ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.27
Committed: Wed Apr 27 23:05:51 2011 UTC (13 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.26: +3 -1 lines
Log Message:
First test of variable-res BSDFs

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.27 static const char RCSid[] = "$Id: bsdf.c,v 2.26 2011/04/25 15:48:05 greg Exp $";
3 greg 2.1 #endif
4     /*
5 greg 2.15 * bsdf.c
6     *
7     * Definitions for bidirectional scattering distribution functions.
8     *
9     * Created by Greg Ward on 1/10/11.
10     *
11     */
12    
13     #include <stdio.h>
14     #include <stdlib.h>
15     #include <math.h>
16     #include "ezxml.h"
17     #include "hilbert.h"
18     #include "bsdf.h"
19     #include "bsdf_m.h"
20     #include "bsdf_t.h"
21    
22     /* English ASCII strings corresponding to ennumerated errors */
23     const char *SDerrorEnglish[] = {
24     "No error",
25     "Memory error",
26     "File input/output error",
27     "File format error",
28     "Illegal argument",
29     "Invalid data",
30     "Unsupported feature",
31     "Internal program error",
32     "Unknown error"
33     };
34    
35     /* Additional information on last error (ASCII English) */
36     char SDerrorDetail[256];
37    
38     /* Cache of loaded BSDFs */
39     struct SDCache_s *SDcacheList = NULL;
40    
41     /* Retain BSDFs in cache list */
42     int SDretainSet = SDretainNone;
43    
44     /* Report any error to the indicated stream (in English) */
45     SDError
46     SDreportEnglish(SDError ec, FILE *fp)
47     {
48 greg 2.21 if (!ec)
49     return SDEnone;
50     if ((ec < SDEnone) | (ec > SDEunknown)) {
51     SDerrorDetail[0] = '\0';
52     ec = SDEunknown;
53     }
54 greg 2.15 if (fp == NULL)
55     return ec;
56     fputs(SDerrorEnglish[ec], fp);
57     if (SDerrorDetail[0]) {
58     fputs(": ", fp);
59     fputs(SDerrorDetail, fp);
60     }
61     fputc('\n', fp);
62     if (fp != stderr)
63     fflush(fp);
64     return ec;
65     }
66    
67     static double
68     to_meters( /* return factor to convert given unit to meters */
69     const char *unit
70     )
71     {
72     if (unit == NULL) return(1.); /* safe assumption? */
73     if (!strcasecmp(unit, "Meter")) return(1.);
74     if (!strcasecmp(unit, "Foot")) return(.3048);
75     if (!strcasecmp(unit, "Inch")) return(.0254);
76     if (!strcasecmp(unit, "Centimeter")) return(.01);
77     if (!strcasecmp(unit, "Millimeter")) return(.001);
78     sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
79     return(-1.);
80     }
81    
82     /* Load geometric dimensions and description (if any) */
83     static SDError
84 greg 2.16 SDloadGeometry(SDData *sd, ezxml_t wdb)
85 greg 2.15 {
86     ezxml_t geom;
87     double cfact;
88     const char *fmt, *mgfstr;
89    
90 greg 2.16 if (wdb == NULL) /* no geometry section? */
91     return SDEnone;
92     sd->dim[0] = sd->dim[1] = sd->dim[2] = .0;
93 greg 2.15 if ((geom = ezxml_child(wdb, "Width")) != NULL)
94 greg 2.16 sd->dim[0] = atof(ezxml_txt(geom)) *
95 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
96     if ((geom = ezxml_child(wdb, "Height")) != NULL)
97 greg 2.16 sd->dim[1] = atof(ezxml_txt(geom)) *
98 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
99     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
100 greg 2.16 sd->dim[2] = atof(ezxml_txt(geom)) *
101 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
102 greg 2.23 if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) {
103 greg 2.17 sprintf(SDerrorDetail, "Negative size in \"%s\"", sd->name);
104 greg 2.15 return SDEdata;
105 greg 2.17 }
106 greg 2.15 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
107     (mgfstr = ezxml_txt(geom)) == NULL)
108     return SDEnone;
109     if ((fmt = ezxml_attr(geom, "format")) != NULL &&
110     strcasecmp(fmt, "MGF")) {
111     sprintf(SDerrorDetail,
112     "Unrecognized geometry format '%s' in \"%s\"",
113 greg 2.16 fmt, sd->name);
114 greg 2.15 return SDEsupport;
115     }
116     cfact = to_meters(ezxml_attr(geom, "unit"));
117 greg 2.16 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
118     if (sd->mgf == NULL) {
119 greg 2.15 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
120     return SDEmemory;
121     }
122     if (cfact < 0.99 || cfact > 1.01)
123 greg 2.16 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
124 greg 2.15 else
125 greg 2.16 strcpy(sd->mgf, mgfstr);
126 greg 2.15 return SDEnone;
127     }
128    
129     /* Load a BSDF struct from the given file (free first and keep name) */
130     SDError
131     SDloadFile(SDData *sd, const char *fname)
132     {
133     SDError lastErr;
134 greg 2.16 ezxml_t fl, wtl;
135 greg 2.15
136     if ((sd == NULL) | (fname == NULL || !*fname))
137     return SDEargument;
138     /* free old data, keeping name */
139     SDfreeBSDF(sd);
140     /* parse XML file */
141     fl = ezxml_parse_file(fname);
142     if (fl == NULL) {
143     sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
144     return SDEfile;
145     }
146     if (ezxml_error(fl)[0]) {
147     sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
148     ezxml_free(fl);
149     return SDEformat;
150     }
151 greg 2.16 if (strcmp(ezxml_name(fl), "WindowElement")) {
152     sprintf(SDerrorDetail,
153     "BSDF \"%s\": top level node not 'WindowElement'",
154     sd->name);
155     ezxml_free(fl);
156     return SDEformat;
157     }
158     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
159     if (wtl == NULL) {
160     sprintf(SDerrorDetail, "BSDF \"%s\": no optical layer'",
161     sd->name);
162     ezxml_free(fl);
163     return SDEformat;
164     }
165 greg 2.15 /* load geometry if present */
166 greg 2.16 lastErr = SDloadGeometry(sd, ezxml_child(wtl, "Material"));
167     if (lastErr)
168 greg 2.15 return lastErr;
169     /* try loading variable resolution data */
170 greg 2.16 lastErr = SDloadTre(sd, wtl);
171 greg 2.27 #if 0
172 greg 2.15 /* check our result */
173     switch (lastErr) {
174     case SDEformat:
175     case SDEdata:
