ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.28
Committed: Thu Apr 28 00:24:43 2011 UTC (13 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.27: +1 -3 lines
Log Message:
Removed debugging

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.28 static const char RCSid[] = "$Id: bsdf.c,v 2.27 2011/04/27 23:05:51 greg Exp $";
3 greg 2.1 #endif
4     /*
5 greg 2.15 * bsdf.c
6     *
7     * Definitions for bidirectional scattering distribution functions.
8     *
9     * Created by Greg Ward on 1/10/11.
10     *
11     */
12    
13     #include <stdio.h>
14     #include <stdlib.h>
15     #include <math.h>
16     #include "ezxml.h"
17     #include "hilbert.h"
18     #include "bsdf.h"
19     #include "bsdf_m.h"
20     #include "bsdf_t.h"
21    
22     /* English ASCII strings corresponding to ennumerated errors */
23     const char *SDerrorEnglish[] = {
24     "No error",
25     "Memory error",
26     "File input/output error",
27     "File format error",
28     "Illegal argument",
29     "Invalid data",
30     "Unsupported feature",
31     "Internal program error",
32     "Unknown error"
33     };
34    
35     /* Additional information on last error (ASCII English) */
36     char SDerrorDetail[256];
37    
38     /* Cache of loaded BSDFs */
39     struct SDCache_s *SDcacheList = NULL;
40    
41     /* Retain BSDFs in cache list */
42     int SDretainSet = SDretainNone;
43    
44     /* Report any error to the indicated stream (in English) */
45     SDError
46     SDreportEnglish(SDError ec, FILE *fp)
47     {
48 greg 2.21 if (!ec)
49     return SDEnone;
50     if ((ec < SDEnone) | (ec > SDEunknown)) {
51     SDerrorDetail[0] = '\0';
52     ec = SDEunknown;
53     }
54 greg 2.15 if (fp == NULL)
55     return ec;
56     fputs(SDerrorEnglish[ec], fp);
57     if (SDerrorDetail[0]) {
58     fputs(": ", fp);
59     fputs(SDerrorDetail, fp);
60     }
61     fputc('\n', fp);
62     if (fp != stderr)
63     fflush(fp);
64     return ec;
65     }
66    
67     static double
68     to_meters( /* return factor to convert given unit to meters */
69     const char *unit
70     )
71     {
72     if (unit == NULL) return(1.); /* safe assumption? */
73     if (!strcasecmp(unit, "Meter")) return(1.);
74     if (!strcasecmp(unit, "Foot")) return(.3048);
75     if (!strcasecmp(unit, "Inch")) return(.0254);
76     if (!strcasecmp(unit, "Centimeter")) return(.01);
77     if (!strcasecmp(unit, "Millimeter")) return(.001);
78     sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
79     return(-1.);
80     }
81    
82     /* Load geometric dimensions and description (if any) */
83     static SDError
84 greg 2.16 SDloadGeometry(SDData *sd, ezxml_t wdb)
85 greg 2.15 {
86     ezxml_t geom;
87     double cfact;
88     const char *fmt, *mgfstr;
89    
90 greg 2.16 if (wdb == NULL) /* no geometry section? */
91     return SDEnone;
92     sd->dim[0] = sd->dim[1] = sd->dim[2] = .0;
93 greg 2.15 if ((geom = ezxml_child(wdb, "Width")) != NULL)
94 greg 2.16 sd->dim[0] = atof(ezxml_txt(geom)) *
95 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
96     if ((geom = ezxml_child(wdb, "Height")) != NULL)
97 greg 2.16 sd->dim[1] = atof(ezxml_txt(geom)) *
98 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
99     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
100 greg 2.16 sd->dim[2] = atof(ezxml_txt(geom)) *
101 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
102 greg 2.23 if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) {
103 greg 2.17 sprintf(SDerrorDetail, "Negative size in \"%s\"", sd->name);
104 greg 2.15 return SDEdata;
105 greg 2.17 }
106 greg 2.15 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
107     (mgfstr = ezxml_txt(geom)) == NULL)
108     return SDEnone;
109     if ((fmt = ezxml_attr(geom, "format")) != NULL &&
110     strcasecmp(fmt, "MGF")) {
111     sprintf(SDerrorDetail,
112     "Unrecognized geometry format '%s' in \"%s\"",
113 greg 2.16 fmt, sd->name);
114 greg 2.15 return SDEsupport;
115     }
116     cfact = to_meters(ezxml_attr(geom, "unit"));
117 greg 2.16 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
118     if (sd->mgf == NULL) {
119 greg 2.15 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
120     return SDEmemory;
121     }
122     if (cfact < 0.99 || cfact > 1.01)
123 greg 2.16 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
124 greg 2.15 else
125 greg 2.16 strcpy(sd->mgf, mgfstr);
126 greg 2.15 return SDEnone;
127     }
128    
129     /* Load a BSDF struct from the given file (free first and keep name) */
130     SDError
131     SDloadFile(SDData *sd, const char *fname)
132     {
133     SDError lastErr;
134 greg 2.16 ezxml_t fl, wtl;
135 greg 2.15
136     if ((sd == NULL) | (fname == NULL || !*fname))
137     return SDEargument;
138     /* free old data, keeping name */
139     SDfreeBSDF(sd);
140     /* parse XML file */
141     fl = ezxml_parse_file(fname);
142     if (fl == NULL) {
143     sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
144     return SDEfile;
145     }
146     if (ezxml_error(fl)[0]) {
147     sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
148     ezxml_free(fl);
149     return SDEformat;
150     }
151 greg 2.16 if (strcmp(ezxml_name(fl), "WindowElement")) {
152     sprintf(SDerrorDetail,
153     "BSDF \"%s\": top level node not 'WindowElement'",
154     sd->name);
155     ezxml_free(fl);
156     return SDEformat;
157     }
158     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
159     if (wtl == NULL) {
160     sprintf(SDerrorDetail, "BSDF \"%s\": no optical layer'",
161     sd->name);
162     ezxml_free(fl);
163     return SDEformat;
164     }
165 greg 2.15 /* load geometry if present */
166 greg 2.16 lastErr = SDloadGeometry(sd, ezxml_child(wtl, "Material"));
167     if (lastErr)
168 greg 2.15 return lastErr;
169     /* try loading variable resolution data */
170 greg 2.16 lastErr = SDloadTre(sd, wtl);
171 greg 2.15 /* check our result */
172     switch (lastErr) {
173     case SDEformat:
174     case SDEdata:
175     case SDEsupport: /* possibly we just tried the wrong format */
