ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.29
Committed: Fri Jun 3 18:12:58 2011 UTC (12 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.28: +3 -9 lines
Log Message:
Fixed bugs in variable-resolution isotropic BSDFs

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.29 static const char RCSid[] = "$Id: bsdf.c,v 2.28 2011/04/28 00:24:43 greg Exp $";
3 greg 2.1 #endif
4     /*
5 greg 2.15 * bsdf.c
6     *
7     * Definitions for bidirectional scattering distribution functions.
8     *
9     * Created by Greg Ward on 1/10/11.
10     *
11     */
12    
13     #include <stdio.h>
14     #include <stdlib.h>
15     #include <math.h>
16     #include "ezxml.h"
17     #include "hilbert.h"
18     #include "bsdf.h"
19     #include "bsdf_m.h"
20     #include "bsdf_t.h"
21    
22     /* English ASCII strings corresponding to ennumerated errors */
23     const char *SDerrorEnglish[] = {
24     "No error",
25     "Memory error",
26     "File input/output error",
27     "File format error",
28     "Illegal argument",
29     "Invalid data",
30     "Unsupported feature",
31     "Internal program error",
32     "Unknown error"
33     };
34    
35     /* Additional information on last error (ASCII English) */
36     char SDerrorDetail[256];
37    
38     /* Cache of loaded BSDFs */
39     struct SDCache_s *SDcacheList = NULL;
40    
41     /* Retain BSDFs in cache list */
42     int SDretainSet = SDretainNone;
43    
44     /* Report any error to the indicated stream (in English) */
45     SDError
46     SDreportEnglish(SDError ec, FILE *fp)
47     {
48 greg 2.21 if (!ec)
49     return SDEnone;
50     if ((ec < SDEnone) | (ec > SDEunknown)) {
51     SDerrorDetail[0] = '\0';
52     ec = SDEunknown;
53     }
54 greg 2.15 if (fp == NULL)
55     return ec;
56     fputs(SDerrorEnglish[ec], fp);
57     if (SDerrorDetail[0]) {
58     fputs(": ", fp);
59     fputs(SDerrorDetail, fp);
60     }
61     fputc('\n', fp);
62     if (fp != stderr)
63     fflush(fp);
64     return ec;
65     }
66    
67     static double
68     to_meters( /* return factor to convert given unit to meters */
69     const char *unit
70     )
71     {
72     if (unit == NULL) return(1.); /* safe assumption? */
73     if (!strcasecmp(unit, "Meter")) return(1.);
74     if (!strcasecmp(unit, "Foot")) return(.3048);
75     if (!strcasecmp(unit, "Inch")) return(.0254);
76     if (!strcasecmp(unit, "Centimeter")) return(.01);
77     if (!strcasecmp(unit, "Millimeter")) return(.001);
78     sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
79     return(-1.);
80     }
81    
82     /* Load geometric dimensions and description (if any) */
83     static SDError
84 greg 2.16 SDloadGeometry(SDData *sd, ezxml_t wdb)
85 greg 2.15 {
86     ezxml_t geom;
87     double cfact;
88     const char *fmt, *mgfstr;
89    
90 greg 2.16 if (wdb == NULL) /* no geometry section? */
91     return SDEnone;
92     sd->dim[0] = sd->dim[1] = sd->dim[2] = .0;
93 greg 2.15 if ((geom = ezxml_child(wdb, "Width")) != NULL)
94 greg 2.16 sd->dim[0] = atof(ezxml_txt(geom)) *
95 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
96     if ((geom = ezxml_child(wdb, "Height")) != NULL)
97 greg 2.16 sd->dim[1] = atof(ezxml_txt(geom)) *
98 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
99     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
100 greg 2.16 sd->dim[2] = atof(ezxml_txt(geom)) *
101 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
102 greg 2.23 if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) {
103 greg 2.17 sprintf(SDerrorDetail, "Negative size in \"%s\"", sd->name);
104 greg 2.15 return SDEdata;
105 greg 2.17 }
106 greg 2.15 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
107     (mgfstr = ezxml_txt(geom)) == NULL)
108     return SDEnone;
109     if ((fmt = ezxml_attr(geom, "format")) != NULL &&
110     strcasecmp(fmt, "MGF")) {
111     sprintf(SDerrorDetail,
112     "Unrecognized geometry format '%s' in \"%s\"",
113 greg 2.16 fmt, sd->name);
114 greg 2.15 return SDEsupport;
115     }
116     cfact = to_meters(ezxml_attr(geom, "unit"));
117 greg 2.16 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
118     if (sd->mgf == NULL) {
119 greg 2.15 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
120     return SDEmemory;
121     }
122     if (cfact < 0.99 || cfact > 1.01)
123 greg 2.16 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
124 greg 2.15 else
125 greg 2.16 strcpy(sd->mgf, mgfstr);
126 greg 2.15 return SDEnone;
127     }
128    
129     /* Load a BSDF struct from the given file (free first and keep name) */
130     SDError
131     SDloadFile(SDData *sd, const char *fname)
132     {
133     SDError lastErr;
134 greg 2.16 ezxml_t fl, wtl;
135 greg 2.15
136     if ((sd == NULL) | (fname == NULL || !*fname))
137     return SDEargument;
138     /* free old data, keeping name */
139     SDfreeBSDF(sd);
140     /* parse XML file */
141     fl = ezxml_parse_file(fname);
142     if (fl == NULL) {
143     sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
144     return SDEfile;
145     }
146     if (ezxml_error(fl)[0]) {
147     sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
148     ezxml_free(fl);
149     return SDEformat;
150     }
151 greg 2.16 if (strcmp(ezxml_name(fl), "WindowElement")) {
152     sprintf(SDerrorDetail,
153     "BSDF \"%s\": top level node not 'WindowElement'",
154     sd->name);
155     ezxml_free(fl);
156     return SDEformat;
157     }
158     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
159     if (wtl == NULL) {
160     sprintf(SDerrorDetail, "BSDF \"%s\": no optical layer'",
161     sd->name);
162     ezxml_free(fl);
163     return SDEformat;
164     }
165 greg 2.15 /* load geometry if present */
166 greg 2.16 lastErr = SDloadGeometry(sd, ezxml_child(wtl, "Material"));
167     if (lastErr)
168 greg 2.15 return lastErr;
169     /* try loading variable resolution data */
170 greg 2.16 lastErr = SDloadTre(sd, wtl);
171 greg 2.15 /* check our result */
172 greg 2.29 if (lastErr == SDEsupport) /* try matrix BSDF if not tree data */