176     case SDEsupport: /* possibly we just tried the wrong format */
177 greg 2.16 lastErr = SDloadMtx(sd, wtl);
178 greg 2.15 break;
179     default: /* variable res. OK else serious error */
180     break;
181     }
182 greg 2.27 #endif
183 greg 2.15 /* done with XML file */
184     ezxml_free(fl);
185 greg 2.16
186     if (lastErr) { /* was there a load error? */
187     SDfreeBSDF(sd);
188     return lastErr;
189     }
190     /* remove any insignificant components */
191     if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
192     SDfreeSpectralDF(sd->rf); sd->rf = NULL;
193     }
194     if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
195     SDfreeSpectralDF(sd->rb); sd->rb = NULL;
196     }
197     if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
198     SDfreeSpectralDF(sd->tf); sd->tf = NULL;
199     }
200     /* return success */
201     return SDEnone;
202 greg 2.15 }
203    
204     /* Allocate new spectral distribution function */
205     SDSpectralDF *
206     SDnewSpectralDF(int nc)
207     {
208     SDSpectralDF *df;
209    
210     if (nc <= 0) {
211     strcpy(SDerrorDetail, "Zero component spectral DF request");
212     return NULL;
213     }
214     df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
215     (nc-1)*sizeof(SDComponent));
216     if (df == NULL) {
217     sprintf(SDerrorDetail,
218     "Cannot allocate %d component spectral DF", nc);
219     return NULL;
220     }
221     df->minProjSA = .0;
222     df->maxHemi = .0;
223     df->ncomp = nc;
224     memset(df->comp, 0, nc*sizeof(SDComponent));
225     return df;
226     }
227    
228     /* Free cached cumulative distributions for BSDF component */
229     void
230     SDfreeCumulativeCache(SDSpectralDF *df)
231     {
232     int n;
233     SDCDst *cdp;
234    
235     if (df == NULL)
236     return;
237     for (n = df->ncomp; n-- > 0; )
238     while ((cdp = df->comp[n].cdList) != NULL) {
239     df->comp[n].cdList = cdp->next;
240     free(cdp);
241     }
242     }
243    
244     /* Free a spectral distribution function */
245     void
246     SDfreeSpectralDF(SDSpectralDF *df)
247     {
248     int n;
249    
250     if (df == NULL)
251     return;
252     SDfreeCumulativeCache(df);
253     for (n = df->ncomp; n-- > 0; )
254     (*df->comp[n].func->freeSC)(df->comp[n].dist);
255     free(df);
256     }
257    
258     /* Shorten file path to useable BSDF name, removing suffix */
259     void
260 greg 2.16 SDclipName(char *res, const char *fname)
261 greg 2.15 {
262     const char *cp, *dot = NULL;
263    
264     for (cp = fname; *cp; cp++)
265     if (*cp == '.')
266     dot = cp;
267     if ((dot == NULL) | (dot < fname+2))
268     dot = cp;
269     if (dot - fname >= SDnameLn)
270     fname = dot - SDnameLn + 1;
271     while (fname < dot)
272     *res++ = *fname++;
273     *res = '\0';
274     }
275    
276     /* Initialize an unused BSDF struct (simply clears to zeroes) */
277     void
278 greg 2.20 SDclearBSDF(SDData *sd, const char *fname)
279 greg 2.15 {
280 greg 2.20 if (sd == NULL)
281     return;
282     memset(sd, 0, sizeof(SDData));
283     if (fname == NULL)
284     return;
285     SDclipName(sd->name, fname);
286 greg 2.15 }
287    
288     /* Free data associated with BSDF struct */
289     void
290     SDfreeBSDF(SDData *sd)
291     {
292     if (sd == NULL)
293     return;
294     if (sd->mgf != NULL) {
295     free(sd->mgf);
296     sd->mgf = NULL;
297     }
298     if (sd->rf != NULL) {
299     SDfreeSpectralDF(sd->rf);
300     sd->rf = NULL;
301     }
302     if (sd->rb != NULL) {
303     SDfreeSpectralDF(sd->rb);
304     sd->rb = NULL;
305     }
306     if (sd->tf != NULL) {
307     SDfreeSpectralDF(sd->tf);
308     sd->tf = NULL;
309     }
310     sd->rLambFront.cieY = .0;
311 greg 2.16 sd->rLambFront.spec.flags = 0;
312 greg 2.15 sd->rLambBack.cieY = .0;
313 greg 2.16 sd->rLambBack.spec.flags = 0;
314 greg 2.15 sd->tLamb.cieY = .0;
315 greg 2.16 sd->tLamb.spec.flags = 0;
316 greg 2.15 }
317    
318     /* Find writeable BSDF by name, or allocate new cache entry if absent */
319     SDData *
320     SDgetCache(const char *bname)
321     {
322     struct SDCache_s *sdl;
323     char sdnam[SDnameLn];
324    
325     if (bname == NULL)
326     return NULL;
327    
328     SDclipName(sdnam, bname);
329     for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
330     if (!strcmp(sdl->bsdf.name, sdnam)) {
331     sdl->refcnt++;
332     return &sdl->bsdf;
333     }
334    
335     sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
336     if (sdl == NULL)
337     return NULL;
338    
339     strcpy(sdl->bsdf.name, sdnam);
340     sdl->next = SDcacheList;
341     SDcacheList = sdl;
342    
343 greg 2.21 sdl->refcnt = 1;
344 greg 2.15 return &sdl->bsdf;
345     }
346    
347     /* Get loaded BSDF from cache (or load and cache it on first call) */
348     /* Report any problem to stderr and return NULL on failure */
349     const SDData *
350     SDcacheFile(const char *fname)
351     {
352     SDData *sd;
353     SDError ec;
354    
355     if (fname == NULL || !*fname)
356     return NULL;
357     SDerrorDetail[0] = '\0';
358     if ((sd = SDgetCache(fname)) == NULL) {
359     SDreportEnglish(SDEmemory, stderr);
360     return NULL;
361     }
362     if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
363     SDreportEnglish(ec, stderr);
364     SDfreeCache(sd);
365     return NULL;
366     }
367     return sd;
368     }
369    
370     /* Free a BSDF from our cache (clear all if NULL) */
371     void
372     SDfreeCache(const SDData *sd)
373     {
374     struct SDCache_s *sdl, *sdLast = NULL;
375    
376     if (sd == NULL) { /* free entire list */
377     while ((sdl = SDcacheList) != NULL) {
378     SDcacheList = sdl->next;
379     SDfreeBSDF(&sdl->bsdf);
380     free(sdl);
381     }
382     return;
383     }
384     for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
385     if (&sdl->bsdf == sd)
386     break;
387 greg 2.21 if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
388 greg 2.15 return; /* missing or still in use */
