (!strcasecmp(cbasis, abase_list[i].name)) {
1107 greg 2.1 dp->ninc = abase_list[i].nangles;
1108     dp->ib_priv = (void *)&abase_list[i];
1109     dp->ib_vec = ab_getvecR;
1110     dp->ib_ndx = ab_getndxR;
1111     dp->ib_ohm = ab_getohm;
1112     break;
1113     }
1114     if (i < 0) {
1115 greg 2.4 sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis);
1116 greg 2.1 error(WARNING, errmsg);
1117     return;
1118     }
1119     for (i = nabases; i--; )
1120 greg 2.12 if (!strcasecmp(rbasis, abase_list[i].name)) {
1121 greg 2.1 dp->nout = abase_list[i].nangles;
1122     dp->ob_priv = (void *)&abase_list[i];
1123     dp->ob_vec = ab_getvec;
1124     dp->ob_ndx = ab_getndx;
1125     dp->ob_ohm = ab_getohm;
1126     break;
1127     }
1128     if (i < 0) {
1129 greg 2.16 sprintf(errmsg, "undefined RowAngleBasis '%s'", rbasis);
1130 greg 2.1 error(WARNING, errmsg);
1131     return;
1132     }
1133     /* read BSDF data */
1134     sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
1135 greg 2.4 if (!sdata || !*sdata) {
1136 greg 2.1 error(WARNING, "missing BSDF ScatteringData");
1137     return;
1138     }
1139     dp->bsdf = (float *)malloc(sizeof(float)*dp->ninc*dp->nout);
1140     if (dp->bsdf == NULL)
1141     error(SYSTEM, "out of memory in load_bsdf_data");
1142     for (i = 0; i < dp->ninc*dp->nout; i++) {
1143     char *sdnext = fskip(sdata);
1144     if (sdnext == NULL) {
1145     error(WARNING, "bad/missing BSDF ScatteringData");
1146     free(dp->bsdf); dp->bsdf = NULL;
1147     return;
1148     }
1149     while (*sdnext && isspace(*sdnext))
1150     sdnext++;
1151     if (*sdnext == ',') sdnext++;
1152     dp->bsdf[i] = atof(sdata);
1153     sdata = sdnext;
1154     }
1155     while (isspace(*sdata))
1156     sdata++;
1157     if (*sdata) {
1158     sprintf(errmsg, "%d extra characters after BSDF ScatteringData",
1159 greg 2.5 (int)strlen(sdata));
1160 greg 2.1 error(WARNING, errmsg);
1161     }
1162     }
1163    
1164    
1165     static int
1166     check_bsdf_data( /* check that BSDF data is sane */
1167     struct BSDF_data *dp
1168     )
1169     {
1170 greg 2.2 double *omega_iarr, *omega_oarr;
1171 greg 2.7 double dom, contrib, hemi_total, full_total;
1172 greg 2.1 int nneg;
1173 greg 2.2 FVECT v;
1174 greg 2.1 int i, o;
1175    
1176     if (dp == NULL || dp->bsdf == NULL)
1177     return(0);
1178 greg 2.2 omega_iarr = (double *)calloc(dp->ninc, sizeof(double));
1179     omega_oarr = (double *)calloc(dp->nout, sizeof(double));
1180     if ((omega_iarr == NULL) | (omega_oarr == NULL))
1181 greg 2.1 error(SYSTEM, "out of memory in check_bsdf_data");
1182 greg 2.2 /* incoming projected solid angles */
1183     hemi_total = .0;
1184     for (i = dp->ninc; i--; ) {
1185     dom = getBSDF_incohm(dp,i);
1186 greg 2.23 if (dom <= 0) {
1187 greg 2.2 error(WARNING, "zero/negative incoming solid angle");
1188     continue;
1189     }
1190     if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) {
1191     error(WARNING, "illegal incoming BSDF direction");
1192     free(omega_iarr); free(omega_oarr);
1193     return(0);
1194     }
1195     hemi_total += omega_iarr[i] = dom * -v[2];
1196     }
1197     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1198     sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%",