173 greg 2.16 lastErr = SDloadMtx(sd, wtl);
174 greg 2.29
175 greg 2.15 /* done with XML file */
176     ezxml_free(fl);
177 greg 2.16
178     if (lastErr) { /* was there a load error? */
179     SDfreeBSDF(sd);
180     return lastErr;
181     }
182     /* remove any insignificant components */
183     if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
184     SDfreeSpectralDF(sd->rf); sd->rf = NULL;
185     }
186     if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
187     SDfreeSpectralDF(sd->rb); sd->rb = NULL;
188     }
189     if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
190     SDfreeSpectralDF(sd->tf); sd->tf = NULL;
191     }
192     /* return success */
193     return SDEnone;
194 greg 2.15 }
195    
196     /* Allocate new spectral distribution function */
197     SDSpectralDF *
198     SDnewSpectralDF(int nc)
199     {
200     SDSpectralDF *df;
201    
202     if (nc <= 0) {
203     strcpy(SDerrorDetail, "Zero component spectral DF request");
204     return NULL;
205     }
206     df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
207     (nc-1)*sizeof(SDComponent));
208     if (df == NULL) {
209     sprintf(SDerrorDetail,
210     "Cannot allocate %d component spectral DF", nc);
211     return NULL;
212     }
213     df->minProjSA = .0;
214     df->maxHemi = .0;
215     df->ncomp = nc;
216     memset(df->comp, 0, nc*sizeof(SDComponent));
217     return df;
218     }
219    
220     /* Free cached cumulative distributions for BSDF component */
221     void
222     SDfreeCumulativeCache(SDSpectralDF *df)
223     {
224     int n;
225     SDCDst *cdp;
226    
227     if (df == NULL)
228     return;
229     for (n = df->ncomp; n-- > 0; )
230     while ((cdp = df->comp[n].cdList) != NULL) {
231     df->comp[n].cdList = cdp->next;
232     free(cdp);
233     }
234     }
235    
236     /* Free a spectral distribution function */
237     void
238     SDfreeSpectralDF(SDSpectralDF *df)
239     {
240     int n;
241    
242     if (df == NULL)
243     return;
244     SDfreeCumulativeCache(df);
245     for (n = df->ncomp; n-- > 0; )
246     (*df->comp[n].func->freeSC)(df->comp[n].dist);
247     free(df);
248     }
249    
250     /* Shorten file path to useable BSDF name, removing suffix */
251     void
252 greg 2.16 SDclipName(char *res, const char *fname)
253 greg 2.15 {
254     const char *cp, *dot = NULL;
255    
256     for (cp = fname; *cp; cp++)
257     if (*cp == '.')
258     dot = cp;
259     if ((dot == NULL) | (dot < fname+2))
260     dot = cp;
261     if (dot - fname >= SDnameLn)
262     fname = dot - SDnameLn + 1;
263     while (fname < dot)
264     *res++ = *fname++;
265     *res = '\0';
266     }
267    
268     /* Initialize an unused BSDF struct (simply clears to zeroes) */
269     void
270 greg 2.20 SDclearBSDF(SDData *sd, const char *fname)
271 greg 2.15 {
272 greg 2.20 if (sd == NULL)
273     return;
274     memset(sd, 0, sizeof(SDData));
275     if (fname == NULL)
276     return;
277     SDclipName(sd->name, fname);
278 greg 2.15 }
279    
280     /* Free data associated with BSDF struct */
281     void
282     SDfreeBSDF(SDData *sd)
283     {
284     if (sd == NULL)
285     return;
286     if (sd->mgf != NULL) {
287     free(sd->mgf);
288     sd->mgf = NULL;
289     }
290     if (sd->rf != NULL) {
291     SDfreeSpectralDF(sd->rf);
292     sd->rf = NULL;
293     }
294     if (sd->rb != NULL) {
295     SDfreeSpectralDF(sd->rb);
296     sd->rb = NULL;
297     }
298     if (sd->tf != NULL) {
299     SDfreeSpectralDF(sd->tf);
300     sd->tf = NULL;
301     }
302     sd->rLambFront.cieY = .0;
303 greg 2.16 sd->rLambFront.spec.flags = 0;
304 greg 2.15 sd->rLambBack.cieY = .0;
305 greg 2.16 sd->rLambBack.spec.flags = 0;
306 greg 2.15 sd->tLamb.cieY = .0;
307 greg 2.16 sd->tLamb.spec.flags = 0;
308 greg 2.15 }
309    
310     /* Find writeable BSDF by name, or allocate new cache entry if absent */
311     SDData *
312     SDgetCache(const char *bname)
313     {
314     struct SDCache_s *sdl;
315     char sdnam[SDnameLn];
316    
317     if (bname == NULL)
318     return NULL;
319    
320     SDclipName(sdnam, bname);
321     for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
322     if (!strcmp(sdl->bsdf.name, sdnam)) {
323     sdl->refcnt++;
324     return &sdl->bsdf;
325     }
326    
327     sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
328     if (sdl == NULL)
329     return NULL;
330    
331     strcpy(sdl->bsdf.name, sdnam);
332     sdl->next = SDcacheList;
333     SDcacheList = sdl;
334    
335 greg 2.21 sdl->refcnt = 1;
336 greg 2.15 return &sdl->bsdf;
337     }
338    
339     /* Get loaded BSDF from cache (or load and cache it on first call) */
340     /* Report any problem to stderr and return NULL on failure */
341     const SDData *
342     SDcacheFile(const char *fname)
343     {
344     SDData *sd;
345     SDError ec;
346    
347     if (fname == NULL || !*fname)
348     return NULL;
349     SDerrorDetail[0] = '\0';
350     if ((sd = SDgetCache(fname)) == NULL) {
351     SDreportEnglish(SDEmemory, stderr);
352     return NULL;
353     }
354     if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
355     SDreportEnglish(ec, stderr);
356     SDfreeCache(sd);
357     return NULL;
358     }
359     return sd;
360     }
361    
362     /* Free a BSDF from our cache (clear all if NULL) */
363     void
364     SDfreeCache(const SDData *sd)
365     {
366     struct SDCache_s *sdl, *sdLast = NULL;
367    
368     if (sd == NULL) { /* free entire list */
369     while ((sdl = SDcacheList) != NULL) {
370     SDcacheList = sdl->next;
371     SDfreeBSDF(&sdl->bsdf);
372     free(sdl);
373     }
374     return;
375     }
376     for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
377     if (&sdl->bsdf == sd)
378     break;
379 greg 2.21 if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
380 greg 2.15 return; /* missing or still in use */
381     /* keep unreferenced data? */
382     if (SDisLoaded(sd) && SDretainSet) {
383     if (SDretainSet == SDretainAll)