176 greg 2.16 lastErr = SDloadMtx(sd, wtl);
177 greg 2.15 break;
178     default: /* variable res. OK else serious error */
179     break;
180     }
181     /* done with XML file */
182     ezxml_free(fl);
183 greg 2.16
184     if (lastErr) { /* was there a load error? */
185     SDfreeBSDF(sd);
186     return lastErr;
187     }
188     /* remove any insignificant components */
189     if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
190     SDfreeSpectralDF(sd->rf); sd->rf = NULL;
191     }
192     if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
193     SDfreeSpectralDF(sd->rb); sd->rb = NULL;
194     }
195     if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
196     SDfreeSpectralDF(sd->tf); sd->tf = NULL;
197     }
198     /* return success */
199     return SDEnone;
200 greg 2.15 }
201    
202     /* Allocate new spectral distribution function */
203     SDSpectralDF *
204     SDnewSpectralDF(int nc)
205     {
206     SDSpectralDF *df;
207    
208     if (nc <= 0) {
209     strcpy(SDerrorDetail, "Zero component spectral DF request");
210     return NULL;
211     }
212     df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
213     (nc-1)*sizeof(SDComponent));
214     if (df == NULL) {
215     sprintf(SDerrorDetail,
216     "Cannot allocate %d component spectral DF", nc);
217     return NULL;
218     }
219     df->minProjSA = .0;
220     df->maxHemi = .0;
221     df->ncomp = nc;
222     memset(df->comp, 0, nc*sizeof(SDComponent));
223     return df;
224     }
225    
226     /* Free cached cumulative distributions for BSDF component */
227     void
228     SDfreeCumulativeCache(SDSpectralDF *df)
229     {
230     int n;
231     SDCDst *cdp;
232    
233     if (df == NULL)
234     return;
235     for (n = df->ncomp; n-- > 0; )
236     while ((cdp = df->comp[n].cdList) != NULL) {
237     df->comp[n].cdList = cdp->next;
238     free(cdp);
239     }
240     }
241    
242     /* Free a spectral distribution function */
243     void
244     SDfreeSpectralDF(SDSpectralDF *df)
245     {
246     int n;
247    
248     if (df == NULL)
249     return;
250     SDfreeCumulativeCache(df);
251     for (n = df->ncomp; n-- > 0; )
252     (*df->comp[n].func->freeSC)(df->comp[n].dist);
253     free(df);
254     }
255    
256     /* Shorten file path to useable BSDF name, removing suffix */
257     void
258 greg 2.16 SDclipName(char *res, const char *fname)
259 greg 2.15 {
260     const char *cp, *dot = NULL;
261    
262     for (cp = fname; *cp; cp++)
263     if (*cp == '.')
264     dot = cp;
265     if ((dot == NULL) | (dot < fname+2))
266     dot = cp;
267     if (dot - fname >= SDnameLn)
268     fname = dot - SDnameLn + 1;
269     while (fname < dot)
270     *res++ = *fname++;
271     *res = '\0';
272     }
273    
274     /* Initialize an unused BSDF struct (simply clears to zeroes) */
275     void
276 greg 2.20 SDclearBSDF(SDData *sd, const char *fname)
277 greg 2.15 {
278 greg 2.20 if (sd == NULL)
279     return;
280     memset(sd, 0, sizeof(SDData));
281     if (fname == NULL)
282     return;
283     SDclipName(sd->name, fname);
284 greg 2.15 }
285    
286     /* Free data associated with BSDF struct */
287     void
288     SDfreeBSDF(SDData *sd)
289     {
290     if (sd == NULL)
291     return;
292     if (sd->mgf != NULL) {
293     free(sd->mgf);
294     sd->mgf = NULL;
295     }
296     if (sd->rf != NULL) {
297     SDfreeSpectralDF(sd->rf);
298     sd->rf = NULL;
299     }
300     if (sd->rb != NULL) {
301     SDfreeSpectralDF(sd->rb);
302     sd->rb = NULL;
303     }
304     if (sd->tf != NULL) {
305     SDfreeSpectralDF(sd->tf);
306     sd->tf = NULL;
307     }
308     sd->rLambFront.cieY = .0;
309 greg 2.16 sd->rLambFront.spec.flags = 0;
310 greg 2.15 sd->rLambBack.cieY = .0;
311 greg 2.16 sd->rLambBack.spec.flags = 0;
312 greg 2.15 sd->tLamb.cieY = .0;
313 greg 2.16 sd->tLamb.spec.flags = 0;
314 greg 2.15 }
315    
316     /* Find writeable BSDF by name, or allocate new cache entry if absent */
317     SDData *
318     SDgetCache(const char *bname)
319     {
320     struct SDCache_s *sdl;
321     char sdnam[SDnameLn];
322    
323     if (bname == NULL)
324     return NULL;
325    
326     SDclipName(sdnam, bname);
327     for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
328     if (!strcmp(sdl->bsdf.name, sdnam)) {
329     sdl->refcnt++;
330     return &sdl->bsdf;
331     }
332    
333     sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
334     if (sdl == NULL)
335     return NULL;
336    
337     strcpy(sdl->bsdf.name, sdnam);
338     sdl->next = SDcacheList;
339     SDcacheList = sdl;
340    
341 greg 2.21 sdl->refcnt = 1;
342 greg 2.15 return &sdl->bsdf;
343     }
344    
345     /* Get loaded BSDF from cache (or load and cache it on first call) */
346     /* Report any problem to stderr and return NULL on failure */
347     const SDData *
348     SDcacheFile(const char *fname)
349     {
350     SDData *sd;
351     SDError ec;
352    
353     if (fname == NULL || !*fname)
354     return NULL;
355     SDerrorDetail[0] = '\0';
356     if ((sd = SDgetCache(fname)) == NULL) {
357     SDreportEnglish(SDEmemory, stderr);
358     return NULL;
359     }
360     if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
361     SDreportEnglish(ec, stderr);
362     SDfreeCache(sd);
363     return NULL;
364     }
365     return sd;
366     }
367    
368     /* Free a BSDF from our cache (clear all if NULL) */
369     void
370     SDfreeCache(const SDData *sd)
371     {
372     struct SDCache_s *sdl, *sdLast = NULL;
373    
374     if (sd == NULL) { /* free entire list */
375     while ((sdl = SDcacheList) != NULL) {
376     SDcacheList = sdl->next;
377     SDfreeBSDF(&sdl->bsdf);
378     free(sdl);
379     }
380     return;
381     }
382     for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
383     if (&sdl->bsdf == sd)
384     break;
385 greg 2.21 if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
386 greg 2.15 return; /* missing or still in use */
387     /* keep unreferenced data? */