389     /* keep unreferenced data? */
390     if (SDisLoaded(sd) && SDretainSet) {
391     if (SDretainSet == SDretainAll)
392     return; /* keep everything */
393     /* else free cumulative data */
394     SDfreeCumulativeCache(sd->rf);
395     SDfreeCumulativeCache(sd->rb);
396     SDfreeCumulativeCache(sd->tf);
397     return;
398     }
399     /* remove from list and free */
400     if (sdLast == NULL)
401     SDcacheList = sdl->next;
402     else
403     sdLast->next = sdl->next;
404     SDfreeBSDF(&sdl->bsdf);
405     free(sdl);
406     }
407    
408     /* Sample an individual BSDF component */
409     SDError
410 greg 2.24 SDsampComponent(SDValue *sv, FVECT ioVec, double randX, SDComponent *sdc)
411 greg 2.15 {
412     float coef[SDmaxCh];
413     SDError ec;
414 greg 2.24 FVECT inVec;
415 greg 2.15 const SDCDst *cd;
416     double d;
417     int n;
418     /* check arguments */
419 greg 2.24 if ((sv == NULL) | (ioVec == NULL) | (sdc == NULL))
420 greg 2.15 return SDEargument;
421     /* get cumulative distribution */
422 greg 2.24 VCOPY(inVec, ioVec);
423 greg 2.15 cd = (*sdc->func->getCDist)(inVec, sdc);
424     if (cd == NULL)
425     return SDEmemory;
426     if (cd->cTotal <= 1e-7) { /* anything to sample? */
427     sv->spec = c_dfcolor;
428     sv->cieY = .0;
429 greg 2.24 memset(ioVec, 0, 3*sizeof(double));
430 greg 2.15 return SDEnone;
431     }
432     sv->cieY = cd->cTotal;
433     /* compute sample direction */
434 greg 2.24 ec = (*sdc->func->sampCDist)(ioVec, randX, cd);
435 greg 2.15 if (ec)
436     return ec;
437     /* get BSDF color */
438 greg 2.25 n = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
439 greg 2.15 if (n <= 0) {
440     strcpy(SDerrorDetail, "BSDF sample value error");
441     return SDEinternal;
442     }
443     sv->spec = sdc->cspec[0];
444     d = coef[0];
445     while (--n) {
446     c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
447     d += coef[n];
448     }
449     /* make sure everything is set */
450     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
451     return SDEnone;
452     }
453    
454     #define MS_MAXDIM 15
455    
456     /* Convert 1-dimensional random variable to N-dimensional */
457     void
458     SDmultiSamp(double t[], int n, double randX)
459     {
460     unsigned nBits;
461     double scale;
462     bitmask_t ndx, coord[MS_MAXDIM];
463    
464     while (n > MS_MAXDIM) /* punt for higher dimensions */
465 greg 2.19 t[--n] = rand()*(1./(RAND_MAX+.5));
466 greg 2.15 nBits = (8*sizeof(bitmask_t) - 1) / n;
467     ndx = randX * (double)((bitmask_t)1 << (nBits*n));
468     /* get coordinate on Hilbert curve */
469     hilbert_i2c(n, nBits, ndx, coord);
470     /* convert back to [0,1) range */
471     scale = 1. / (double)((bitmask_t)1 << nBits);
472     while (n--)
473 greg 2.19 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
474 greg 2.15 }
475    
476     #undef MS_MAXDIM
477    
478     /* Generate diffuse hemispherical sample */
479     static void
480     SDdiffuseSamp(FVECT outVec, int outFront, double randX)
481     {
482     /* convert to position on hemisphere */
483     SDmultiSamp(outVec, 2, randX);
484     SDsquare2disk(outVec, outVec[0], outVec[1]);
485     outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
486 greg 2.23 if (outVec[2] > 0) /* a bit of paranoia */
487 greg 2.15 outVec[2] = sqrt(outVec[2]);
488     if (!outFront) /* going out back? */
489     outVec[2] = -outVec[2];
490     }
491    
492     /* Query projected solid angle coverage for non-diffuse BSDF direction */
493     SDError
494 greg 2.22 SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2,
495     int qflags, const SDData *sd)
496 greg 2.15 {
497 greg 2.23 SDSpectralDF *rdf, *tdf;
498 greg 2.15 SDError ec;
499     int i;
500     /* check arguments */
501 greg 2.26 if ((projSA == NULL) | (v1 == NULL) | (sd == NULL))
502 greg 2.15 return SDEargument;
503     /* initialize extrema */
504 greg 2.17 switch (qflags) {
505 greg 2.15 case SDqueryMax:
506     projSA[0] = .0;
507     break;
508     case SDqueryMin+SDqueryMax:
509     projSA[1] = .0;
510     /* fall through */
511     case SDqueryMin:
512     projSA[0] = 10.;
513     break;
514     case 0:
515     return SDEargument;
516     }
517 greg 2.23 if (v1[2] > 0) /* front surface query? */
518 greg 2.15 rdf = sd->rf;
519     else
520     rdf = sd->rb;
521 greg 2.26 tdf = sd->tf;
522     if (v2 != NULL) /* bidirectional? */
523     if (v1[2] > 0 ^ v2[2] > 0)
524     rdf = NULL;
525     else
526     tdf = NULL;
527 greg 2.15 ec = SDEdata; /* run through components */
528     for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
529 greg 2.22 ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2,
530 greg 2.25 qflags, &rdf->comp[i]);
531 greg 2.15 if (ec)
532     return ec;
533     }
534 greg 2.23 for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) {
535     ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2,
536 greg 2.25 qflags, &tdf->comp[i]);
537 greg 2.15 if (ec)
538     return ec;
539     }
540 greg 2.17 if (ec) { /* all diffuse? */
541     projSA[0] = M_PI;
542     if (qflags == SDqueryMin+SDqueryMax)
543     projSA[1] = M_PI;
544     }
545     return SDEnone;
546 greg 2.15 }
547    
548     /* Return BSDF for the given incident and scattered ray vectors */
549     SDError
550     SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
551     {
552     int inFront, outFront;
553     SDSpectralDF *sdf;
554     float coef[SDmaxCh];
555     int nch, i;
556     /* check arguments */
557     if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
558     return SDEargument;
559     /* whose side are we on? */
560 greg 2.23 inFront = (inVec[2] > 0);
561     outFront = (outVec[2] > 0);
562 greg 2.15 /* start with diffuse portion */
563     if (inFront & outFront) {
564     *sv = sd->rLambFront;
565     sdf = sd->rf;
566     } else if (!(inFront | outFront)) {
567     *sv = sd->rLambBack;
568     sdf = sd->rb;
569     } else /* inFront ^ outFront */ {
570     *sv = sd->tLamb;
571     sdf = sd->tf;
572     }