384     return; /* keep everything */
385     /* else free cumulative data */
386     SDfreeCumulativeCache(sd->rf);
387     SDfreeCumulativeCache(sd->rb);
388     SDfreeCumulativeCache(sd->tf);
389     return;
390     }
391     /* remove from list and free */
392     if (sdLast == NULL)
393     SDcacheList = sdl->next;
394     else
395     sdLast->next = sdl->next;
396     SDfreeBSDF(&sdl->bsdf);
397     free(sdl);
398     }
399    
400     /* Sample an individual BSDF component */
401     SDError
402 greg 2.24 SDsampComponent(SDValue *sv, FVECT ioVec, double randX, SDComponent *sdc)
403 greg 2.15 {
404     float coef[SDmaxCh];
405     SDError ec;
406 greg 2.24 FVECT inVec;
407 greg 2.15 const SDCDst *cd;
408     double d;
409     int n;
410     /* check arguments */
411 greg 2.24 if ((sv == NULL) | (ioVec == NULL) | (sdc == NULL))
412 greg 2.15 return SDEargument;
413     /* get cumulative distribution */
414 greg 2.24 VCOPY(inVec, ioVec);
415 greg 2.15 cd = (*sdc->func->getCDist)(inVec, sdc);
416     if (cd == NULL)
417     return SDEmemory;
418     if (cd->cTotal <= 1e-7) { /* anything to sample? */
419     sv->spec = c_dfcolor;
420     sv->cieY = .0;
421 greg 2.24 memset(ioVec, 0, 3*sizeof(double));
422 greg 2.15 return SDEnone;
423     }
424     sv->cieY = cd->cTotal;
425     /* compute sample direction */
426 greg 2.24 ec = (*sdc->func->sampCDist)(ioVec, randX, cd);
427 greg 2.15 if (ec)
428     return ec;
429     /* get BSDF color */
430 greg 2.25 n = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
431 greg 2.15 if (n <= 0) {
432     strcpy(SDerrorDetail, "BSDF sample value error");
433     return SDEinternal;
434     }
435     sv->spec = sdc->cspec[0];
436     d = coef[0];
437     while (--n) {
438     c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
439     d += coef[n];
440     }
441     /* make sure everything is set */
442     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
443     return SDEnone;
444     }
445    
446     #define MS_MAXDIM 15
447    
448     /* Convert 1-dimensional random variable to N-dimensional */
449     void
450     SDmultiSamp(double t[], int n, double randX)
451     {
452     unsigned nBits;
453     double scale;
454     bitmask_t ndx, coord[MS_MAXDIM];
455    
456     while (n > MS_MAXDIM) /* punt for higher dimensions */
457 greg 2.19 t[--n] = rand()*(1./(RAND_MAX+.5));
458 greg 2.15 nBits = (8*sizeof(bitmask_t) - 1) / n;
459     ndx = randX * (double)((bitmask_t)1 << (nBits*n));
460     /* get coordinate on Hilbert curve */
461     hilbert_i2c(n, nBits, ndx, coord);
462     /* convert back to [0,1) range */
463     scale = 1. / (double)((bitmask_t)1 << nBits);
464     while (n--)
465 greg 2.19 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
466 greg 2.15 }
467    
468     #undef MS_MAXDIM
469    
470     /* Generate diffuse hemispherical sample */
471     static void
472     SDdiffuseSamp(FVECT outVec, int outFront, double randX)
473     {
474     /* convert to position on hemisphere */
475     SDmultiSamp(outVec, 2, randX);
476     SDsquare2disk(outVec, outVec[0], outVec[1]);
477     outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
478 greg 2.23 if (outVec[2] > 0) /* a bit of paranoia */
479 greg 2.15 outVec[2] = sqrt(outVec[2]);
480     if (!outFront) /* going out back? */
481     outVec[2] = -outVec[2];
482     }
483    
484     /* Query projected solid angle coverage for non-diffuse BSDF direction */
485     SDError
486 greg 2.22 SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2,
487     int qflags, const SDData *sd)
488 greg 2.15 {
489 greg 2.23 SDSpectralDF *rdf, *tdf;
490 greg 2.15 SDError ec;
491     int i;
492     /* check arguments */
493 greg 2.26 if ((projSA == NULL) | (v1 == NULL) | (sd == NULL))
494 greg 2.15 return SDEargument;
495     /* initialize extrema */
496 greg 2.17 switch (qflags) {
497 greg 2.15 case SDqueryMax:
498     projSA[0] = .0;
499     break;
500     case SDqueryMin+SDqueryMax:
501     projSA[1] = .0;
502     /* fall through */
503     case SDqueryMin:
504     projSA[0] = 10.;
505     break;
506     case 0:
507     return SDEargument;
508     }
509 greg 2.23 if (v1[2] > 0) /* front surface query? */
510 greg 2.15 rdf = sd->rf;
511     else
512     rdf = sd->rb;
513 greg 2.26 tdf = sd->tf;
514     if (v2 != NULL) /* bidirectional? */
515     if (v1[2] > 0 ^ v2[2] > 0)
516     rdf = NULL;
517     else
518     tdf = NULL;
519 greg 2.15 ec = SDEdata; /* run through components */
520     for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
521 greg 2.22 ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2,
522 greg 2.25 qflags, &rdf->comp[i]);
523 greg 2.15 if (ec)
524     return ec;
525     }
526 greg 2.23 for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) {
527     ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2,
528 greg 2.25 qflags, &tdf->comp[i]);
529 greg 2.15 if (ec)
530     return ec;
531     }
532 greg 2.17 if (ec) { /* all diffuse? */
533     projSA[0] = M_PI;
534     if (qflags == SDqueryMin+SDqueryMax)
535     projSA[1] = M_PI;
536     }
537     return SDEnone;
538 greg 2.15 }
539    
540     /* Return BSDF for the given incident and scattered ray vectors */
541     SDError
542     SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
543     {
544     int inFront, outFront;
545     SDSpectralDF *sdf;
546     float coef[SDmaxCh];
547     int nch, i;
548     /* check arguments */
549     if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
550     return SDEargument;
551     /* whose side are we on? */
552 greg 2.23 inFront = (inVec[2] > 0);
553     outFront = (outVec[2] > 0);
554 greg 2.15 /* start with diffuse portion */
555     if (inFront & outFront) {
556     *sv = sd->rLambFront;
557     sdf = sd->rf;
558     } else if (!(inFront | outFront)) {
559     *sv = sd->rLambBack;
560     sdf = sd->rb;
561     } else /* inFront ^ outFront */ {
562     *sv = sd->tLamb;
563     sdf = sd->tf;
564     }
565     sv->cieY *= 1./M_PI;
566     /* add non-diffuse components */
567     i = (sdf != NULL) ? sdf->ncomp : 0;