388     if (SDisLoaded(sd) && SDretainSet) {
389     if (SDretainSet == SDretainAll)
390     return; /* keep everything */
391     /* else free cumulative data */
392     SDfreeCumulativeCache(sd->rf);
393     SDfreeCumulativeCache(sd->rb);
394     SDfreeCumulativeCache(sd->tf);
395     return;
396     }
397     /* remove from list and free */
398     if (sdLast == NULL)
399     SDcacheList = sdl->next;
400     else
401     sdLast->next = sdl->next;
402     SDfreeBSDF(&sdl->bsdf);
403     free(sdl);
404     }
405    
406     /* Sample an individual BSDF component */
407     SDError
408 greg 2.24 SDsampComponent(SDValue *sv, FVECT ioVec, double randX, SDComponent *sdc)
409 greg 2.15 {
410     float coef[SDmaxCh];
411     SDError ec;
412 greg 2.24 FVECT inVec;
413 greg 2.15 const SDCDst *cd;
414     double d;
415     int n;
416     /* check arguments */
417 greg 2.24 if ((sv == NULL) | (ioVec == NULL) | (sdc == NULL))
418 greg 2.15 return SDEargument;
419     /* get cumulative distribution */
420 greg 2.24 VCOPY(inVec, ioVec);
421 greg 2.15 cd = (*sdc->func->getCDist)(inVec, sdc);
422     if (cd == NULL)
423     return SDEmemory;
424     if (cd->cTotal <= 1e-7) { /* anything to sample? */
425     sv->spec = c_dfcolor;
426     sv->cieY = .0;
427 greg 2.24 memset(ioVec, 0, 3*sizeof(double));
428 greg 2.15 return SDEnone;
429     }
430     sv->cieY = cd->cTotal;
431     /* compute sample direction */
432 greg 2.24 ec = (*sdc->func->sampCDist)(ioVec, randX, cd);
433 greg 2.15 if (ec)
434     return ec;
435     /* get BSDF color */
436 greg 2.25 n = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
437 greg 2.15 if (n <= 0) {
438     strcpy(SDerrorDetail, "BSDF sample value error");
439     return SDEinternal;
440     }
441     sv->spec = sdc->cspec[0];
442     d = coef[0];
443     while (--n) {
444     c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
445     d += coef[n];
446     }
447     /* make sure everything is set */
448     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
449     return SDEnone;
450     }
451    
452     #define MS_MAXDIM 15
453    
454     /* Convert 1-dimensional random variable to N-dimensional */
455     void
456     SDmultiSamp(double t[], int n, double randX)
457     {
458     unsigned nBits;
459     double scale;
460     bitmask_t ndx, coord[MS_MAXDIM];
461    
462     while (n > MS_MAXDIM) /* punt for higher dimensions */
463 greg 2.19 t[--n] = rand()*(1./(RAND_MAX+.5));
464 greg 2.15 nBits = (8*sizeof(bitmask_t) - 1) / n;
465     ndx = randX * (double)((bitmask_t)1 << (nBits*n));
466     /* get coordinate on Hilbert curve */
467     hilbert_i2c(n, nBits, ndx, coord);
468     /* convert back to [0,1) range */
469     scale = 1. / (double)((bitmask_t)1 << nBits);
470     while (n--)
471 greg 2.19 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
472 greg 2.15 }
473    
474     #undef MS_MAXDIM
475    
476     /* Generate diffuse hemispherical sample */
477     static void
478     SDdiffuseSamp(FVECT outVec, int outFront, double randX)
479     {
480     /* convert to position on hemisphere */
481     SDmultiSamp(outVec, 2, randX);
482     SDsquare2disk(outVec, outVec[0], outVec[1]);
483     outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
484 greg 2.23 if (outVec[2] > 0) /* a bit of paranoia */
485 greg 2.15 outVec[2] = sqrt(outVec[2]);
486     if (!outFront) /* going out back? */
487     outVec[2] = -outVec[2];
488     }
489    
490     /* Query projected solid angle coverage for non-diffuse BSDF direction */
491     SDError
492 greg 2.22 SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2,
493     int qflags, const SDData *sd)
494 greg 2.15 {
495 greg 2.23 SDSpectralDF *rdf, *tdf;
496 greg 2.15 SDError ec;
497     int i;
498     /* check arguments */
499 greg 2.26 if ((projSA == NULL) | (v1 == NULL) | (sd == NULL))
500 greg 2.15 return SDEargument;
501     /* initialize extrema */
502 greg 2.17 switch (qflags) {
503 greg 2.15 case SDqueryMax:
504     projSA[0] = .0;
505     break;
506     case SDqueryMin+SDqueryMax:
507     projSA[1] = .0;
508     /* fall through */
509     case SDqueryMin:
510     projSA[0] = 10.;
511     break;
512     case 0:
513     return SDEargument;
514     }
515 greg 2.23 if (v1[2] > 0) /* front surface query? */
516 greg 2.15 rdf = sd->rf;
517     else
518     rdf = sd->rb;
519 greg 2.26 tdf = sd->tf;
520     if (v2 != NULL) /* bidirectional? */
521     if (v1[2] > 0 ^ v2[2] > 0)
522     rdf = NULL;
523     else
524     tdf = NULL;
525 greg 2.15 ec = SDEdata; /* run through components */
526     for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
527 greg 2.22 ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2,
528 greg 2.25 qflags, &rdf->comp[i]);
529 greg 2.15 if (ec)
530     return ec;
531     }
532 greg 2.23 for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) {
533     ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2,
534 greg 2.25 qflags, &tdf->comp[i]);
535 greg 2.15 if (ec)
536     return ec;
537     }
538 greg 2.17 if (ec) { /* all diffuse? */
539     projSA[0] = M_PI;
540     if (qflags == SDqueryMin+SDqueryMax)
541     projSA[1] = M_PI;
542     }
543     return SDEnone;
544 greg 2.15 }
545    
546     /* Return BSDF for the given incident and scattered ray vectors */
547     SDError
548     SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
549     {
550     int inFront, outFront;
551     SDSpectralDF *sdf;
552     float coef[SDmaxCh];
553     int nch, i;
554     /* check arguments */
555     if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
556     return SDEargument;
557     /* whose side are we on? */
558 greg 2.23 inFront = (inVec[2] > 0);
559     outFront = (outVec[2] > 0);
560 greg 2.15 /* start with diffuse portion */
561     if (inFront & outFront) {
562     *sv = sd->rLambFront;
563     sdf = sd->rf;
564     } else if (!(inFront | outFront)) {
565     *sv = sd->rLambBack;
566     sdf = sd->rb;
567     } else /* inFront ^ outFront */ {
568     *sv = sd->tLamb;
569     sdf = sd->tf;
570     }
571     sv->cieY *= 1./M_PI;