573     sv->cieY *= 1./M_PI;
574     /* add non-diffuse components */
575     i = (sdf != NULL) ? sdf->ncomp : 0;
576     while (i-- > 0) {
577     nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
578 greg 2.25 &sdf->comp[i]);
579 greg 2.15 while (nch-- > 0) {
580     c_cmix(&sv->spec, sv->cieY, &sv->spec,
581     coef[nch], &sdf->comp[i].cspec[nch]);
582     sv->cieY += coef[nch];
583     }
584     }
585     /* make sure everything is set */
586     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
587     return SDEnone;
588     }
589    
590     /* Compute directional hemispherical scattering at this incident angle */
591     double
592     SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
593     {
594     double hsum;
595     SDSpectralDF *rdf;
596     const SDCDst *cd;
597     int i;
598     /* check arguments */
599     if ((inVec == NULL) | (sd == NULL))
600     return .0;
601     /* gather diffuse components */
602 greg 2.23 if (inVec[2] > 0) {
603 greg 2.15 hsum = sd->rLambFront.cieY;
604     rdf = sd->rf;
605     } else /* !inFront */ {
606     hsum = sd->rLambBack.cieY;
607     rdf = sd->rb;
608     }
609     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
610     hsum = .0;
611     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
612     hsum += sd->tLamb.cieY;
613     /* gather non-diffuse components */
614     i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
615     rdf != NULL) ? rdf->ncomp : 0;
616     while (i-- > 0) { /* non-diffuse reflection */
617     cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
618     if (cd != NULL)
619     hsum += cd->cTotal;
620     }
621     i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
622     sd->tf != NULL) ? sd->tf->ncomp : 0;
623     while (i-- > 0) { /* non-diffuse transmission */
624     cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]);
625     if (cd != NULL)
626     hsum += cd->cTotal;
627     }
628     return hsum;
629     }
630    
631     /* Sample BSDF direction based on the given random variable */
632     SDError
633 greg 2.24 SDsampBSDF(SDValue *sv, FVECT ioVec, double randX, int sflags, const SDData *sd)
634 greg 2.15 {
635     SDError ec;
636 greg 2.24 FVECT inVec;
637 greg 2.15 int inFront;
638     SDSpectralDF *rdf;
639     double rdiff;
640     float coef[SDmaxCh];
641     int i, j, n, nr;
642     SDComponent *sdc;
643     const SDCDst **cdarr = NULL;
644     /* check arguments */
645 greg 2.24 if ((sv == NULL) | (ioVec == NULL) | (sd == NULL) |
646 greg 2.23 (randX < 0) | (randX >= 1.))
647 greg 2.15 return SDEargument;
648     /* whose side are we on? */
649 greg 2.24 VCOPY(inVec, ioVec);
650 greg 2.23 inFront = (inVec[2] > 0);
651 greg 2.15 /* remember diffuse portions */
652     if (inFront) {
653     *sv = sd->rLambFront;
654     rdf = sd->rf;
655     } else /* !inFront */ {
656     *sv = sd->rLambBack;
657     rdf = sd->rb;
658     }
659     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
660     sv->cieY = .0;
661     rdiff = sv->cieY;
662     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
663     sv->cieY += sd->tLamb.cieY;
664     /* gather non-diffuse components */
665     i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
666     rdf != NULL) ? rdf->ncomp : 0;
667     j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
668     sd->tf != NULL) ? sd->tf->ncomp : 0;
669     n = i + j;
670     if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
671     return SDEmemory;
672     while (j-- > 0) { /* non-diffuse transmission */
673     cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]);
674     if (cdarr[i+j] == NULL) {
675     free(cdarr);
676     return SDEmemory;
677     }
678     sv->cieY += cdarr[i+j]->cTotal;
679     }
680     while (i-- > 0) { /* non-diffuse reflection */
681     cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
682     if (cdarr[i] == NULL) {
683     free(cdarr);
684     return SDEmemory;
685     }
686     sv->cieY += cdarr[i]->cTotal;
687     }
688     if (sv->cieY <= 1e-7) { /* anything to sample? */
689     sv->cieY = .0;
690 greg 2.24 memset(ioVec, 0, 3*sizeof(double));
691 greg 2.15 return SDEnone;
692     }
693     /* scale random variable */
694     randX *= sv->cieY;
695     /* diffuse reflection? */
696     if (randX < rdiff) {
697 greg 2.24 SDdiffuseSamp(ioVec, inFront, randX/rdiff);
698 greg 2.15 goto done;
699     }
700     randX -= rdiff;
701     /* diffuse transmission? */
702     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
703     if (randX < sd->tLamb.cieY) {
704     sv->spec = sd->tLamb.spec;
705 greg 2.24 SDdiffuseSamp(ioVec, !inFront, randX/sd->tLamb.cieY);
706 greg 2.15 goto done;
707     }
708     randX -= sd->tLamb.cieY;
709     }
710     /* else one of cumulative dist. */
711     for (i = 0; i < n && randX < cdarr[i]->cTotal; i++)
712     randX -= cdarr[i]->cTotal;
713     if (i >= n)
714     return SDEinternal;
715     /* compute sample direction */
716     sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr];
717 greg 2.24 ec = (*sdc->func->sampCDist)(ioVec, randX/cdarr[i]->cTotal, cdarr[i]);
718 greg 2.15 if (ec)
719     return ec;
720     /* compute color */
721 greg 2.25 j = (*sdc->func->getBSDFs)(coef, ioVec, inVec, sdc);
722 greg 2.15 if (j <= 0) {
723     sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
724     sd->name);
725     return SDEinternal;
726     }
727     sv->spec = sdc->cspec[0];
728     rdiff = coef[0];
729     while (--j) {
730     c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
731     rdiff += coef[j];
732     }
733     done:
734     if (cdarr != NULL)
735     free(cdarr);
736     /* make sure everything is set */
737     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
738     return SDEnone;
739     }
740    
741     /* Compute World->BSDF transform from surface normal and up (Y) vector */
742     SDError
743     SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
744     {
745     if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
746     return SDEargument;
747     VCOPY(vMtx[2], sNrm);