568     while (i-- > 0) {
569     nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
570 greg 2.25 &sdf->comp[i]);
571 greg 2.15 while (nch-- > 0) {
572     c_cmix(&sv->spec, sv->cieY, &sv->spec,
573     coef[nch], &sdf->comp[i].cspec[nch]);
574     sv->cieY += coef[nch];
575     }
576     }
577     /* make sure everything is set */
578     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
579     return SDEnone;
580     }
581    
582     /* Compute directional hemispherical scattering at this incident angle */
583     double
584     SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
585     {
586     double hsum;
587     SDSpectralDF *rdf;
588     const SDCDst *cd;
589     int i;
590     /* check arguments */
591     if ((inVec == NULL) | (sd == NULL))
592     return .0;
593     /* gather diffuse components */
594 greg 2.23 if (inVec[2] > 0) {
595 greg 2.15 hsum = sd->rLambFront.cieY;
596     rdf = sd->rf;
597     } else /* !inFront */ {
598     hsum = sd->rLambBack.cieY;
599     rdf = sd->rb;
600     }
601     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
602     hsum = .0;
603     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
604     hsum += sd->tLamb.cieY;
605     /* gather non-diffuse components */
606     i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
607     rdf != NULL) ? rdf->ncomp : 0;
608     while (i-- > 0) { /* non-diffuse reflection */
609     cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
610     if (cd != NULL)
611     hsum += cd->cTotal;
612     }
613     i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
614     sd->tf != NULL) ? sd->tf->ncomp : 0;
615     while (i-- > 0) { /* non-diffuse transmission */
616     cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]);
617     if (cd != NULL)
618     hsum += cd->cTotal;
619     }
620     return hsum;
621     }
622    
623     /* Sample BSDF direction based on the given random variable */
624     SDError
625 greg 2.24 SDsampBSDF(SDValue *sv, FVECT ioVec, double randX, int sflags, const SDData *sd)
626 greg 2.15 {
627     SDError ec;
628 greg 2.24 FVECT inVec;
629 greg 2.15 int inFront;
630     SDSpectralDF *rdf;
631     double rdiff;
632     float coef[SDmaxCh];
633     int i, j, n, nr;
634     SDComponent *sdc;
635     const SDCDst **cdarr = NULL;
636     /* check arguments */
637 greg 2.24 if ((sv == NULL) | (ioVec == NULL) | (sd == NULL) |
638 greg 2.23 (randX < 0) | (randX >= 1.))
639 greg 2.15 return SDEargument;
640     /* whose side are we on? */
641 greg 2.24 VCOPY(inVec, ioVec);
642 greg 2.23 inFront = (inVec[2] > 0);
643 greg 2.15 /* remember diffuse portions */
644     if (inFront) {
645     *sv = sd->rLambFront;
646     rdf = sd->rf;
647     } else /* !inFront */ {
648     *sv = sd->rLambBack;
649     rdf = sd->rb;
650     }
651     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
652     sv->cieY = .0;
653     rdiff = sv->cieY;
654     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
655     sv->cieY += sd->tLamb.cieY;
656     /* gather non-diffuse components */
657     i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
658     rdf != NULL) ? rdf->ncomp : 0;
659     j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
660     sd->tf != NULL) ? sd->tf->ncomp : 0;
661     n = i + j;
662     if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
663     return SDEmemory;
664     while (j-- > 0) { /* non-diffuse transmission */
665     cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]);
666     if (cdarr[i+j] == NULL) {
667     free(cdarr);
668     return SDEmemory;
669     }
670     sv->cieY += cdarr[i+j]->cTotal;
671     }
672     while (i-- > 0) { /* non-diffuse reflection */
673     cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
674     if (cdarr[i] == NULL) {
675     free(cdarr);
676     return SDEmemory;
677     }
678     sv->cieY += cdarr[i]->cTotal;
679     }
680     if (sv->cieY <= 1e-7) { /* anything to sample? */
681     sv->cieY = .0;
682 greg 2.24 memset(ioVec, 0, 3*sizeof(double));
683 greg 2.15 return SDEnone;
684     }
685     /* scale random variable */
686     randX *= sv->cieY;
687     /* diffuse reflection? */
688     if (randX < rdiff) {
689 greg 2.24 SDdiffuseSamp(ioVec, inFront, randX/rdiff);
690 greg 2.15 goto done;
691     }
692     randX -= rdiff;
693     /* diffuse transmission? */
694     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
695     if (randX < sd->tLamb.cieY) {
696     sv->spec = sd->tLamb.spec;
697 greg 2.24 SDdiffuseSamp(ioVec, !inFront, randX/sd->tLamb.cieY);
698 greg 2.15 goto done;
699     }
700     randX -= sd->tLamb.cieY;
701     }
702     /* else one of cumulative dist. */
703     for (i = 0; i < n && randX < cdarr[i]->cTotal; i++)
704     randX -= cdarr[i]->cTotal;
705     if (i >= n)
706     return SDEinternal;
707     /* compute sample direction */
708     sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr];
709 greg 2.24 ec = (*sdc->func->sampCDist)(ioVec, randX/cdarr[i]->cTotal, cdarr[i]);
710 greg 2.15 if (ec)
711     return ec;
712     /* compute color */
713 greg 2.25 j = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
714 greg 2.15 if (j <= 0) {
715     sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
716     sd->name);
717     return SDEinternal;
718     }
719     sv->spec = sdc->cspec[0];
720     rdiff = coef[0];
721     while (--j) {
722     c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
723     rdiff += coef[j];
724     }
725     done:
726     if (cdarr != NULL)
727     free(cdarr);
728     /* make sure everything is set */
729     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
730     return SDEnone;
731     }
732    
733     /* Compute World->BSDF transform from surface normal and up (Y) vector */
734     SDError
735     SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
736     {
737     if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
738     return SDEargument;
739     VCOPY(vMtx[2], sNrm);
740 greg 2.23 if (normalize(vMtx[2]) == 0)
741 greg 2.15 return SDEargument;