1199     100.*(hemi_total/PI - 1.));
1200     error(WARNING, errmsg);
1201     }
1202     dom = PI / hemi_total; /* fix normalization */
1203     for (i = dp->ninc; i--; )
1204     omega_iarr[i] *= dom;
1205     /* outgoing projected solid angles */
1206 greg 2.1 hemi_total = .0;
1207     for (o = dp->nout; o--; ) {
1208     dom = getBSDF_outohm(dp,o);
1209 greg 2.23 if (dom <= 0) {
1210 greg 2.2 error(WARNING, "zero/negative outgoing solid angle");
1211 greg 2.1 continue;
1212     }
1213     if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) {
1214     error(WARNING, "illegal outgoing BSDF direction");
1215 greg 2.2 free(omega_iarr); free(omega_oarr);
1216 greg 2.1 return(0);
1217     }
1218 greg 2.2 hemi_total += omega_oarr[o] = dom * v[2];
1219 greg 2.1 }
1220     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1221     sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%",
1222     100.*(hemi_total/PI - 1.));
1223     error(WARNING, errmsg);
1224     }
1225 greg 2.2 dom = PI / hemi_total; /* fix normalization */
1226 greg 2.1 for (o = dp->nout; o--; )
1227 greg 2.2 omega_oarr[o] *= dom;
1228     nneg = 0; /* check outgoing totals */
1229     for (i = 0; i < dp->ninc; i++) {
1230 greg 2.1 hemi_total = .0;
1231     for (o = dp->nout; o--; ) {
1232     double f = BSDF_value(dp,i,o);
1233 greg 2.23 if (f >= 0)
1234 greg 2.2 hemi_total += f*omega_oarr[o];
1235     else {
1236     nneg += (f < -FTINY);
1237     BSDF_value(dp,i,o) = .0f;
1238     }
1239 greg 2.1 }
1240 greg 2.8 if (hemi_total > 1.01) {
1241 greg 2.2 sprintf(errmsg,
1242     "incoming BSDF direction %d passes %.1f%% of light",
1243     i, 100.*hemi_total);
1244 greg 2.1 error(WARNING, errmsg);
1245     }
1246     }
1247 greg 2.2 if (nneg) {
1248     sprintf(errmsg, "%d negative BSDF values (ignored)", nneg);
1249 greg 2.1 error(WARNING, errmsg);
1250     }
1251 greg 2.7 full_total = .0; /* reverse roles and check again */
1252 greg 2.2 for (o = 0; o < dp->nout; o++) {
1253     hemi_total = .0;
1254     for (i = dp->ninc; i--; )
1255     hemi_total += BSDF_value(dp,i,o) * omega_iarr[i];
1256    
1257 greg 2.8 if (hemi_total > 1.01) {
1258 greg 2.2 sprintf(errmsg,
1259     "outgoing BSDF direction %d collects %.1f%% of light",
1260     o, 100.*hemi_total);
1261     error(WARNING, errmsg);
1262     }
1263 greg 2.7 full_total += hemi_total*omega_oarr[o];
1264     }
1265     full_total /= PI;
1266 greg 2.8 if (full_total > 1.00001) {
1267     sprintf(errmsg, "BSDF transfers %.4f%% of light",
1268 greg 2.7 100.*full_total);
1269     error(WARNING, errmsg);
1270 greg 2.2 }
1271     free(omega_iarr); free(omega_oarr);
1272 greg 2.1 return(1);
1273     }
1274    
1275 greg 2.6
1276 greg 2.1 struct BSDF_data *
1277     load_BSDF( /* load BSDF data from file */
1278     char *fname
1279     )
1280     {
1281     char *path;
1282     ezxml_t fl, wtl, wld, wdb;
1283     struct BSDF_data *dp;
1284    
1285     path = getpath(fname, getrlibpath(), R_OK);
1286     if (path == NULL) {
1287     sprintf(errmsg, "cannot find BSDF file \"%s\"", fname);
1288     error(WARNING, errmsg);
1289     return(NULL);
1290     }
1291     fl = ezxml_parse_file(path);