748 greg 2.23 if (normalize(vMtx[2]) == 0)
749 greg 2.15 return SDEargument;
750     fcross(vMtx[0], uVec, vMtx[2]);
751 greg 2.23 if (normalize(vMtx[0]) == 0)
752 greg 2.15 return SDEargument;
753     fcross(vMtx[1], vMtx[2], vMtx[0]);
754     return SDEnone;
755     }
756    
757     /* Compute inverse transform */
758     SDError
759     SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
760     {
761     RREAL mTmp[3][3];
762     double d;
763    
764     if ((iMtx == NULL) | (vMtx == NULL))
765     return SDEargument;
766     /* compute determinant */
767     mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
768     mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
769     mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
770     d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
771 greg 2.23 if (d == 0) {
772 greg 2.15 strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
773     return SDEargument;
774     }
775     d = 1./d; /* invert matrix */
776     mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
777     mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
778     mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
779     mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
780     mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
781     mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
782     mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
783     memcpy(iMtx, mTmp, sizeof(mTmp));
784     return SDEnone;
785     }
786    
787     /* Transform and normalize direction (column) vector */
788     SDError
789     SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
790     {
791     FVECT vTmp;
792    
793     if ((resVec == NULL) | (inpVec == NULL))
794     return SDEargument;
795     if (vMtx == NULL) { /* assume they just want to normalize */
796     if (resVec != inpVec)
797     VCOPY(resVec, inpVec);
798 greg 2.23 return (normalize(resVec) > 0) ? SDEnone : SDEargument;
799 greg 2.15 }
800     vTmp[0] = DOT(vMtx[0], inpVec);
801     vTmp[1] = DOT(vMtx[1], inpVec);
802     vTmp[2] = DOT(vMtx[2], inpVec);
803 greg 2.23 if (normalize(vTmp) == 0)
804 greg 2.15 return SDEargument;
805     VCOPY(resVec, vTmp);
806     return SDEnone;
807     }
808    
809     /*################################################################*/
810     /*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/
811    
812     /*
813 greg 2.1 * Routines for handling BSDF data
814     */
815    
816     #include "standard.h"
817     #include "paths.h"
818     #include <ctype.h>
819    
820     #define MAXLATS 46 /* maximum number of latitudes */
821    
822     /* BSDF angle specification */
823     typedef struct {
824     char name[64]; /* basis name */
825     int nangles; /* total number of directions */
826     struct {
827     float tmin; /* starting theta */
828     short nphis; /* number of phis (0 term) */
829     } lat[MAXLATS+1]; /* latitudes */
830     } ANGLE_BASIS;
831    
832 greg 2.4 #define MAXABASES 7 /* limit on defined bases */
833 greg 2.1
834     static ANGLE_BASIS abase_list[MAXABASES] = {
835     {
836     "LBNL/Klems Full", 145,
837     { {-5., 1},
838     {5., 8},
839     {15., 16},
840     {25., 20},
841     {35., 24},
842     {45., 24},
843     {55., 24},
844     {65., 16},
845     {75., 12},
846     {90., 0} }
847     }, {
848     "LBNL/Klems Half", 73,
849     { {-6.5, 1},
850     {6.5, 8},
851     {19.5, 12},
852     {32.5, 16},
853     {46.5, 20},
854     {61.5, 12},
855     {76.5, 4},
856     {90., 0} }
857     }, {
858     "LBNL/Klems Quarter", 41,
859     { {-9., 1},
860     {9., 8},
861     {27., 12},
862     {46., 12},
863     {66., 8},
864     {90., 0} }
865     }
866     };
867    
868     static int nabases = 3; /* current number of defined bases */
869    
870 greg 2.9 #define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6)
871    
872     static int
873     fequal(double a, double b)
874     {
875 greg 2.23 if (b != 0)
876 greg 2.9 a = a/b - 1.;
877     return((a <= 1e-6) & (a >= -1e-6));
878     }
879 greg 2.3
880 greg 2.14 /* Returns the name of the given tag */
881 greg 2.3 #ifdef ezxml_name
882     #undef ezxml_name
883     static char *
884     ezxml_name(ezxml_t xml)
885     {
886     if (xml == NULL)
887     return(NULL);
888     return(xml->name);
889     }
890     #endif
891    
892 greg 2.14 /* Returns the given tag's character content or empty string if none */
893 greg 2.3 #ifdef ezxml_txt
894     #undef ezxml_txt
895     static char *
896     ezxml_txt(ezxml_t xml)
897     {
898     if (xml == NULL)
899     return("");
900     return(xml->txt);
901     }
902     #endif
903    
904 greg 2.1
905     static int
906     ab_getvec( /* get vector for this angle basis index */
907     FVECT v,
908     int ndx,
909     void *p
910     )
911     {
912     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
913     int li;
914 greg 2.2 double pol, azi, d;
915 greg 2.1
916     if ((ndx < 0) | (ndx >= ab->nangles))
917     return(0);
918     for (li = 0; ndx >= ab->lat[li].nphis; li++)
919     ndx -= ab->lat[li].nphis;
920 greg 2.2 pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin);
921 greg 2.1 azi = 2.*PI*ndx/ab->lat[li].nphis;
922 greg 2.2 v[2] = d = cos(pol);
923     d = sqrt(1. - d*d); /* sin(pol) */
924 greg 2.1 v[0] = cos(azi)*d;
925     v[1] = sin(azi)*d;
926     return(1);
927     }
928    
929    
930     static int
931     ab_getndx( /* get index corresponding to the given vector */
932     FVECT v,
933     void *p
934     )
935     {
936     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
937     int li, ndx;
938 greg 2.2 double pol, azi, d;
939 greg 2.1
940     if ((v[2] < -1.0) | (v[2] > 1.0))
941     return(-1);
942 greg 2.2 pol = 180.0/PI*acos(v[2]);
943 greg 2.1 azi = 180.0/PI*atan2(v[1], v[0]);
944     if (azi < 0.0) azi += 360.0;
945 greg 2.2 for (li = 1; ab->lat[li].tmin <= pol; li++)
946 greg 2.1 if (!ab->lat[li].nphis)
947     return(-1);
948     --li;
949     ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
