ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.23
Committed: Wed Apr 20 14:44:05 2011 UTC (13 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.22: +27 -22 lines
Log Message:
Fixes to last change -- tested

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.23 static const char RCSid[] = "$Id: bsdf.c,v 2.22 2011/04/19 21:31:22 greg Exp $";
3 greg 2.1 #endif
4     /*
5 greg 2.15 * bsdf.c
6     *
7     * Definitions for bidirectional scattering distribution functions.
8     *
9     * Created by Greg Ward on 1/10/11.
10     *
11     */
12    
13     #include <stdio.h>
14     #include <stdlib.h>
15     #include <math.h>
16     #include "ezxml.h"
17     #include "hilbert.h"
18     #include "bsdf.h"
19     #include "bsdf_m.h"
20     #include "bsdf_t.h"
21    
22     /* English ASCII strings corresponding to ennumerated errors */
23     const char *SDerrorEnglish[] = {
24     "No error",
25     "Memory error",
26     "File input/output error",
27     "File format error",
28     "Illegal argument",
29     "Invalid data",
30     "Unsupported feature",
31     "Internal program error",
32     "Unknown error"
33     };
34    
35     /* Additional information on last error (ASCII English) */
36     char SDerrorDetail[256];
37    
38     /* Cache of loaded BSDFs */
39     struct SDCache_s *SDcacheList = NULL;
40    
41     /* Retain BSDFs in cache list */
42     int SDretainSet = SDretainNone;
43    
44     /* Report any error to the indicated stream (in English) */
45     SDError
46     SDreportEnglish(SDError ec, FILE *fp)
47     {
48 greg 2.21 if (!ec)
49     return SDEnone;
50     if ((ec < SDEnone) | (ec > SDEunknown)) {
51     SDerrorDetail[0] = '\0';
52     ec = SDEunknown;
53     }
54 greg 2.15 if (fp == NULL)
55     return ec;
56     fputs(SDerrorEnglish[ec], fp);
57     if (SDerrorDetail[0]) {
58     fputs(": ", fp);
59     fputs(SDerrorDetail, fp);
60     }
61     fputc('\n', fp);
62     if (fp != stderr)
63     fflush(fp);
64     return ec;
65     }
66    
67     static double
68     to_meters( /* return factor to convert given unit to meters */
69     const char *unit
70     )
71     {
72     if (unit == NULL) return(1.); /* safe assumption? */
73     if (!strcasecmp(unit, "Meter")) return(1.);
74     if (!strcasecmp(unit, "Foot")) return(.3048);
75     if (!strcasecmp(unit, "Inch")) return(.0254);
76     if (!strcasecmp(unit, "Centimeter")) return(.01);
77     if (!strcasecmp(unit, "Millimeter")) return(.001);
78     sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
79     return(-1.);
80     }
81    
82     /* Load geometric dimensions and description (if any) */
83     static SDError
84 greg 2.16 SDloadGeometry(SDData *sd, ezxml_t wdb)
85 greg 2.15 {
86     ezxml_t geom;
87     double cfact;
88     const char *fmt, *mgfstr;
89    
90 greg 2.16 if (wdb == NULL) /* no geometry section? */
91     return SDEnone;
92     sd->dim[0] = sd->dim[1] = sd->dim[2] = .0;
93 greg 2.15 if ((geom = ezxml_child(wdb, "Width")) != NULL)
94 greg 2.16 sd->dim[0] = atof(ezxml_txt(geom)) *
95 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
96     if ((geom = ezxml_child(wdb, "Height")) != NULL)
97 greg 2.16 sd->dim[1] = atof(ezxml_txt(geom)) *
98 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
99     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
100 greg 2.16 sd->dim[2] = atof(ezxml_txt(geom)) *
101 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
102 greg 2.23 if ((sd->dim[0] < 0) | (sd->dim[1] < 0) | (sd->dim[2] < 0)) {
103 greg 2.17 sprintf(SDerrorDetail, "Negative size in \"%s\"", sd->name);
104 greg 2.15 return SDEdata;
105 greg 2.17 }
106 greg 2.15 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
107     (mgfstr = ezxml_txt(geom)) == NULL)
108     return SDEnone;
109     if ((fmt = ezxml_attr(geom, "format")) != NULL &&
110     strcasecmp(fmt, "MGF")) {
111     sprintf(SDerrorDetail,
112     "Unrecognized geometry format '%s' in \"%s\"",
113 greg 2.16 fmt, sd->name);
114 greg 2.15 return SDEsupport;
115     }
116     cfact = to_meters(ezxml_attr(geom, "unit"));
117 greg 2.16 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
118     if (sd->mgf == NULL) {
119 greg 2.15 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
120     return SDEmemory;
121     }
122     if (cfact < 0.99 || cfact > 1.01)