742     fcross(vMtx[0], uVec, vMtx[2]);
743 greg 2.23 if (normalize(vMtx[0]) == 0)
744 greg 2.15 return SDEargument;
745     fcross(vMtx[1], vMtx[2], vMtx[0]);
746     return SDEnone;
747     }
748    
749     /* Compute inverse transform */
750     SDError
751     SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
752     {
753     RREAL mTmp[3][3];
754     double d;
755    
756     if ((iMtx == NULL) | (vMtx == NULL))
757     return SDEargument;
758     /* compute determinant */
759     mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
760     mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
761     mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
762     d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
763 greg 2.23 if (d == 0) {
764 greg 2.15 strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
765     return SDEargument;
766     }
767     d = 1./d; /* invert matrix */
768     mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
769     mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
770     mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
771     mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
772     mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
773     mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
774     mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
775     memcpy(iMtx, mTmp, sizeof(mTmp));
776     return SDEnone;
777     }
778    
779     /* Transform and normalize direction (column) vector */
780     SDError
781     SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
782     {
783     FVECT vTmp;
784    
785     if ((resVec == NULL) | (inpVec == NULL))
786     return SDEargument;
787     if (vMtx == NULL) { /* assume they just want to normalize */
788     if (resVec != inpVec)
789     VCOPY(resVec, inpVec);
790 greg 2.23 return (normalize(resVec) > 0) ? SDEnone : SDEargument;
791 greg 2.15 }
792     vTmp[0] = DOT(vMtx[0], inpVec);
793     vTmp[1] = DOT(vMtx[1], inpVec);
794     vTmp[2] = DOT(vMtx[2], inpVec);
795 greg 2.23 if (normalize(vTmp) == 0)
796 greg 2.15 return SDEargument;
797     VCOPY(resVec, vTmp);
798     return SDEnone;
799     }
800    
801     /*################################################################*/
802     /*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/
803    
804     /*
805 greg 2.1 * Routines for handling BSDF data
806     */
807    
808     #include "standard.h"
809     #include "paths.h"
810     #include <ctype.h>
811    
812     #define MAXLATS 46 /* maximum number of latitudes */
813    
814     /* BSDF angle specification */
815     typedef struct {
816     char name[64]; /* basis name */
817     int nangles; /* total number of directions */
818     struct {
819     float tmin; /* starting theta */
820     short nphis; /* number of phis (0 term) */
821     } lat[MAXLATS+1]; /* latitudes */
822     } ANGLE_BASIS;
823    
824 greg 2.4 #define MAXABASES 7 /* limit on defined bases */
825 greg 2.1
826     static ANGLE_BASIS abase_list[MAXABASES] = {
827     {
828     "LBNL/Klems Full", 145,
829     { {-5., 1},
830     {5., 8},
831     {15., 16},
832     {25., 20},
833     {35., 24},
834     {45., 24},
835     {55., 24},
836     {65., 16},
837     {75., 12},
838     {90., 0} }
839     }, {
840     "LBNL/Klems Half", 73,
841     { {-6.5, 1},
842     {6.5, 8},
843     {19.5, 12},
844     {32.5, 16},
845     {46.5, 20},
846     {61.5, 12},
847     {76.5, 4},
848     {90., 0} }
849     }, {
850     "LBNL/Klems Quarter", 41,
851     { {-9., 1},
852     {9., 8},
853     {27., 12},
854     {46., 12},
855     {66., 8},
856     {90., 0} }
857     }
858     };
859    
860     static int nabases = 3; /* current number of defined bases */
861    
862 greg 2.9 #define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6)
863    
864     static int
865     fequal(double a, double b)
866     {
867 greg 2.23 if (b != 0)
868 greg 2.9 a = a/b - 1.;
869     return((a <= 1e-6) & (a >= -1e-6));
870     }
871 greg 2.3
872 greg 2.14 /* Returns the name of the given tag */
873 greg 2.3 #ifdef ezxml_name
874     #undef ezxml_name
875     static char *
876     ezxml_name(ezxml_t xml)
877     {
878     if (xml == NULL)
879     return(NULL);
880     return(xml->name);
881     }
882     #endif
883    
884 greg 2.14 /* Returns the given tag's character content or empty string if none */
885 greg 2.3 #ifdef ezxml_txt
886     #undef ezxml_txt
887     static char *
888     ezxml_txt(ezxml_t xml)
889     {
890     if (xml == NULL)
891     return("");
892     return(xml->txt);
893     }
894     #endif
895    
896 greg 2.1
897     static int
898     ab_getvec( /* get vector for this angle basis index */
899     FVECT v,
900     int ndx,
901     void *p
902     )
903     {
904     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
905     int li;
906 greg 2.2 double pol, azi, d;
907 greg 2.1
908     if ((ndx < 0) | (ndx >= ab->nangles))
909     return(0);
910     for (li = 0; ndx >= ab->lat[li].nphis; li++)
911     ndx -= ab->lat[li].nphis;
912 greg 2.2 pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin);
913 greg 2.1 azi = 2.*PI*ndx/ab->lat[li].nphis;
914 greg 2.2 v[2] = d = cos(pol);
915     d = sqrt(1. - d*d); /* sin(pol) */
916 greg 2.1 v[0] = cos(azi)*d;
917     v[1] = sin(azi)*d;
918     return(1);
919     }
920    
921    
922     static int
923     ab_getndx( /* get index corresponding to the given vector */
924     FVECT v,
925     void *p
926     )
927     {
928     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
929     int li, ndx;
930 greg 2.2 double pol, azi, d;
931 greg 2.1
932     if ((v[2] < -1.0) | (v[2] > 1.0))
933     return(-1);
934 greg 2.2 pol = 180.0/PI*acos(v[2]);
935 greg 2.1 azi = 180.0/PI*atan2(v[1], v[0]);
936     if (azi < 0.0) azi += 360.0;
937 greg 2.2 for (li = 1; ab->lat[li].tmin <= pol; li++)
938 greg 2.1 if (!ab->lat[li].nphis)
939     return(-1);
940     --li;
941     ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
942     if (ndx >= ab->lat[li].nphis) ndx = 0;
943     while (li--)