572     /* add non-diffuse components */
573     i = (sdf != NULL) ? sdf->ncomp : 0;
574     while (i-- > 0) {
575     nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
576 greg 2.25 &sdf->comp[i]);
577 greg 2.15 while (nch-- > 0) {
578     c_cmix(&sv->spec, sv->cieY, &sv->spec,
579     coef[nch], &sdf->comp[i].cspec[nch]);
580     sv->cieY += coef[nch];
581     }
582     }
583     /* make sure everything is set */
584     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
585     return SDEnone;
586     }
587    
588     /* Compute directional hemispherical scattering at this incident angle */
589     double
590     SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
591     {
592     double hsum;
593     SDSpectralDF *rdf;
594     const SDCDst *cd;
595     int i;
596     /* check arguments */
597     if ((inVec == NULL) | (sd == NULL))
598     return .0;
599     /* gather diffuse components */
600 greg 2.23 if (inVec[2] > 0) {
601 greg 2.15 hsum = sd->rLambFront.cieY;
602     rdf = sd->rf;
603     } else /* !inFront */ {
604     hsum = sd->rLambBack.cieY;
605     rdf = sd->rb;
606     }
607     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
608     hsum = .0;
609     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
610     hsum += sd->tLamb.cieY;
611     /* gather non-diffuse components */
612     i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
613     rdf != NULL) ? rdf->ncomp : 0;
614     while (i-- > 0) { /* non-diffuse reflection */
615     cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
616     if (cd != NULL)
617     hsum += cd->cTotal;
618     }
619     i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
620     sd->tf != NULL) ? sd->tf->ncomp : 0;
621     while (i-- > 0) { /* non-diffuse transmission */
622     cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]);
623     if (cd != NULL)
624     hsum += cd->cTotal;
625     }
626     return hsum;
627     }
628    
629     /* Sample BSDF direction based on the given random variable */
630     SDError
631 greg 2.24 SDsampBSDF(SDValue *sv, FVECT ioVec, double randX, int sflags, const SDData *sd)
632 greg 2.15 {
633     SDError ec;
634 greg 2.24 FVECT inVec;
635 greg 2.15 int inFront;
636     SDSpectralDF *rdf;
637     double rdiff;
638     float coef[SDmaxCh];
639     int i, j, n, nr;
640     SDComponent *sdc;
641     const SDCDst **cdarr = NULL;
642     /* check arguments */
643 greg 2.24 if ((sv == NULL) | (ioVec == NULL) | (sd == NULL) |
644 greg 2.23 (randX < 0) | (randX >= 1.))
645 greg 2.15 return SDEargument;
646     /* whose side are we on? */
647 greg 2.24 VCOPY(inVec, ioVec);
648 greg 2.23 inFront = (inVec[2] > 0);
649 greg 2.15 /* remember diffuse portions */
650     if (inFront) {
651     *sv = sd->rLambFront;
652     rdf = sd->rf;
653     } else /* !inFront */ {
654     *sv = sd->rLambBack;
655     rdf = sd->rb;
656     }
657     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
658     sv->cieY = .0;
659     rdiff = sv->cieY;
660     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
661     sv->cieY += sd->tLamb.cieY;
662     /* gather non-diffuse components */
663     i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
664     rdf != NULL) ? rdf->ncomp : 0;
665     j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
666     sd->tf != NULL) ? sd->tf->ncomp : 0;
667     n = i + j;
668     if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
669     return SDEmemory;
670     while (j-- > 0) { /* non-diffuse transmission */
671     cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]);
672     if (cdarr[i+j] == NULL) {
673     free(cdarr);
674     return SDEmemory;
675     }
676     sv->cieY += cdarr[i+j]->cTotal;
677     }
678     while (i-- > 0) { /* non-diffuse reflection */
679     cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
680     if (cdarr[i] == NULL) {
681     free(cdarr);
682     return SDEmemory;
683     }
684     sv->cieY += cdarr[i]->cTotal;
685     }
686     if (sv->cieY <= 1e-7) { /* anything to sample? */
687     sv->cieY = .0;
688 greg 2.24 memset(ioVec, 0, 3*sizeof(double));
689 greg 2.15 return SDEnone;
690     }
691     /* scale random variable */
692     randX *= sv->cieY;
693     /* diffuse reflection? */
694     if (randX < rdiff) {
695 greg 2.24 SDdiffuseSamp(ioVec, inFront, randX/rdiff);
696 greg 2.15 goto done;
697     }
698     randX -= rdiff;
699     /* diffuse transmission? */
700     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
701     if (randX < sd->tLamb.cieY) {
702     sv->spec = sd->tLamb.spec;
703 greg 2.24 SDdiffuseSamp(ioVec, !inFront, randX/sd->tLamb.cieY);
704 greg 2.15 goto done;
705     }
706     randX -= sd->tLamb.cieY;
707     }
708     /* else one of cumulative dist. */
709     for (i = 0; i < n && randX < cdarr[i]->cTotal; i++)
710     randX -= cdarr[i]->cTotal;
711     if (i >= n)
712     return SDEinternal;
713     /* compute sample direction */
714     sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr];
715 greg 2.24 ec = (*sdc->func->sampCDist)(ioVec, randX/cdarr[i]->cTotal, cdarr[i]);
716 greg 2.15 if (ec)
717     return ec;
718     /* compute color */
719 greg 2.25 j = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
720 greg 2.15 if (j <= 0) {
721     sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
722     sd->name);
723     return SDEinternal;
724     }
725     sv->spec = sdc->cspec[0];
726     rdiff = coef[0];
727     while (--j) {
728     c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
729     rdiff += coef[j];
730     }
731     done:
732     if (cdarr != NULL)
733     free(cdarr);
734     /* make sure everything is set */
735     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
736     return SDEnone;
737     }
738    
739     /* Compute World->BSDF transform from surface normal and up (Y) vector */
740     SDError
741     SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
742     {
743     if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
744     return SDEargument;
745     VCOPY(vMtx[2], sNrm);
746 greg 2.23 if (normalize(vMtx[2]) == 0)