123 greg 2.16 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
124 greg 2.15 else
125 greg 2.16 strcpy(sd->mgf, mgfstr);
126 greg 2.15 return SDEnone;
127     }
128    
129     /* Load a BSDF struct from the given file (free first and keep name) */
130     SDError
131     SDloadFile(SDData *sd, const char *fname)
132     {
133     SDError lastErr;
134 greg 2.16 ezxml_t fl, wtl;
135 greg 2.15
136     if ((sd == NULL) | (fname == NULL || !*fname))
137     return SDEargument;
138     /* free old data, keeping name */
139     SDfreeBSDF(sd);
140     /* parse XML file */
141     fl = ezxml_parse_file(fname);
142     if (fl == NULL) {
143     sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
144     return SDEfile;
145     }
146     if (ezxml_error(fl)[0]) {
147     sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
148     ezxml_free(fl);
149     return SDEformat;
150     }
151 greg 2.16 if (strcmp(ezxml_name(fl), "WindowElement")) {
152     sprintf(SDerrorDetail,
153     "BSDF \"%s\": top level node not 'WindowElement'",
154     sd->name);
155     ezxml_free(fl);
156     return SDEformat;
157     }
158     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
159     if (wtl == NULL) {
160     sprintf(SDerrorDetail, "BSDF \"%s\": no optical layer'",
161     sd->name);
162     ezxml_free(fl);
163     return SDEformat;
164     }
165 greg 2.15 /* load geometry if present */
166 greg 2.16 lastErr = SDloadGeometry(sd, ezxml_child(wtl, "Material"));
167     if (lastErr)
168 greg 2.15 return lastErr;
169     /* try loading variable resolution data */
170 greg 2.16 lastErr = SDloadTre(sd, wtl);
171 greg 2.15 /* check our result */
172     switch (lastErr) {
173     case SDEformat:
174     case SDEdata:
175     case SDEsupport: /* possibly we just tried the wrong format */
176 greg 2.16 lastErr = SDloadMtx(sd, wtl);
177 greg 2.15 break;
178     default: /* variable res. OK else serious error */
179     break;
180     }
181     /* done with XML file */
182     ezxml_free(fl);
183 greg 2.16
184     if (lastErr) { /* was there a load error? */
185     SDfreeBSDF(sd);
186     return lastErr;
187     }
188     /* remove any insignificant components */
189     if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
190     SDfreeSpectralDF(sd->rf); sd->rf = NULL;
191     }
192     if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
193     SDfreeSpectralDF(sd->rb); sd->rb = NULL;
194     }
195     if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
196     SDfreeSpectralDF(sd->tf); sd->tf = NULL;
197     }
198     /* return success */
199     return SDEnone;
200 greg 2.15 }
201    
202     /* Allocate new spectral distribution function */
203     SDSpectralDF *
204     SDnewSpectralDF(int nc)
205     {
206     SDSpectralDF *df;
207    
208     if (nc <= 0) {
209     strcpy(SDerrorDetail, "Zero component spectral DF request");
210     return NULL;
211     }
212     df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
213     (nc-1)*sizeof(SDComponent));
214     if (df == NULL) {
215     sprintf(SDerrorDetail,
216     "Cannot allocate %d component spectral DF", nc);
217     return NULL;
218     }
219     df->minProjSA = .0;
220     df->maxHemi = .0;
221     df->ncomp = nc;
222     memset(df->comp, 0, nc*sizeof(SDComponent));
223     return df;
224     }
225    
226     /* Free cached cumulative distributions for BSDF component */
227     void
228     SDfreeCumulativeCache(SDSpectralDF *df)
229     {
230     int n;
231     SDCDst *cdp;
232    
233     if (df == NULL)
234     return;
235     for (n = df->ncomp; n-- > 0; )
236     while ((cdp = df->comp[n].cdList) != NULL) {
237     df->comp[n].cdList = cdp->next;
238     free(cdp);
239     }
240     }
241    
242     /* Free a spectral distribution function */
243     void
244     SDfreeSpectralDF(SDSpectralDF *df)
245     {
246     int n;
247    
248     if (df == NULL)
249     return;
250     SDfreeCumulativeCache(df);
251     for (n = df->ncomp; n-- > 0; )
252     (*df->comp[n].func->freeSC)(df->comp[n].dist);
253     free(df);
254     }
255    
256     /* Shorten file path to useable BSDF name, removing suffix */
257     void
258 greg 2.16 SDclipName(char *res, const char *fname)
259 greg 2.15 {
260     const char *cp, *dot = NULL;
261    
262     for (cp = fname; *cp; cp++)
263     if (*cp == '.')