1292     if (fl == NULL) {
1293     sprintf(errmsg, "cannot open BSDF \"%s\"", path);
1294     error(WARNING, errmsg);
1295     return(NULL);
1296     }
1297     if (ezxml_error(fl)[0]) {
1298     sprintf(errmsg, "BSDF \"%s\" %s", path, ezxml_error(fl));
1299     error(WARNING, errmsg);
1300     ezxml_free(fl);
1301     return(NULL);
1302     }
1303     if (strcmp(ezxml_name(fl), "WindowElement")) {
1304     sprintf(errmsg,
1305     "BSDF \"%s\": top level node not 'WindowElement'",
1306     path);
1307     error(WARNING, errmsg);
1308     ezxml_free(fl);
1309     return(NULL);
1310     }
1311     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
1312 greg 2.10 if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl,
1313     "DataDefinition"), "IncidentDataStructure")),
1314     "Columns")) {
1315     sprintf(errmsg,
1316     "BSDF \"%s\": unsupported IncidentDataStructure",
1317     path);
1318     error(WARNING, errmsg);
1319     ezxml_free(fl);
1320     return(NULL);
1321     }
1322 greg 2.3 load_angle_basis(ezxml_child(ezxml_child(wtl,
1323     "DataDefinition"), "AngleBasis"));
1324 greg 2.1 dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data));
1325 greg 2.6 load_geometry(dp, ezxml_child(wtl, "Material"));
1326 greg 2.1 for (wld = ezxml_child(wtl, "WavelengthData");
1327     wld != NULL; wld = wld->next) {
1328 greg 2.13 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1329     "Visible"))
1330 greg 2.1 continue;
1331 greg 2.13 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1332     wdb != NULL; wdb = wdb->next)
1333     if (!strcasecmp(ezxml_txt(ezxml_child(wdb,
1334     "WavelengthDataDirection")),
1335 greg 2.1 "Transmission Front"))
1336 greg 2.13 break;
1337     if (wdb != NULL) { /* load front BTDF */
1338     load_bsdf_data(dp, wdb);
1339     break; /* ignore the rest */
1340     }
1341 greg 2.1 }
1342     ezxml_free(fl); /* done with XML file */
1343     if (!check_bsdf_data(dp)) {
1344     sprintf(errmsg, "bad/missing BTDF data in \"%s\"", path);
1345     error(WARNING, errmsg);
1346     free_BSDF(dp);
1347     dp = NULL;
1348     }
1349     return(dp);
1350     }
1351    
1352    
1353     void
1354     free_BSDF( /* free BSDF data structure */
1355     struct BSDF_data *b
1356     )
1357     {
1358     if (b == NULL)
1359     return;
1360 greg 2.6 if (b->mgf != NULL)
1361     free(b->mgf);
1362 greg 2.1 if (b->bsdf != NULL)
1363     free(b->bsdf);
1364     free(b);
1365     }
1366    
1367    
1368     int
1369     r_BSDF_incvec( /* compute random input vector at given location */
1370     FVECT v,
1371     struct BSDF_data *b,
1372     int i,
1373     double rv,
1374     MAT4 xm
1375     )
1376     {
1377     FVECT pert;
1378     double rad;
1379     int j;
1380    
1381     if (!getBSDF_incvec(v, b, i))
1382     return(0);
1383     rad = sqrt(getBSDF_incohm(b, i) / PI);
1384     multisamp(pert, 3, rv);
1385     for (j = 0; j < 3; j++)
1386     v[j] += rad*(2.*pert[j] - 1.);
1387     if (xm != NULL)
1388     multv3(v, v, xm);
1389     return(normalize(v) != 0.0);
1390     }
1391    
1392    
1393     int
1394     r_BSDF_outvec( /* compute random output vector at given location */
1395     FVECT v,
1396     struct BSDF_data *b,
1397     int o,