950     if (ndx >= ab->lat[li].nphis) ndx = 0;
951     while (li--)
952     ndx += ab->lat[li].nphis;
953     return(ndx);
954     }
955    
956    
957     static double
958     ab_getohm( /* get solid angle for this angle basis index */
959     int ndx,
960     void *p
961     )
962     {
963     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
964     int li;
965     double theta, theta1;
966    
967     if ((ndx < 0) | (ndx >= ab->nangles))
968     return(0);
969     for (li = 0; ndx >= ab->lat[li].nphis; li++)
970     ndx -= ab->lat[li].nphis;
971     theta1 = PI/180. * ab->lat[li+1].tmin;
972     if (ab->lat[li].nphis == 1) { /* special case */
973     if (ab->lat[li].tmin > FTINY)
974     error(USER, "unsupported BSDF coordinate system");
975     return(2.*PI*(1. - cos(theta1)));
976     }
977     theta = PI/180. * ab->lat[li].tmin;
978     return(2.*PI*(cos(theta) - cos(theta1))/(double)ab->lat[li].nphis);
979     }
980    
981    
982     static int
983     ab_getvecR( /* get reverse vector for this angle basis index */
984     FVECT v,
985     int ndx,
986     void *p
987     )
988     {
989     if (!ab_getvec(v, ndx, p))
990     return(0);
991    
992     v[0] = -v[0];
993     v[1] = -v[1];
994     v[2] = -v[2];
995    
996     return(1);
997     }
998    
999    
1000     static int
1001     ab_getndxR( /* get index corresponding to the reverse vector */
1002     FVECT v,
1003     void *p
1004     )
1005     {
1006     FVECT v2;
1007    
1008     v2[0] = -v[0];
1009     v2[1] = -v[1];
1010     v2[2] = -v[2];
1011    
1012     return ab_getndx(v2, p);
1013     }
1014    
1015    
1016     static void
1017 greg 2.4 load_angle_basis( /* load custom BSDF angle basis */
1018 greg 2.3 ezxml_t wab
1019     )
1020     {
1021     char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
1022     ezxml_t wbb;
1023     int i;
1024    
1025 greg 2.4 if (!abname || !*abname)
1026 greg 2.3 return;
1027     for (i = nabases; i--; )
1028 greg 2.12 if (!strcasecmp(abname, abase_list[i].name))
1029 greg 2.4 return; /* assume it's the same */
1030 greg 2.3 if (nabases >= MAXABASES)
1031     error(INTERNAL, "too many angle bases");
1032     strcpy(abase_list[nabases].name, abname);
1033     abase_list[nabases].nangles = 0;
1034     for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
1035     wbb != NULL; i++, wbb = wbb->next) {
1036     if (i >= MAXLATS)
1037     error(INTERNAL, "too many latitudes in custom basis");
1038     abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
1039     ezxml_child(ezxml_child(wbb,
1040     "ThetaBounds"), "UpperTheta")));
1041     if (!i)
1042     abase_list[nabases].lat[i].tmin =
1043     -abase_list[nabases].lat[i+1].tmin;
1044 greg 2.9 else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
1045 greg 2.3 "ThetaBounds"), "LowerTheta"))),
1046     abase_list[nabases].lat[i].tmin))
1047     error(WARNING, "theta values disagree in custom basis");
1048     abase_list[nabases].nangles +=
1049     abase_list[nabases].lat[i].nphis =
1050     atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
1051     }
1052     abase_list[nabases++].lat[i].nphis = 0;
1053     }
1054    
1055    
1056 greg 2.6 static void
1057     load_geometry( /* load geometric dimensions and description (if any) */
1058     struct BSDF_data *dp,
1059     ezxml_t wdb
1060     )
1061     {
1062     ezxml_t geom;
1063     double cfact;
1064     const char *fmt, *mgfstr;
1065    
1066     dp->dim[0] = dp->dim[1] = dp->dim[2] = 0;
1067     dp->mgf = NULL;
1068     if ((geom = ezxml_child(wdb, "Width")) != NULL)
1069     dp->dim[0] = atof(ezxml_txt(geom)) *
1070     to_meters(ezxml_attr(geom, "unit"));
1071     if ((geom = ezxml_child(wdb, "Height")) != NULL)
1072     dp->dim[1] = atof(ezxml_txt(geom)) *
1073     to_meters(ezxml_attr(geom, "unit"));
1074     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
1075     dp->dim[2] = atof(ezxml_txt(geom)) *
1076     to_meters(ezxml_attr(geom, "unit"));
1077     if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
1078     (mgfstr = ezxml_txt(geom)) == NULL)
1079     return;
1080     if ((fmt = ezxml_attr(geom, "format")) != NULL &&
1081     strcasecmp(fmt, "MGF")) {
1082     sprintf(errmsg, "unrecognized geometry format '%s'", fmt);
1083     error(WARNING, errmsg);
1084     return;
1085     }
1086     cfact = to_meters(ezxml_attr(geom, "unit"));
1087     dp->mgf = (char *)malloc(strlen(mgfstr)+32);
1088     if (dp->mgf == NULL)
1089     error(SYSTEM, "out of memory in load_geometry");
1090     if (cfact < 0.99 || cfact > 1.01)
1091     sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
1092     else
1093     strcpy(dp->mgf, mgfstr);
1094     }
1095    
1096    
1097 greg 2.3 static void
1098 greg 2.1 load_bsdf_data( /* load BSDF distribution for this wavelength */
1099     struct BSDF_data *dp,
1100     ezxml_t wdb
1101     )
1102     {
1103     char *cbasis = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
1104     char *rbasis = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
1105     char *sdata;
1106     int i;
1107    
1108 greg 2.4 if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) {
1109 greg 2.1 error(WARNING, "missing column/row basis for BSDF");
1110     return;
1111     }
1112     for (i = nabases; i--; )
1113 greg 2.12 if (!strcasecmp(cbasis, abase_list[i].name)) {
1114 greg 2.1 dp->ninc = abase_list[i].nangles;
1115     dp->ib_priv = (void *)&abase_list[i];
1116     dp->ib_vec = ab_getvecR;
1117     dp->ib_ndx = ab_getndxR;
1118     dp->ib_ohm = ab_getohm;
1119     break;
1120     }
1121     if (i < 0) {
1122 greg 2.4 sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis);
1123 greg 2.1 error(WARNING, errmsg);
1124     return;
1125     }
1126     for (i = nabases; i--; )
1127 greg 2.12 if (!strcasecmp(rbasis, abase_list[i].name)) {
1128 greg 2.1 dp->nout = abase_list[i].nangles;
1129     dp->ob_priv = (void *)&abase_list[i];
1130     dp->ob_vec = ab_getvec;
1131     dp->ob_ndx = ab_getndx;
1132     dp->ob_ohm = ab_getohm;
1133     break;
1134     }
1135     if (i < 0) {