944     ndx += ab->lat[li].nphis;
945     return(ndx);
946     }
947    
948    
949     static double
950     ab_getohm( /* get solid angle for this angle basis index */
951     int ndx,
952     void *p
953     )
954     {
955     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
956     int li;
957     double theta, theta1;
958    
959     if ((ndx < 0) | (ndx >= ab->nangles))
960     return(0);
961     for (li = 0; ndx >= ab->lat[li].nphis; li++)
962     ndx -= ab->lat[li].nphis;
963     theta1 = PI/180. * ab->lat[li+1].tmin;
964     if (ab->lat[li].nphis == 1) { /* special case */
965     if (ab->lat[li].tmin > FTINY)
966     error(USER, "unsupported BSDF coordinate system");
967     return(2.*PI*(1. - cos(theta1)));
968     }
969     theta = PI/180. * ab->lat[li].tmin;
970     return(2.*PI*(cos(theta) - cos(theta1))/(double)ab->lat[li].nphis);
971     }
972    
973    
974     static int
975     ab_getvecR( /* get reverse vector for this angle basis index */
976     FVECT v,
977     int ndx,
978     void *p
979     )
980     {
981     if (!ab_getvec(v, ndx, p))
982     return(0);
983    
984     v[0] = -v[0];
985     v[1] = -v[1];
986     v[2] = -v[2];
987    
988     return(1);
989     }
990    
991    
992     static int
993     ab_getndxR( /* get index corresponding to the reverse vector */
994     FVECT v,
995     void *p
996     )
997     {
998     FVECT v2;
999    
1000     v2[0] = -v[0];
1001     v2[1] = -v[1];
1002     v2[2] = -v[2];
1003    
1004     return ab_getndx(v2, p);
1005     }
1006    
1007    
1008     static void
1009 greg 2.4 load_angle_basis( /* load custom BSDF angle basis */
1010 greg 2.3 ezxml_t wab
1011     )
1012     {
1013     char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
1014     ezxml_t wbb;
1015     int i;
1016    
1017 greg 2.4 if (!abname || !*abname)
1018 greg 2.3 return;
1019     for (i = nabases; i--; )
1020 greg 2.12 if (!strcasecmp(abname, abase_list[i].name))
1021 greg 2.4 return; /* assume it's the same */
1022 greg 2.3 if (nabases >= MAXABASES)
1023     error(INTERNAL, "too many angle bases");
1024     strcpy(abase_list[nabases].name, abname);
1025     abase_list[nabases].nangles = 0;
1026     for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
1027     wbb != NULL; i++, wbb = wbb->next) {
1028     if (i >= MAXLATS)
1029     error(INTERNAL, "too many latitudes in custom basis");
1030     abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
1031     ezxml_child(ezxml_child(wbb,
1032     "ThetaBounds"), "UpperTheta")));
1033     if (!i)
1034     abase_list[nabases].lat[i].tmin =
1035     -abase_list[nabases].lat[i+1].tmin;
1036 greg 2.9 else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
1037 greg 2.3 "ThetaBounds"), "LowerTheta"))),
1038     abase_list[nabases].lat[i].tmin))
1039     error(WARNING, "theta values disagree in custom basis");
1040     abase_list[nabases].nangles +=
1041     abase_list[nabases].lat[i].nphis =
1042     atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
1043     }
1044     abase_list[nabases++].lat[i].nphis = 0;
1045     }
1046    
1047    
1048 greg 2.6 static void
1049     load_geometry( /* load geometric dimensions and description (if any) */
1050     struct BSDF_data *dp,
1051     ezxml_t wdb
1052     )
1053     {
1054     ezxml_t geom;
1055     double cfact;
1056     const char *fmt, *mgfstr;
1057    
1058     dp->dim[0] = dp->dim[1] = dp->dim[2] = 0;
1059     dp->mgf = NULL;
1060     if ((geom = ezxml_child(wdb, "Width")) != NULL)
1061     dp->dim[0] = atof(ezxml_txt(geom)) *
1062     to_meters(ezxml_attr(geom, "unit"));
1063     if ((geom = ezxml_child(wdb, "Height")) != NULL)
1064     dp->dim[1] = atof(ezxml_txt(geom)) *
1065     to_meters(ezxml_attr(geom, "unit"));
1066     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
1067     dp->dim[2] = atof(ezxml_txt(geom)) *
1068     to_meters(ezxml_attr(geom, "unit"));
1069     if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
1070     (mgfstr = ezxml_txt(geom)) == NULL)
1071     return;
1072     if ((fmt = ezxml_attr(geom, "format")) != NULL &&
1073     strcasecmp(fmt, "MGF")) {
1074     sprintf(errmsg, "unrecognized geometry format '%s'", fmt);
1075     error(WARNING, errmsg);
1076     return;
1077     }
1078     cfact = to_meters(ezxml_attr(geom, "unit"));
1079     dp->mgf = (char *)malloc(strlen(mgfstr)+32);
1080     if (dp->mgf == NULL)
1081     error(SYSTEM, "out of memory in load_geometry");
1082     if (cfact < 0.99 || cfact > 1.01)
1083     sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
1084     else
1085     strcpy(dp->mgf, mgfstr);
1086     }
1087    
1088    
1089 greg 2.3 static void
1090 greg 2.1 load_bsdf_data( /* load BSDF distribution for this wavelength */
1091     struct BSDF_data *dp,
1092     ezxml_t wdb
1093     )
1094     {
1095     char *cbasis = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
1096     char *rbasis = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
1097     char *sdata;
1098     int i;
1099    
1100 greg 2.4 if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) {
1101 greg 2.1 error(WARNING, "missing column/row basis for BSDF");
1102     return;
1103     }
1104     for (i = nabases; i--; )
1105 greg 2.12 if (!strcasecmp(cbasis, abase_list[i].name)) {
1106 greg 2.1 dp->ninc = abase_list[i].nangles;
1107     dp->ib_priv = (void *)&abase_list[i];
1108     dp->ib_vec = ab_getvecR;
1109     dp->ib_ndx = ab_getndxR;
1110     dp->ib_ohm = ab_getohm;
1111     break;
1112     }
1113     if (i < 0) {
1114 greg 2.4 sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis);
1115 greg 2.1 error(WARNING, errmsg);
1116     return;
1117     }
1118     for (i = nabases; i--; )
1119 greg 2.12 if (!strcasecmp(rbasis, abase_list[i].name)) {
1120 greg 2.1 dp->nout = abase_list[i].nangles;
1121     dp->ob_priv = (void *)&abase_list[i];
1122     dp->ob_vec = ab_getvec;
1123     dp->ob_ndx = ab_getndx;
1124     dp->ob_ohm = ab_getohm;
1125     break;
1126     }
1127     if (i < 0) {
1128 greg 2.16 sprintf(errmsg, "undefined RowAngleBasis '%s'", rbasis);