1398     double rv,
1399     MAT4 xm
1400     )
1401     {
1402     FVECT pert;
1403     double rad;
1404     int j;
1405    
1406     if (!getBSDF_outvec(v, b, o))
1407     return(0);
1408     rad = sqrt(getBSDF_outohm(b, o) / PI);
1409     multisamp(pert, 3, rv);
1410     for (j = 0; j < 3; j++)
1411     v[j] += rad*(2.*pert[j] - 1.);
1412     if (xm != NULL)
1413     multv3(v, v, xm);
1414     return(normalize(v) != 0.0);
1415     }
1416    
1417    
1418     static int
1419     addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */
1420     char *xfarg[],
1421     FVECT xp,
1422     FVECT yp,
1423     FVECT zp
1424     )
1425     {
1426     static char bufs[3][16];
1427     int bn = 0;
1428     char **xfp = xfarg;
1429     double theta;
1430    
1431     if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
1432     /* Special case for X' along Z-axis */
1433     theta = -atan2(yp[0], yp[1]);
1434     *xfp++ = "-ry";
1435     *xfp++ = xp[2] < 0.0 ? "90" : "-90";
1436     *xfp++ = "-rz";
1437     sprintf(bufs[bn], "%f", theta*(180./PI));
1438     *xfp++ = bufs[bn++];
1439     return(xfp - xfarg);
1440     }
1441     theta = atan2(yp[2], zp[2]);
1442     if (!FEQ(theta,0.0)) {
1443     *xfp++ = "-rx";
1444     sprintf(bufs[bn], "%f", theta*(180./PI));
1445     *xfp++ = bufs[bn++];
1446     }
1447     theta = asin(-xp[2]);
1448     if (!FEQ(theta,0.0)) {
1449     *xfp++ = "-ry";
1450     sprintf(bufs[bn], " %f", theta*(180./PI));
1451     *xfp++ = bufs[bn++];
1452     }
1453     theta = atan2(xp[1], xp[0]);
1454     if (!FEQ(theta,0.0)) {
1455     *xfp++ = "-rz";
1456     sprintf(bufs[bn], "%f", theta*(180./PI));
1457     *xfp++ = bufs[bn++];
1458     }
1459     *xfp = NULL;
1460     return(xfp - xfarg);
1461     }
1462    
1463    
1464     int
1465     getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */
1466     MAT4 xm,
1467     FVECT nrm,
1468 greg 2.6 UpDir ud,
1469     char *xfbuf
1470 greg 2.1 )
1471     {
1472     char *xfargs[7];
1473     XF myxf;
1474     FVECT updir, xdest, ydest;
1475 greg 2.6 int i;
1476 greg 2.1
1477     updir[0] = updir[1] = updir[2] = 0.;
1478     switch (ud) {
1479     case UDzneg:
1480     updir[2] = -1.;
1481     break;
1482     case UDyneg:
1483     updir[1] = -1.;
1484     break;
1485     case UDxneg:
1486     updir[0] = -1.;
1487     break;
1488     case UDxpos:
1489     updir[0] = 1.;
1490     break;
1491     case UDypos:
1492     updir[1] = 1.;
1493     break;
1494     case UDzpos:
1495     updir[2] = 1.;
1496     break;
1497     case UDunknown:
1498     return(0);
1499     }
1500     fcross(xdest, updir, nrm);
1501     if (normalize(xdest) == 0.0)
1502     return(0);
1503     fcross(ydest, nrm, xdest);
1504     xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs);
1505     copymat4(xm, myxf.xfm);
1506 greg 2.6 if (xfbuf == NULL)
1507     return(1);
1508     /* return xf arguments as well */
1509     for (i = 0; xfargs[i] != NULL; i++) {
1510     *xfbuf++ = ' ';
1511     strcpy(xfbuf, xfargs[i]);
1512     while (*xfbuf) ++xfbuf;
1513     }
1514 greg 2.1 return(1);
1515     }
1516 greg 2.15
1517     /*######### END DEPRECATED ROUTINES #######*/
1518     /*################################################################*/