264     dot = cp;
265     if ((dot == NULL) | (dot < fname+2))
266     dot = cp;
267     if (dot - fname >= SDnameLn)
268     fname = dot - SDnameLn + 1;
269     while (fname < dot)
270     *res++ = *fname++;
271     *res = '\0';
272     }
273    
274     /* Initialize an unused BSDF struct (simply clears to zeroes) */
275     void
276 greg 2.20 SDclearBSDF(SDData *sd, const char *fname)
277 greg 2.15 {
278 greg 2.20 if (sd == NULL)
279     return;
280     memset(sd, 0, sizeof(SDData));
281     if (fname == NULL)
282     return;
283     SDclipName(sd->name, fname);
284 greg 2.15 }
285    
286     /* Free data associated with BSDF struct */
287     void
288     SDfreeBSDF(SDData *sd)
289     {
290     if (sd == NULL)
291     return;
292     if (sd->mgf != NULL) {
293     free(sd->mgf);
294     sd->mgf = NULL;
295     }
296     if (sd->rf != NULL) {
297     SDfreeSpectralDF(sd->rf);
298     sd->rf = NULL;
299     }
300     if (sd->rb != NULL) {
301     SDfreeSpectralDF(sd->rb);
302     sd->rb = NULL;
303     }
304     if (sd->tf != NULL) {
305     SDfreeSpectralDF(sd->tf);
306     sd->tf = NULL;
307     }
308     sd->rLambFront.cieY = .0;
309 greg 2.16 sd->rLambFront.spec.flags = 0;
310 greg 2.15 sd->rLambBack.cieY = .0;
311 greg 2.16 sd->rLambBack.spec.flags = 0;
312 greg 2.15 sd->tLamb.cieY = .0;
313 greg 2.16 sd->tLamb.spec.flags = 0;
314 greg 2.15 }
315    
316     /* Find writeable BSDF by name, or allocate new cache entry if absent */
317     SDData *
318     SDgetCache(const char *bname)
319     {
320     struct SDCache_s *sdl;
321     char sdnam[SDnameLn];
322    
323     if (bname == NULL)
324     return NULL;
325    
326     SDclipName(sdnam, bname);
327     for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
328     if (!strcmp(sdl->bsdf.name, sdnam)) {
329     sdl->refcnt++;
330     return &sdl->bsdf;
331     }
332    
333     sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
334     if (sdl == NULL)
335     return NULL;
336    
337     strcpy(sdl->bsdf.name, sdnam);
338     sdl->next = SDcacheList;
339     SDcacheList = sdl;
340    
341 greg 2.21 sdl->refcnt = 1;
342 greg 2.15 return &sdl->bsdf;
343     }
344    
345     /* Get loaded BSDF from cache (or load and cache it on first call) */
346     /* Report any problem to stderr and return NULL on failure */
347     const SDData *
348     SDcacheFile(const char *fname)
349     {
350     SDData *sd;
351     SDError ec;
352    
353     if (fname == NULL || !*fname)
354     return NULL;
355     SDerrorDetail[0] = '\0';
356     if ((sd = SDgetCache(fname)) == NULL) {
357     SDreportEnglish(SDEmemory, stderr);
358     return NULL;
359     }
360     if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
361     SDreportEnglish(ec, stderr);
362     SDfreeCache(sd);
363     return NULL;
364     }
365     return sd;
366     }
367    
368     /* Free a BSDF from our cache (clear all if NULL) */
369     void
370     SDfreeCache(const SDData *sd)
371     {
372     struct SDCache_s *sdl, *sdLast = NULL;
373    
374     if (sd == NULL) { /* free entire list */
375     while ((sdl = SDcacheList) != NULL) {
376     SDcacheList = sdl->next;
377     SDfreeBSDF(&sdl->bsdf);
378     free(sdl);
379     }
380     return;
381     }
382     for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
383     if (&sdl->bsdf == sd)
384     break;
385 greg 2.21 if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
386 greg 2.15 return; /* missing or still in use */
387     /* keep unreferenced data? */
388     if (SDisLoaded(sd) && SDretainSet) {