1129 greg 2.1 error(WARNING, errmsg);
1130     return;
1131     }
1132     /* read BSDF data */
1133     sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
1134 greg 2.4 if (!sdata || !*sdata) {
1135 greg 2.1 error(WARNING, "missing BSDF ScatteringData");
1136     return;
1137     }
1138     dp->bsdf = (float *)malloc(sizeof(float)*dp->ninc*dp->nout);
1139     if (dp->bsdf == NULL)
1140     error(SYSTEM, "out of memory in load_bsdf_data");
1141     for (i = 0; i < dp->ninc*dp->nout; i++) {
1142     char *sdnext = fskip(sdata);
1143     if (sdnext == NULL) {
1144     error(WARNING, "bad/missing BSDF ScatteringData");
1145     free(dp->bsdf); dp->bsdf = NULL;
1146     return;
1147     }
1148     while (*sdnext && isspace(*sdnext))
1149     sdnext++;
1150     if (*sdnext == ',') sdnext++;
1151     dp->bsdf[i] = atof(sdata);
1152     sdata = sdnext;
1153     }
1154     while (isspace(*sdata))
1155     sdata++;
1156     if (*sdata) {
1157     sprintf(errmsg, "%d extra characters after BSDF ScatteringData",
1158 greg 2.5 (int)strlen(sdata));
1159 greg 2.1 error(WARNING, errmsg);
1160     }
1161     }
1162    
1163    
1164     static int
1165     check_bsdf_data( /* check that BSDF data is sane */
1166     struct BSDF_data *dp
1167     )
1168     {
1169 greg 2.2 double *omega_iarr, *omega_oarr;
1170 greg 2.7 double dom, contrib, hemi_total, full_total;
1171 greg 2.1 int nneg;
1172 greg 2.2 FVECT v;
1173 greg 2.1 int i, o;
1174    
1175     if (dp == NULL || dp->bsdf == NULL)
1176     return(0);
1177 greg 2.2 omega_iarr = (double *)calloc(dp->ninc, sizeof(double));
1178     omega_oarr = (double *)calloc(dp->nout, sizeof(double));
1179     if ((omega_iarr == NULL) | (omega_oarr == NULL))
1180 greg 2.1 error(SYSTEM, "out of memory in check_bsdf_data");
1181 greg 2.2 /* incoming projected solid angles */
1182     hemi_total = .0;
1183     for (i = dp->ninc; i--; ) {
1184     dom = getBSDF_incohm(dp,i);
1185 greg 2.23 if (dom <= 0) {
1186 greg 2.2 error(WARNING, "zero/negative incoming solid angle");
1187     continue;
1188     }
1189     if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) {
1190     error(WARNING, "illegal incoming BSDF direction");
1191     free(omega_iarr); free(omega_oarr);
1192     return(0);
1193     }
1194     hemi_total += omega_iarr[i] = dom * -v[2];
1195     }
1196     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1197     sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%",
1198     100.*(hemi_total/PI - 1.));
1199     error(WARNING, errmsg);
1200     }
1201     dom = PI / hemi_total; /* fix normalization */
1202     for (i = dp->ninc; i--; )
1203     omega_iarr[i] *= dom;
1204     /* outgoing projected solid angles */
1205 greg 2.1 hemi_total = .0;
1206     for (o = dp->nout; o--; ) {
1207     dom = getBSDF_outohm(dp,o);
1208 greg 2.23 if (dom <= 0) {
1209 greg 2.2 error(WARNING, "zero/negative outgoing solid angle");
1210 greg 2.1 continue;
1211     }
1212     if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) {
1213     error(WARNING, "illegal outgoing BSDF direction");
1214 greg 2.2 free(omega_iarr); free(omega_oarr);
1215 greg 2.1 return(0);
1216     }
1217 greg 2.2 hemi_total += omega_oarr[o] = dom * v[2];
1218 greg 2.1 }
1219     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1220     sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%",
1221     100.*(hemi_total/PI - 1.));
1222     error(WARNING, errmsg);
1223     }
1224 greg 2.2 dom = PI / hemi_total; /* fix normalization */
1225 greg 2.1 for (o = dp->nout; o--; )
1226 greg 2.2 omega_oarr[o] *= dom;
1227     nneg = 0; /* check outgoing totals */
1228     for (i = 0; i < dp->ninc; i++) {
1229 greg 2.1 hemi_total = .0;
1230     for (o = dp->nout; o--; ) {
1231     double f = BSDF_value(dp,i,o);
1232 greg 2.23 if (f >= 0)
1233 greg 2.2 hemi_total += f*omega_oarr[o];
1234     else {
1235     nneg += (f < -FTINY);
1236     BSDF_value(dp,i,o) = .0f;
1237     }
1238 greg 2.1 }
1239 greg 2.8 if (hemi_total > 1.01) {
1240 greg 2.2 sprintf(errmsg,
1241     "incoming BSDF direction %d passes %.1f%% of light",
1242     i, 100.*hemi_total);
1243 greg 2.1 error(WARNING, errmsg);
1244     }
1245     }
1246 greg 2.2 if (nneg) {
1247     sprintf(errmsg, "%d negative BSDF values (ignored)", nneg);
1248 greg 2.1 error(WARNING, errmsg);
1249     }
1250 greg 2.7 full_total = .0; /* reverse roles and check again */
1251 greg 2.2 for (o = 0; o < dp->nout; o++) {
1252     hemi_total = .0;
1253     for (i = dp->ninc; i--; )
1254     hemi_total += BSDF_value(dp,i,o) * omega_iarr[i];
1255    
1256 greg 2.8 if (hemi_total > 1.01) {
1257 greg 2.2 sprintf(errmsg,
1258     "outgoing BSDF direction %d collects %.1f%% of light",
1259     o, 100.*hemi_total);
1260     error(WARNING, errmsg);
1261     }
1262 greg 2.7 full_total += hemi_total*omega_oarr[o];
1263     }
1264     full_total /= PI;
1265 greg 2.8 if (full_total > 1.00001) {
1266     sprintf(errmsg, "BSDF transfers %.4f%% of light",
1267 greg 2.7 100.*full_total);
1268     error(WARNING, errmsg);
1269 greg 2.2 }
1270     free(omega_iarr); free(omega_oarr);
1271 greg 2.1 return(1);
1272     }
1273    
1274 greg 2.6
1275 greg 2.1 struct BSDF_data *
1276     load_BSDF( /* load BSDF data from file */
1277     char *fname
1278     )
1279     {
1280     char *path;
1281     ezxml_t fl, wtl, wld, wdb;
1282     struct BSDF_data *dp;
1283    
1284     path = getpath(fname, getrlibpath(), R_OK);
1285     if (path == NULL) {
1286     sprintf(errmsg, "cannot find BSDF file \"%s\"", fname);
1287     error(WARNING, errmsg);
1288     return(NULL);
1289     }
1290     fl = ezxml_parse_file(path);
1291     if (fl == NULL) {
1292     sprintf(errmsg, "cannot open BSDF \"%s\"", path);
1293     error(WARNING, errmsg);
1294     return(NULL);
1295     }
1296     if (ezxml_error(fl)[0]) {
1297     sprintf(errmsg, "BSDF \"%s\" %s", path, ezxml_error(fl));
1298     error(WARNING, errmsg);
1299     ezxml_free(fl);
1300     return(NULL);
1301     }
1302     if (strcmp(ezxml_name(fl), "WindowElement")) {
1303     sprintf(errmsg,