747 greg 2.15 return SDEargument;
748     fcross(vMtx[0], uVec, vMtx[2]);
749 greg 2.23 if (normalize(vMtx[0]) == 0)
750 greg 2.15 return SDEargument;
751     fcross(vMtx[1], vMtx[2], vMtx[0]);
752     return SDEnone;
753     }
754    
755     /* Compute inverse transform */
756     SDError
757     SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
758     {
759     RREAL mTmp[3][3];
760     double d;
761    
762     if ((iMtx == NULL) | (vMtx == NULL))
763     return SDEargument;
764     /* compute determinant */
765     mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
766     mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
767     mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
768     d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
769 greg 2.23 if (d == 0) {
770 greg 2.15 strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
771     return SDEargument;
772     }
773     d = 1./d; /* invert matrix */
774     mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
775     mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
776     mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
777     mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
778     mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
779     mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
780     mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
781     memcpy(iMtx, mTmp, sizeof(mTmp));
782     return SDEnone;
783     }
784    
785     /* Transform and normalize direction (column) vector */
786     SDError
787     SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
788     {
789     FVECT vTmp;
790    
791     if ((resVec == NULL) | (inpVec == NULL))
792     return SDEargument;
793     if (vMtx == NULL) { /* assume they just want to normalize */
794     if (resVec != inpVec)
795     VCOPY(resVec, inpVec);
796 greg 2.23 return (normalize(resVec) > 0) ? SDEnone : SDEargument;
797 greg 2.15 }
798     vTmp[0] = DOT(vMtx[0], inpVec);
799     vTmp[1] = DOT(vMtx[1], inpVec);
800     vTmp[2] = DOT(vMtx[2], inpVec);
801 greg 2.23 if (normalize(vTmp) == 0)
802 greg 2.15 return SDEargument;
803     VCOPY(resVec, vTmp);
804     return SDEnone;
805     }
806    
807     /*################################################################*/
808     /*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/
809    
810     /*
811 greg 2.1 * Routines for handling BSDF data
812     */
813    
814     #include "standard.h"
815     #include "paths.h"
816     #include <ctype.h>
817    
818     #define MAXLATS 46 /* maximum number of latitudes */
819    
820     /* BSDF angle specification */
821     typedef struct {
822     char name[64]; /* basis name */
823     int nangles; /* total number of directions */
824     struct {
825     float tmin; /* starting theta */
826     short nphis; /* number of phis (0 term) */
827     } lat[MAXLATS+1]; /* latitudes */
828     } ANGLE_BASIS;
829    
830 greg 2.4 #define MAXABASES 7 /* limit on defined bases */
831 greg 2.1
832     static ANGLE_BASIS abase_list[MAXABASES] = {
833     {
834     "LBNL/Klems Full", 145,
835     { {-5., 1},
836     {5., 8},
837     {15., 16},
838     {25., 20},
839     {35., 24},
840     {45., 24},
841     {55., 24},
842     {65., 16},
843     {75., 12},
844     {90., 0} }
845     }, {
846     "LBNL/Klems Half", 73,
847     { {-6.5, 1},
848     {6.5, 8},
849     {19.5, 12},
850     {32.5, 16},
851     {46.5, 20},
852     {61.5, 12},
853     {76.5, 4},
854     {90., 0} }
855     }, {
856     "LBNL/Klems Quarter", 41,
857     { {-9., 1},
858     {9., 8},
859     {27., 12},
860     {46., 12},
861     {66., 8},
862     {90., 0} }
863     }
864     };
865    
866     static int nabases = 3; /* current number of defined bases */
867    
868 greg 2.9 #define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6)
869    
870     static int
871     fequal(double a, double b)
872     {
873 greg 2.23 if (b != 0)
874 greg 2.9 a = a/b - 1.;
875     return((a <= 1e-6) & (a >= -1e-6));
876     }
877 greg 2.3
878 greg 2.14 /* Returns the name of the given tag */
879 greg 2.3 #ifdef ezxml_name
880     #undef ezxml_name
881     static char *
882     ezxml_name(ezxml_t xml)
883     {
884     if (xml == NULL)
885     return(NULL);
886     return(xml->name);
887     }
888     #endif
889    
890 greg 2.14 /* Returns the given tag's character content or empty string if none */
891 greg 2.3 #ifdef ezxml_txt
892     #undef ezxml_txt
893     static char *
894     ezxml_txt(ezxml_t xml)
895     {
896     if (xml == NULL)
897     return("");
898     return(xml->txt);
899     }
900     #endif
901    
902 greg 2.1
903     static int
904     ab_getvec( /* get vector for this angle basis index */
905     FVECT v,
906     int ndx,
907     void *p
908     )
909     {
910     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
911     int li;
912 greg 2.2 double pol, azi, d;
913 greg 2.1
914     if ((ndx < 0) | (ndx >= ab->nangles))
915     return(0);
916     for (li = 0; ndx >= ab->lat[li].nphis; li++)
917     ndx -= ab->lat[li].nphis;
918 greg 2.2 pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin);
919 greg 2.1 azi = 2.*PI*ndx/ab->lat[li].nphis;
920 greg 2.2 v[2] = d = cos(pol);
921     d = sqrt(1. - d*d); /* sin(pol) */
922 greg 2.1 v[0] = cos(azi)*d;
923     v[1] = sin(azi)*d;
924     return(1);
925     }
926    
927    
928     static int
929     ab_getndx( /* get index corresponding to the given vector */
930     FVECT v,
931     void *p
932     )
933     {
934     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
935     int li, ndx;
936 greg 2.2 double pol, azi, d;
937 greg 2.1
938     if ((v[2] < -1.0) | (v[2] > 1.0))
939     return(-1);
940 greg 2.2 pol = 180.0/PI*acos(v[2]);
941 greg 2.1 azi = 180.0/PI*atan2(v[1], v[0]);
942     if (azi < 0.0) azi += 360.0;
943 greg 2.2 for (li = 1; ab->lat[li].tmin <= pol; li++)
944 greg 2.1 if (!ab->lat[li].nphis)
945     return(-1);
946     --li;
947     ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
948     if (ndx >= ab->lat[li].nphis) ndx = 0;