1136 greg 2.16 sprintf(errmsg, "undefined RowAngleBasis '%s'", rbasis);
1137 greg 2.1 error(WARNING, errmsg);
1138     return;
1139     }
1140     /* read BSDF data */
1141     sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
1142 greg 2.4 if (!sdata || !*sdata) {
1143 greg 2.1 error(WARNING, "missing BSDF ScatteringData");
1144     return;
1145     }
1146     dp->bsdf = (float *)malloc(sizeof(float)*dp->ninc*dp->nout);
1147     if (dp->bsdf == NULL)
1148     error(SYSTEM, "out of memory in load_bsdf_data");
1149     for (i = 0; i < dp->ninc*dp->nout; i++) {
1150     char *sdnext = fskip(sdata);
1151     if (sdnext == NULL) {
1152     error(WARNING, "bad/missing BSDF ScatteringData");
1153     free(dp->bsdf); dp->bsdf = NULL;
1154     return;
1155     }
1156     while (*sdnext && isspace(*sdnext))
1157     sdnext++;
1158     if (*sdnext == ',') sdnext++;
1159     dp->bsdf[i] = atof(sdata);
1160     sdata = sdnext;
1161     }
1162     while (isspace(*sdata))
1163     sdata++;
1164     if (*sdata) {
1165     sprintf(errmsg, "%d extra characters after BSDF ScatteringData",
1166 greg 2.5 (int)strlen(sdata));
1167 greg 2.1 error(WARNING, errmsg);
1168     }
1169     }
1170    
1171    
1172     static int
1173     check_bsdf_data( /* check that BSDF data is sane */
1174     struct BSDF_data *dp
1175     )
1176     {
1177 greg 2.2 double *omega_iarr, *omega_oarr;
1178 greg 2.7 double dom, contrib, hemi_total, full_total;
1179 greg 2.1 int nneg;
1180 greg 2.2 FVECT v;
1181 greg 2.1 int i, o;
1182    
1183     if (dp == NULL || dp->bsdf == NULL)
1184     return(0);
1185 greg 2.2 omega_iarr = (double *)calloc(dp->ninc, sizeof(double));
1186     omega_oarr = (double *)calloc(dp->nout, sizeof(double));
1187     if ((omega_iarr == NULL) | (omega_oarr == NULL))
1188 greg 2.1 error(SYSTEM, "out of memory in check_bsdf_data");
1189 greg 2.2 /* incoming projected solid angles */
1190     hemi_total = .0;
1191     for (i = dp->ninc; i--; ) {
1192     dom = getBSDF_incohm(dp,i);
1193 greg 2.23 if (dom <= 0) {
1194 greg 2.2 error(WARNING, "zero/negative incoming solid angle");
1195     continue;
1196     }
1197     if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) {
1198     error(WARNING, "illegal incoming BSDF direction");
1199     free(omega_iarr); free(omega_oarr);
1200     return(0);
1201     }
1202     hemi_total += omega_iarr[i] = dom * -v[2];
1203     }
1204     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1205     sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%",
1206     100.*(hemi_total/PI - 1.));
1207     error(WARNING, errmsg);
1208     }
1209     dom = PI / hemi_total; /* fix normalization */
1210     for (i = dp->ninc; i--; )
1211     omega_iarr[i] *= dom;
1212     /* outgoing projected solid angles */
1213 greg 2.1 hemi_total = .0;
1214     for (o = dp->nout; o--; ) {
1215     dom = getBSDF_outohm(dp,o);
1216 greg 2.23 if (dom <= 0) {
1217 greg 2.2 error(WARNING, "zero/negative outgoing solid angle");
1218 greg 2.1 continue;
1219     }
1220     if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) {
1221     error(WARNING, "illegal outgoing BSDF direction");
1222 greg 2.2 free(omega_iarr); free(omega_oarr);
1223 greg 2.1 return(0);
1224     }
1225 greg 2.2 hemi_total += omega_oarr[o] = dom * v[2];
1226 greg 2.1 }
1227     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1228     sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%",
1229     100.*(hemi_total/PI - 1.));
1230     error(WARNING, errmsg);
1231     }
1232 greg 2.2 dom = PI / hemi_total; /* fix normalization */
1233 greg 2.1 for (o = dp->nout; o--; )
1234 greg 2.2 omega_oarr[o] *= dom;
1235     nneg = 0; /* check outgoing totals */
1236     for (i = 0; i < dp->ninc; i++) {
1237 greg 2.1 hemi_total = .0;
1238     for (o = dp->nout; o--; ) {
1239     double f = BSDF_value(dp,i,o);
1240 greg 2.23 if (f >= 0)
1241 greg 2.2 hemi_total += f*omega_oarr[o];
1242     else {
1243     nneg += (f < -FTINY);
1244     BSDF_value(dp,i,o) = .0f;
1245     }
1246 greg 2.1 }
1247 greg 2.8 if (hemi_total > 1.01) {
1248 greg 2.2 sprintf(errmsg,
1249     "incoming BSDF direction %d passes %.1f%% of light",
1250     i, 100.*hemi_total);
1251 greg 2.1 error(WARNING, errmsg);
1252     }
1253     }
1254 greg 2.2 if (nneg) {
1255     sprintf(errmsg, "%d negative BSDF values (ignored)", nneg);
1256 greg 2.1 error(WARNING, errmsg);
1257     }
1258 greg 2.7 full_total = .0; /* reverse roles and check again */
1259 greg 2.2 for (o = 0; o < dp->nout; o++) {
1260     hemi_total = .0;
1261     for (i = dp->ninc; i--; )
1262     hemi_total += BSDF_value(dp,i,o) * omega_iarr[i];
1263    
1264 greg 2.8 if (hemi_total > 1.01) {
1265 greg 2.2 sprintf(errmsg,
1266     "outgoing BSDF direction %d collects %.1f%% of light",
1267     o, 100.*hemi_total);
1268     error(WARNING, errmsg);
1269     }
1270 greg 2.7 full_total += hemi_total*omega_oarr[o];
1271     }
1272     full_total /= PI;
1273 greg 2.8 if (full_total > 1.00001) {
1274     sprintf(errmsg, "BSDF transfers %.4f%% of light",
1275 greg 2.7 100.*full_total);
1276     error(WARNING, errmsg);
1277 greg 2.2 }
1278     free(omega_iarr); free(omega_oarr);
1279 greg 2.1 return(1);
1280     }
1281    
1282 greg 2.6
1283 greg 2.1 struct BSDF_data *
1284     load_BSDF( /* load BSDF data from file */
1285     char *fname
1286     )
1287     {
1288     char *path;
1289     ezxml_t fl, wtl, wld, wdb;
1290     struct BSDF_data *dp;
1291    
1292     path = getpath(fname, getrlibpath(), R_OK);
1293     if (path == NULL) {
1294     sprintf(errmsg, "cannot find BSDF file \"%s\"", fname);
1295     error(WARNING, errmsg);
1296     return(NULL);
1297     }
1298     fl = ezxml_parse_file(path);
1299     if (fl == NULL) {
1300     sprintf(errmsg, "cannot open BSDF \"%s\"", path);
1301     error(WARNING, errmsg);
1302     return(NULL);
1303     }
1304     if (ezxml_error(fl)[0]) {
1305     sprintf(errmsg, "BSDF \"%s\" %s", path, ezxml_error(fl));
1306     error(WARNING, errmsg);
1307     ezxml_free(fl);
1308     return(NULL);
1309     }
1310     if (strcmp(ezxml_name(fl), "WindowElement")) {