1304     "BSDF \"%s\": top level node not 'WindowElement'",
1305     path);
1306     error(WARNING, errmsg);
1307     ezxml_free(fl);
1308     return(NULL);
1309     }
1310     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
1311 greg 2.10 if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl,
1312     "DataDefinition"), "IncidentDataStructure")),
1313     "Columns")) {
1314     sprintf(errmsg,
1315     "BSDF \"%s\": unsupported IncidentDataStructure",
1316     path);
1317     error(WARNING, errmsg);
1318     ezxml_free(fl);
1319     return(NULL);
1320     }
1321 greg 2.3 load_angle_basis(ezxml_child(ezxml_child(wtl,
1322     "DataDefinition"), "AngleBasis"));
1323 greg 2.1 dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data));
1324 greg 2.6 load_geometry(dp, ezxml_child(wtl, "Material"));
1325 greg 2.1 for (wld = ezxml_child(wtl, "WavelengthData");
1326     wld != NULL; wld = wld->next) {
1327 greg 2.13 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1328     "Visible"))
1329 greg 2.1 continue;
1330 greg 2.13 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1331     wdb != NULL; wdb = wdb->next)
1332     if (!strcasecmp(ezxml_txt(ezxml_child(wdb,
1333     "WavelengthDataDirection")),
1334 greg 2.1 "Transmission Front"))
1335 greg 2.13 break;
1336     if (wdb != NULL) { /* load front BTDF */
1337     load_bsdf_data(dp, wdb);
1338     break; /* ignore the rest */
1339     }
1340 greg 2.1 }
1341     ezxml_free(fl); /* done with XML file */
1342     if (!check_bsdf_data(dp)) {
1343     sprintf(errmsg, "bad/missing BTDF data in \"%s\"", path);
1344     error(WARNING, errmsg);
1345     free_BSDF(dp);
1346     dp = NULL;
1347     }
1348     return(dp);
1349     }
1350    
1351    
1352     void
1353     free_BSDF( /* free BSDF data structure */
1354     struct BSDF_data *b
1355     )
1356     {
1357     if (b == NULL)
1358     return;
1359 greg 2.6 if (b->mgf != NULL)
1360     free(b->mgf);
1361 greg 2.1 if (b->bsdf != NULL)
1362     free(b->bsdf);
1363     free(b);
1364     }
1365    
1366    
1367     int
1368     r_BSDF_incvec( /* compute random input vector at given location */
1369     FVECT v,
1370     struct BSDF_data *b,
1371     int i,
1372     double rv,
1373     MAT4 xm
1374     )
1375     {
1376     FVECT pert;
1377     double rad;
1378     int j;
1379    
1380     if (!getBSDF_incvec(v, b, i))
1381     return(0);
1382     rad = sqrt(getBSDF_incohm(b, i) / PI);
1383     multisamp(pert, 3, rv);
1384     for (j = 0; j < 3; j++)
1385     v[j] += rad*(2.*pert[j] - 1.);
1386     if (xm != NULL)
1387     multv3(v, v, xm);
1388     return(normalize(v) != 0.0);
1389     }
1390    
1391    
1392     int
1393     r_BSDF_outvec( /* compute random output vector at given location */
1394     FVECT v,
1395     struct BSDF_data *b,
1396     int o,
1397     double rv,
1398     MAT4 xm
1399     )
1400     {
1401     FVECT pert;
1402     double rad;
1403     int j;
1404    
1405     if (!getBSDF_outvec(v, b, o))
1406     return(0);
1407     rad = sqrt(getBSDF_outohm(b, o) / PI);
1408     multisamp(pert, 3, rv);
1409     for (j = 0; j < 3; j++)
1410     v[j] += rad*(2.*pert[j] - 1.);
1411     if (xm != NULL)
1412     multv3(v, v, xm);
1413     return(normalize(v) != 0.0);
1414     }
1415    
1416    
1417     static int
1418     addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */
1419     char *xfarg[],
1420     FVECT xp,
1421     FVECT yp,
1422     FVECT zp
1423     )
1424     {
1425     static char bufs[3][16];
1426     int bn = 0;
1427     char **xfp = xfarg;
1428     double theta;
1429    
1430     if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
1431     /* Special case for X' along Z-axis */
1432     theta = -atan2(yp[0], yp[1]);
1433     *xfp++ = "-ry";
1434     *xfp++ = xp[2] < 0.0 ? "90" : "-90";
1435     *xfp++ = "-rz";
1436     sprintf(bufs[bn], "%f", theta*(180./PI));
1437     *xfp++ = bufs[bn++];
1438     return(xfp - xfarg);
1439     }
1440     theta = atan2(yp[2], zp[2]);
1441     if (!FEQ(theta,0.0)) {
1442     *xfp++ = "-rx";
1443     sprintf(bufs[bn], "%f", theta*(180./PI));
1444     *xfp++ = bufs[bn++];
1445     }
1446     theta = asin(-xp[2]);
1447     if (!FEQ(theta,0.0)) {
1448     *xfp++ = "-ry";
1449     sprintf(bufs[bn], " %f", theta*(180./PI));
1450     *xfp++ = bufs[bn++];
1451     }
1452     theta = atan2(xp[1], xp[0]);
1453     if (!FEQ(theta,0.0)) {
1454     *xfp++ = "-rz";
1455     sprintf(bufs[bn], "%f", theta*(180./PI));
1456     *xfp++ = bufs[bn++];
1457     }
1458     *xfp = NULL;
1459     return(xfp - xfarg);
1460     }
1461    
1462    
1463     int
1464     getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */
1465     MAT4 xm,
1466     FVECT nrm,
1467 greg 2.6 UpDir ud,
1468     char *xfbuf
1469 greg 2.1 )
1470     {
1471     char *xfargs[7];
1472     XF myxf;
1473     FVECT updir, xdest, ydest;
1474 greg 2.6 int i;
1475 greg 2.1
1476     updir[0] = updir[1] = updir[2] = 0.;
1477     switch (ud) {
1478     case UDzneg:
1479     updir[2] = -1.;
1480     break;
1481     case UDyneg:
1482     updir[1] = -1.;
1483     break;
1484     case UDxneg:
1485     updir[0] = -1.;
1486     break;
1487     case UDxpos:
1488     updir[0] = 1.;
1489     break;
1490     case UDypos:
1491     updir[1] = 1.;
1492     break;
1493     case UDzpos:
1494     updir[2] = 1.;
1495     break;
1496     case UDunknown:
1497     return(0);
1498     }
1499     fcross(xdest, updir, nrm);
1500     if (normalize(xdest) == 0.0)
1501     return(0);
1502     fcross(ydest, nrm, xdest);
1503     xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs);
1504     copymat4(xm, myxf.xfm);
1505 greg 2.6 if (xfbuf == NULL)
1506     return(1);
1507     /* return xf arguments as well */
1508     for (i = 0; xfargs[i] != NULL; i++) {
1509     *xfbuf++ = ' ';
1510     strcpy(xfbuf, xfargs[i]);
1511     while (*xfbuf) ++xfbuf;
1512     }
1513 greg 2.1 return(1);
1514     }
1515 greg 2.15
1516     /*######### END DEPRECATED ROUTINES #######*/
1517     /*################################################################*/