949     while (li--)
950     ndx += ab->lat[li].nphis;
951     return(ndx);
952     }
953    
954    
955     static double
956     ab_getohm( /* get solid angle for this angle basis index */
957     int ndx,
958     void *p
959     )
960     {
961     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
962     int li;
963     double theta, theta1;
964    
965     if ((ndx < 0) | (ndx >= ab->nangles))
966     return(0);
967     for (li = 0; ndx >= ab->lat[li].nphis; li++)
968     ndx -= ab->lat[li].nphis;
969     theta1 = PI/180. * ab->lat[li+1].tmin;
970     if (ab->lat[li].nphis == 1) { /* special case */
971     if (ab->lat[li].tmin > FTINY)
972     error(USER, "unsupported BSDF coordinate system");
973     return(2.*PI*(1. - cos(theta1)));
974     }
975     theta = PI/180. * ab->lat[li].tmin;
976     return(2.*PI*(cos(theta) - cos(theta1))/(double)ab->lat[li].nphis);
977     }
978    
979    
980     static int
981     ab_getvecR( /* get reverse vector for this angle basis index */
982     FVECT v,
983     int ndx,
984     void *p
985     )
986     {
987     if (!ab_getvec(v, ndx, p))
988     return(0);
989    
990     v[0] = -v[0];
991     v[1] = -v[1];
992     v[2] = -v[2];
993    
994     return(1);
995     }
996    
997    
998     static int
999     ab_getndxR( /* get index corresponding to the reverse vector */
1000     FVECT v,
1001     void *p
1002     )
1003     {
1004     FVECT v2;
1005    
1006     v2[0] = -v[0];
1007     v2[1] = -v[1];
1008     v2[2] = -v[2];
1009    
1010     return ab_getndx(v2, p);
1011     }
1012    
1013    
1014     static void
1015 greg 2.4 load_angle_basis( /* load custom BSDF angle basis */
1016 greg 2.3 ezxml_t wab
1017     )
1018     {
1019     char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
1020     ezxml_t wbb;
1021     int i;
1022    
1023 greg 2.4 if (!abname || !*abname)
1024 greg 2.3 return;
1025     for (i = nabases; i--; )
1026 greg 2.12 if (!strcasecmp(abname, abase_list[i].name))
1027 greg 2.4 return; /* assume it's the same */
1028 greg 2.3 if (nabases >= MAXABASES)
1029     error(INTERNAL, "too many angle bases");
1030     strcpy(abase_list[nabases].name, abname);
1031     abase_list[nabases].nangles = 0;
1032     for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
1033     wbb != NULL; i++, wbb = wbb->next) {
1034     if (i >= MAXLATS)
1035     error(INTERNAL, "too many latitudes in custom basis");
1036     abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
1037     ezxml_child(ezxml_child(wbb,
1038     "ThetaBounds"), "UpperTheta")));
1039     if (!i)
1040     abase_list[nabases].lat[i].tmin =
1041     -abase_list[nabases].lat[i+1].tmin;
1042 greg 2.9 else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
1043 greg 2.3 "ThetaBounds"), "LowerTheta"))),
1044     abase_list[nabases].lat[i].tmin))
1045     error(WARNING, "theta values disagree in custom basis");
1046     abase_list[nabases].nangles +=
1047     abase_list[nabases].lat[i].nphis =
1048     atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
1049     }
1050     abase_list[nabases++].lat[i].nphis = 0;
1051     }
1052    
1053    
1054 greg 2.6 static void
1055     load_geometry( /* load geometric dimensions and description (if any) */
1056     struct BSDF_data *dp,
1057     ezxml_t wdb
1058     )
1059     {
1060     ezxml_t geom;
1061     double cfact;
1062     const char *fmt, *mgfstr;
1063    
1064     dp->dim[0] = dp->dim[1] = dp->dim[2] = 0;
1065     dp->mgf = NULL;
1066     if ((geom = ezxml_child(wdb, "Width")) != NULL)
1067     dp->dim[0] = atof(ezxml_txt(geom)) *
1068     to_meters(ezxml_attr(geom, "unit"));
1069     if ((geom = ezxml_child(wdb, "Height")) != NULL)
1070     dp->dim[1] = atof(ezxml_txt(geom)) *
1071     to_meters(ezxml_attr(geom, "unit"));
1072     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
1073     dp->dim[2] = atof(ezxml_txt(geom)) *
1074     to_meters(ezxml_attr(geom, "unit"));
1075     if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
1076     (mgfstr = ezxml_txt(geom)) == NULL)
1077     return;
1078     if ((fmt = ezxml_attr(geom, "format")) != NULL &&
1079     strcasecmp(fmt, "MGF")) {
1080     sprintf(errmsg, "unrecognized geometry format '%s'", fmt);
1081     error(WARNING, errmsg);
1082     return;
1083     }
1084     cfact = to_meters(ezxml_attr(geom, "unit"));
1085     dp->mgf = (char *)malloc(strlen(mgfstr)+32);
1086     if (dp->mgf == NULL)
1087     error(SYSTEM, "out of memory in load_geometry");
1088     if (cfact < 0.99 || cfact > 1.01)
1089     sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
1090     else
1091     strcpy(dp->mgf, mgfstr);
1092     }
1093    
1094    
1095 greg 2.3 static void
1096 greg 2.1 load_bsdf_data( /* load BSDF distribution for this wavelength */
1097     struct BSDF_data *dp,
1098     ezxml_t wdb
1099     )
1100     {
1101     char *cbasis = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
1102     char *rbasis = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
1103     char *sdata;
1104     int i;
1105    
1106 greg 2.4 if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) {
1107 greg 2.1 error(WARNING, "missing column/row basis for BSDF");
1108     return;
1109     }
1110     for (i = nabases; i--; )
1111 greg 2.12 if (!strcasecmp(cbasis, abase_list[i].name)) {
1112 greg 2.1 dp->ninc = abase_list[i].nangles;
1113     dp->ib_priv = (void *)&abase_list[i];
1114     dp->ib_vec = ab_getvecR;
1115     dp->ib_ndx = ab_getndxR;
1116     dp->ib_ohm = ab_getohm;
1117     break;
1118     }
1119     if (i < 0) {
1120 greg 2.4 sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis);
1121 greg 2.1 error(WARNING, errmsg);
1122     return;
1123     }
1124     for (i = nabases; i--; )
1125 greg 2.12 if (!strcasecmp(rbasis, abase_list[i].name)) {
1126 greg 2.1 dp->nout = abase_list[i].nangles;
1127     dp->ob_priv = (void *)&abase_list[i];
1128     dp->ob_vec = ab_getvec;
1129     dp->ob_ndx = ab_getndx;
1130     dp->ob_ohm = ab_getohm;
1131     break;
1132     }
1133     if (i < 0) {