1311     sprintf(errmsg,
1312     "BSDF \"%s\": top level node not 'WindowElement'",
1313     path);
1314     error(WARNING, errmsg);
1315     ezxml_free(fl);
1316     return(NULL);
1317     }
1318     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
1319 greg 2.10 if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl,
1320     "DataDefinition"), "IncidentDataStructure")),
1321     "Columns")) {
1322     sprintf(errmsg,
1323     "BSDF \"%s\": unsupported IncidentDataStructure",
1324     path);
1325     error(WARNING, errmsg);
1326     ezxml_free(fl);
1327     return(NULL);
1328     }
1329 greg 2.3 load_angle_basis(ezxml_child(ezxml_child(wtl,
1330     "DataDefinition"), "AngleBasis"));
1331 greg 2.1 dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data));
1332 greg 2.6 load_geometry(dp, ezxml_child(wtl, "Material"));
1333 greg 2.1 for (wld = ezxml_child(wtl, "WavelengthData");
1334     wld != NULL; wld = wld->next) {
1335 greg 2.13 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1336     "Visible"))
1337 greg 2.1 continue;
1338 greg 2.13 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1339     wdb != NULL; wdb = wdb->next)
1340     if (!strcasecmp(ezxml_txt(ezxml_child(wdb,
1341     "WavelengthDataDirection")),
1342 greg 2.1 "Transmission Front"))
1343 greg 2.13 break;
1344     if (wdb != NULL) { /* load front BTDF */
1345     load_bsdf_data(dp, wdb);
1346     break; /* ignore the rest */
1347     }
1348 greg 2.1 }
1349     ezxml_free(fl); /* done with XML file */
1350     if (!check_bsdf_data(dp)) {
1351     sprintf(errmsg, "bad/missing BTDF data in \"%s\"", path);
1352     error(WARNING, errmsg);
1353     free_BSDF(dp);
1354     dp = NULL;
1355     }
1356     return(dp);
1357     }
1358    
1359    
1360     void
1361     free_BSDF( /* free BSDF data structure */
1362     struct BSDF_data *b
1363     )
1364     {
1365     if (b == NULL)
1366     return;
1367 greg 2.6 if (b->mgf != NULL)
1368     free(b->mgf);
1369 greg 2.1 if (b->bsdf != NULL)
1370     free(b->bsdf);
1371     free(b);
1372     }
1373    
1374    
1375     int
1376     r_BSDF_incvec( /* compute random input vector at given location */
1377     FVECT v,
1378     struct BSDF_data *b,
1379     int i,
1380     double rv,
1381     MAT4 xm
1382     )
1383     {
1384     FVECT pert;
1385     double rad;
1386     int j;
1387    
1388     if (!getBSDF_incvec(v, b, i))
1389     return(0);
1390     rad = sqrt(getBSDF_incohm(b, i) / PI);
1391     multisamp(pert, 3, rv);
1392     for (j = 0; j < 3; j++)
1393     v[j] += rad*(2.*pert[j] - 1.);
1394     if (xm != NULL)
1395     multv3(v, v, xm);
1396     return(normalize(v) != 0.0);
1397     }
1398    
1399    
1400     int
1401     r_BSDF_outvec( /* compute random output vector at given location */
1402     FVECT v,
1403     struct BSDF_data *b,
1404     int o,
1405     double rv,
1406     MAT4 xm
1407     )
1408     {
1409     FVECT pert;
1410     double rad;
1411     int j;
1412    
1413     if (!getBSDF_outvec(v, b, o))
1414     return(0);
1415     rad = sqrt(getBSDF_outohm(b, o) / PI);
1416     multisamp(pert, 3, rv);
1417     for (j = 0; j < 3; j++)
1418     v[j] += rad*(2.*pert[j] - 1.);
1419     if (xm != NULL)
1420     multv3(v, v, xm);
1421     return(normalize(v) != 0.0);
1422     }
1423    
1424    
1425     static int
1426     addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */
1427     char *xfarg[],
1428     FVECT xp,
1429     FVECT yp,
1430     FVECT zp
1431     )
1432     {
1433     static char bufs[3][16];
1434     int bn = 0;
1435     char **xfp = xfarg;
1436     double theta;
1437    
1438     if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
1439     /* Special case for X' along Z-axis */
1440     theta = -atan2(yp[0], yp[1]);
1441     *xfp++ = "-ry";
1442     *xfp++ = xp[2] < 0.0 ? "90" : "-90";
1443     *xfp++ = "-rz";
1444     sprintf(bufs[bn], "%f", theta*(180./PI));
1445     *xfp++ = bufs[bn++];
1446     return(xfp - xfarg);
1447     }
1448     theta = atan2(yp[2], zp[2]);
1449     if (!FEQ(theta,0.0)) {
1450     *xfp++ = "-rx";
1451     sprintf(bufs[bn], "%f", theta*(180./PI));
1452     *xfp++ = bufs[bn++];
1453     }
1454     theta = asin(-xp[2]);
1455     if (!FEQ(theta,0.0)) {
1456     *xfp++ = "-ry";
1457     sprintf(bufs[bn], " %f", theta*(180./PI));
1458     *xfp++ = bufs[bn++];
1459     }
1460     theta = atan2(xp[1], xp[0]);
1461     if (!FEQ(theta,0.0)) {
1462     *xfp++ = "-rz";
1463     sprintf(bufs[bn], "%f", theta*(180./PI));
1464     *xfp++ = bufs[bn++];
1465     }
1466     *xfp = NULL;
1467     return(xfp - xfarg);
1468     }
1469    
1470    
1471     int
1472     getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */
1473     MAT4 xm,
1474     FVECT nrm,
1475 greg 2.6 UpDir ud,
1476     char *xfbuf
1477 greg 2.1 )
1478     {
1479     char *xfargs[7];
1480     XF myxf;
1481     FVECT updir, xdest, ydest;
1482 greg 2.6 int i;
1483 greg 2.1
1484     updir[0] = updir[1] = updir[2] = 0.;
1485     switch (ud) {
1486     case UDzneg:
1487     updir[2] = -1.;
1488     break;
1489     case UDyneg:
1490     updir[1] = -1.;
1491     break;
1492     case UDxneg:
1493     updir[0] = -1.;
1494     break;
1495     case UDxpos:
1496     updir[0] = 1.;
1497     break;
1498     case UDypos:
1499     updir[1] = 1.;
1500     break;
1501     case UDzpos:
1502     updir[2] = 1.;
1503     break;
1504     case UDunknown:
1505     return(0);
1506     }
1507     fcross(xdest, updir, nrm);
1508     if (normalize(xdest) == 0.0)
1509     return(0);
1510     fcross(ydest, nrm, xdest);
1511     xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs);
1512     copymat4(xm, myxf.xfm);
1513 greg 2.6 if (xfbuf == NULL)
1514     return(1);
1515     /* return xf arguments as well */
1516     for (i = 0; xfargs[i] != NULL; i++) {
1517     *xfbuf++ = ' ';
1518     strcpy(xfbuf, xfargs[i]);
1519     while (*xfbuf) ++xfbuf;
1520     }
1521 greg 2.1 return(1);
1522     }
1523 greg 2.15
1524     /*######### END DEPRECATED ROUTINES #######*/
1525     /*################################################################*/