1134 greg 2.16 sprintf(errmsg, "undefined RowAngleBasis '%s'", rbasis);
1135 greg 2.1 error(WARNING, errmsg);
1136     return;
1137     }
1138     /* read BSDF data */
1139     sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
1140 greg 2.4 if (!sdata || !*sdata) {
1141 greg 2.1 error(WARNING, "missing BSDF ScatteringData");
1142     return;
1143     }
1144     dp->bsdf = (float *)malloc(sizeof(float)*dp->ninc*dp->nout);
1145     if (dp->bsdf == NULL)
1146     error(SYSTEM, "out of memory in load_bsdf_data");
1147     for (i = 0; i < dp->ninc*dp->nout; i++) {
1148     char *sdnext = fskip(sdata);
1149     if (sdnext == NULL) {
1150     error(WARNING, "bad/missing BSDF ScatteringData");
1151     free(dp->bsdf); dp->bsdf = NULL;
1152     return;
1153     }
1154     while (*sdnext && isspace(*sdnext))
1155     sdnext++;
1156     if (*sdnext == ',') sdnext++;
1157     dp->bsdf[i] = atof(sdata);
1158     sdata = sdnext;
1159     }
1160     while (isspace(*sdata))
1161     sdata++;
1162     if (*sdata) {
1163     sprintf(errmsg, "%d extra characters after BSDF ScatteringData",
1164 greg 2.5 (int)strlen(sdata));
1165 greg 2.1 error(WARNING, errmsg);
1166     }
1167     }
1168    
1169    
1170     static int
1171     check_bsdf_data( /* check that BSDF data is sane */
1172     struct BSDF_data *dp
1173     )
1174     {
1175 greg 2.2 double *omega_iarr, *omega_oarr;
1176 greg 2.7 double dom, contrib, hemi_total, full_total;
1177 greg 2.1 int nneg;
1178 greg 2.2 FVECT v;
1179 greg 2.1 int i, o;
1180    
1181     if (dp == NULL || dp->bsdf == NULL)
1182     return(0);
1183 greg 2.2 omega_iarr = (double *)calloc(dp->ninc, sizeof(double));
1184     omega_oarr = (double *)calloc(dp->nout, sizeof(double));
1185     if ((omega_iarr == NULL) | (omega_oarr == NULL))
1186 greg 2.1 error(SYSTEM, "out of memory in check_bsdf_data");
1187 greg 2.2 /* incoming projected solid angles */
1188     hemi_total = .0;
1189     for (i = dp->ninc; i--; ) {
1190     dom = getBSDF_incohm(dp,i);
1191 greg 2.23 if (dom <= 0) {
1192 greg 2.2 error(WARNING, "zero/negative incoming solid angle");
1193     continue;
1194     }
1195     if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) {
1196     error(WARNING, "illegal incoming BSDF direction");
1197     free(omega_iarr); free(omega_oarr);
1198     return(0);
1199     }
1200     hemi_total += omega_iarr[i] = dom * -v[2];
1201     }
1202     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1203     sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%",
1204     100.*(hemi_total/PI - 1.));
1205     error(WARNING, errmsg);
1206     }
1207     dom = PI / hemi_total; /* fix normalization */
1208     for (i = dp->ninc; i--; )
1209     omega_iarr[i] *= dom;
1210     /* outgoing projected solid angles */
1211 greg 2.1 hemi_total = .0;
1212     for (o = dp->nout; o--; ) {
1213     dom = getBSDF_outohm(dp,o);
1214 greg 2.23 if (dom <= 0) {
1215 greg 2.2 error(WARNING, "zero/negative outgoing solid angle");
1216 greg 2.1 continue;
1217     }
1218     if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) {
1219     error(WARNING, "illegal outgoing BSDF direction");
1220 greg 2.2 free(omega_iarr); free(omega_oarr);
1221 greg 2.1 return(0);
1222     }
1223 greg 2.2 hemi_total += omega_oarr[o] = dom * v[2];
1224 greg 2.1 }
1225     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1226     sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%",
1227     100.*(hemi_total/PI - 1.));
1228     error(WARNING, errmsg);
1229     }
1230 greg 2.2 dom = PI / hemi_total; /* fix normalization */
1231 greg 2.1 for (o = dp->nout; o--; )
1232 greg 2.2 omega_oarr[o] *= dom;
1233     nneg = 0; /* check outgoing totals */
1234     for (i = 0; i < dp->ninc; i++) {
1235 greg 2.1 hemi_total = .0;
1236     for (o = dp->nout; o--; ) {
1237     double f = BSDF_value(dp,i,o);
1238 greg 2.23 if (f >= 0)
1239 greg 2.2 hemi_total += f*omega_oarr[o];
1240     else {
1241     nneg += (f < -FTINY);
1242     BSDF_value(dp,i,o) = .0f;
1243     }
1244 greg 2.1 }
1245 greg 2.8 if (hemi_total > 1.01) {
1246 greg 2.2 sprintf(errmsg,
1247     "incoming BSDF direction %d passes %.1f%% of light",
1248     i, 100.*hemi_total);
1249 greg 2.1 error(WARNING, errmsg);
1250     }
1251     }
1252 greg 2.2 if (nneg) {
1253     sprintf(errmsg, "%d negative BSDF values (ignored)", nneg);
1254 greg 2.1 error(WARNING, errmsg);
1255     }
1256 greg 2.7 full_total = .0; /* reverse roles and check again */
1257 greg 2.2 for (o = 0; o < dp->nout; o++) {
1258     hemi_total = .0;
1259     for (i = dp->ninc; i--; )
1260     hemi_total += BSDF_value(dp,i,o) * omega_iarr[i];
1261    
1262 greg 2.8 if (hemi_total > 1.01) {
1263 greg 2.2 sprintf(errmsg,
1264     "outgoing BSDF direction %d collects %.1f%% of light",
1265     o, 100.*hemi_total);
1266     error(WARNING, errmsg);
1267     }
1268 greg 2.7 full_total += hemi_total*omega_oarr[o];
1269     }
1270     full_total /= PI;
1271 greg 2.8 if (full_total > 1.00001) {
1272     sprintf(errmsg, "BSDF transfers %.4f%% of light",
1273 greg 2.7 100.*full_total);
1274     error(WARNING, errmsg);
1275 greg 2.2 }
1276     free(omega_iarr); free(omega_oarr);
1277 greg 2.1 return(1);
1278     }
1279    
1280 greg 2.6
1281 greg 2.1 struct BSDF_data *
1282     load_BSDF( /* load BSDF data from file */
1283     char *fname
1284     )
1285     {
1286     char *path;
1287     ezxml_t fl, wtl, wld, wdb;
1288     struct BSDF_data *dp;
1289    
1290     path = getpath(fname, getrlibpath(), R_OK);
1291     if (path == NULL) {
1292     sprintf(errmsg, "cannot find BSDF file \"%s\"", fname);
1293     error(WARNING, errmsg);
1294     return(NULL);
1295     }
1296     fl = ezxml_parse_file(path);
1297     if (fl == NULL) {
1298     sprintf(errmsg, "cannot open BSDF \"%s\"", path);
1299     error(WARNING, errmsg);
1300     return(NULL);
1301     }
1302     if (ezxml_error(fl)[0]) {
1303     sprintf(errmsg, "BSDF \"%s\" %s", path, ezxml_error(fl));
1304     error(WARNING, errmsg);
1305     ezxml_free(fl);
1306     return(NULL);
1307     }
1308     if (strcmp(ezxml_name(fl), "WindowElement")) {
1309     sprintf(errmsg,
1310     "BSDF \"%s\": top level node not 'WindowElement'",
1311     path);
1312     error(WARNING, errmsg);
1313     ezxml_free(fl);
1314     return(NULL);
1315     }
1316     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
1317 greg 2.10 if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl,
1318     "DataDefinition"), "IncidentDataStructure")),
1319     "Columns")) {
1320     sprintf(errmsg,
1321     "BSDF \"%s\": unsupported IncidentDataStructure",
1322     path);
1323     error(WARNING, errmsg);
1324     ezxml_free(fl);
1325     return(NULL);
1326     }
1327 greg 2.3 load_angle_basis(ezxml_child(ezxml_child(wtl,
1328     "DataDefinition"), "AngleBasis"));
1329 greg 2.1 dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data));
1330 greg 2.6 load_geometry(dp, ezxml_child(wtl, "Material"));
1331 greg 2.1 for (wld = ezxml_child(wtl, "WavelengthData");
1332     wld != NULL; wld = wld->next) {
1333 greg 2.13 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1334     "Visible"))
1335 greg 2.1 continue;
1336 greg 2.13 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1337     wdb != NULL; wdb = wdb->next)
1338     if (!strcasecmp(ezxml_txt(ezxml_child(wdb,
1339     "WavelengthDataDirection")),
1340 greg 2.1 "Transmission Front"))
1341 greg 2.13 break;
1342     if (wdb != NULL) { /* load front BTDF */
1343     load_bsdf_data(dp, wdb);
1344     break; /* ignore the rest */
1345     }
1346 greg 2.1 }
1347     ezxml_free(fl); /* done with XML file */
1348     if (!check_bsdf_data(dp)) {
1349     sprintf(errmsg, "bad/missing BTDF data in \"%s\"", path);
1350     error(WARNING, errmsg);
1351     free_BSDF(dp);
1352     dp = NULL;
1353     }
1354     return(dp);
1355     }
1356    
1357    
1358     void
1359     free_BSDF( /* free BSDF data structure */
1360     struct BSDF_data *b
1361     )
1362     {
1363     if (b == NULL)
1364     return;
1365 greg 2.6 if (b->mgf != NULL)
1366     free(b->mgf);
1367 greg 2.1 if (b->bsdf != NULL)
1368     free(b->bsdf);
1369     free(b);
1370     }
1371    
1372    
1373     int
1374     r_BSDF_incvec( /* compute random input vector at given location */
1375     FVECT v,
1376     struct BSDF_data *b,
1377     int i,
1378     double rv,
1379     MAT4 xm
1380     )
1381     {
1382     FVECT pert;
1383     double rad;
1384     int j;
1385    
1386     if (!getBSDF_incvec(v, b, i))
1387     return(0);
1388     rad = sqrt(getBSDF_incohm(b, i) / PI);
1389     multisamp(pert, 3, rv);
1390     for (j = 0; j < 3; j++)
1391     v[j] += rad*(2.*pert[j] - 1.);
1392     if (xm != NULL)
1393     multv3(v, v, xm);
1394     return(normalize(v) != 0.0);
1395     }
1396    
1397    
1398     int
1399     r_BSDF_outvec( /* compute random output vector at given location */
1400     FVECT v,
1401     struct BSDF_data *b,
1402     int o,
1403     double rv,
1404     MAT4 xm
1405     )
1406     {
1407     FVECT pert;
1408     double rad;
1409     int j;
1410    
1411     if (!getBSDF_outvec(v, b, o))
1412     return(0);
1413     rad = sqrt(getBSDF_outohm(b, o) / PI);
1414     multisamp(pert, 3, rv);
1415     for (j = 0; j < 3; j++)
1416     v[j] += rad*(2.*pert[j] - 1.);
1417     if (xm != NULL)
1418     multv3(v, v, xm);
1419     return(normalize(v) != 0.0);
1420     }
1421    
1422    
1423     static int
1424     addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */
1425     char *xfarg[],
1426     FVECT xp,
1427     FVECT yp,
1428     FVECT zp
1429     )
1430     {
1431     static char bufs[3][16];
1432     int bn = 0;
1433     char **xfp = xfarg;
1434     double theta;
1435    
1436     if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
1437     /* Special case for X' along Z-axis */
1438     theta = -atan2(yp[0], yp[1]);
1439     *xfp++ = "-ry";
1440     *xfp++ = xp[2] < 0.0 ? "90" : "-90";
1441     *xfp++ = "-rz";
1442     sprintf(bufs[bn], "%f", theta*(180./PI));
1443     *xfp++ = bufs[bn++];
1444     return(xfp - xfarg);
1445     }
1446     theta = atan2(yp[2], zp[2]);
1447     if (!FEQ(theta,0.0)) {
1448     *xfp++ = "-rx";
1449     sprintf(bufs[bn], "%f", theta*(180./PI));
1450     *xfp++ = bufs[bn++];
1451     }
1452     theta = asin(-xp[2]);
1453     if (!FEQ(theta,0.0)) {
1454     *xfp++ = "-ry";
1455     sprintf(bufs[bn], " %f", theta*(180./PI));
1456     *xfp++ = bufs[bn++];
1457     }
1458     theta = atan2(xp[1], xp[0]);
1459     if (!FEQ(theta,0.0)) {
1460     *xfp++ = "-rz";
1461     sprintf(bufs[bn], "%f", theta*(180./PI));
1462     *xfp++ = bufs[bn++];
1463     }
1464     *xfp = NULL;
1465     return(xfp - xfarg);
1466     }
1467    
1468    
1469     int
1470     getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */
1471     MAT4 xm,
1472     FVECT nrm,
1473 greg 2.6 UpDir ud,
1474     char *xfbuf
1475 greg 2.1 )
1476     {
1477     char *xfargs[7];
1478     XF myxf;
1479     FVECT updir, xdest, ydest;
1480 greg 2.6 int i;
1481 greg 2.1
1482     updir[0] = updir[1] = updir[2] = 0.;
1483     switch (ud) {
1484     case UDzneg:
1485     updir[2] = -1.;
1486     break;
1487     case UDyneg:
1488     updir[1] = -1.;
1489     break;
1490     case UDxneg:
1491     updir[0] = -1.;
1492     break;
1493     case UDxpos:
1494     updir[0] = 1.;
1495     break;
1496     case UDypos:
1497     updir[1] = 1.;
1498     break;
1499     case UDzpos:
1500     updir[2] = 1.;
1501     break;
1502     case UDunknown:
1503     return(0);
1504     }
1505     fcross(xdest, updir, nrm);
1506     if (normalize(xdest) == 0.0)
1507     return(0);
1508     fcross(ydest, nrm, xdest);
1509     xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs);
1510     copymat4(xm, myxf.xfm);
1511 greg 2.6 if (xfbuf == NULL)
1512     return(1);
1513     /* return xf arguments as well */
1514     for (i = 0; xfargs[i] != NULL; i++) {
1515     *xfbuf++ = ' ';
1516     strcpy(xfbuf, xfargs[i]);
1517     while (*xfbuf) ++xfbuf;
1518     }
1519 greg 2.1 return(1);
1520     }
1521 greg 2.15
1522     /*######### END DEPRECATED ROUTINES #######*/
1523     /*################################################################*/