389     if (SDretainSet == SDretainAll)
390     return; /* keep everything */
391     /* else free cumulative data */
392     SDfreeCumulativeCache(sd->rf);
393     SDfreeCumulativeCache(sd->rb);
394     SDfreeCumulativeCache(sd->tf);
395     return;
396     }
397     /* remove from list and free */
398     if (sdLast == NULL)
399     SDcacheList = sdl->next;
400     else
401     sdLast->next = sdl->next;
402     SDfreeBSDF(&sdl->bsdf);
403     free(sdl);
404     }
405    
406     /* Sample an individual BSDF component */
407     SDError
408     SDsampComponent(SDValue *sv, FVECT outVec, const FVECT inVec,
409     double randX, SDComponent *sdc)
410     {
411     float coef[SDmaxCh];
412     SDError ec;
413     const SDCDst *cd;
414     double d;
415     int n;
416     /* check arguments */
417     if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL))
418     return SDEargument;
419     /* get cumulative distribution */
420     cd = (*sdc->func->getCDist)(inVec, sdc);
421     if (cd == NULL)
422     return SDEmemory;
423     if (cd->cTotal <= 1e-7) { /* anything to sample? */
424     sv->spec = c_dfcolor;
425     sv->cieY = .0;
426     memset(outVec, 0, 3*sizeof(double));
427     return SDEnone;
428     }
429     sv->cieY = cd->cTotal;
430     /* compute sample direction */
431     ec = (*sdc->func->sampCDist)(outVec, randX, cd);
432     if (ec)
433     return ec;
434     /* get BSDF color */
435     n = (*sdc->func->getBSDFs)(coef, outVec, inVec, sdc->dist);
436     if (n <= 0) {
437     strcpy(SDerrorDetail, "BSDF sample value error");
438     return SDEinternal;
439     }
440     sv->spec = sdc->cspec[0];
441     d = coef[0];
442     while (--n) {
443     c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
444     d += coef[n];
445     }
446     /* make sure everything is set */
447     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
448     return SDEnone;
449     }
450    
451     #define MS_MAXDIM 15
452    
453     /* Convert 1-dimensional random variable to N-dimensional */
454     void
455     SDmultiSamp(double t[], int n, double randX)
456     {
457     unsigned nBits;
458     double scale;
459     bitmask_t ndx, coord[MS_MAXDIM];
460    
461     while (n > MS_MAXDIM) /* punt for higher dimensions */
462 greg 2.19 t[--n] = rand()*(1./(RAND_MAX+.5));
463 greg 2.15 nBits = (8*sizeof(bitmask_t) - 1) / n;
464     ndx = randX * (double)((bitmask_t)1 << (nBits*n));
465     /* get coordinate on Hilbert curve */
466     hilbert_i2c(n, nBits, ndx, coord);
467     /* convert back to [0,1) range */
468     scale = 1. / (double)((bitmask_t)1 << nBits);
469     while (n--)
470 greg 2.19 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
471 greg 2.15 }
472    
473     #undef MS_MAXDIM
474    
475     /* Generate diffuse hemispherical sample */
476     static void
477     SDdiffuseSamp(FVECT outVec, int outFront, double randX)
478     {
479     /* convert to position on hemisphere */
480     SDmultiSamp(outVec, 2, randX);
481     SDsquare2disk(outVec, outVec[0], outVec[1]);
482     outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
483 greg 2.23 if (outVec[2] > 0) /* a bit of paranoia */
484 greg 2.15 outVec[2] = sqrt(outVec[2]);
485     if (!outFront) /* going out back? */
486     outVec[2] = -outVec[2];
487     }
488    
489     /* Query projected solid angle coverage for non-diffuse BSDF direction */
490     SDError
491 greg 2.22 SDsizeBSDF(double *projSA, const FVECT v1, const RREAL *v2,
492     int qflags, const SDData *sd)
493 greg 2.15 {
494 greg 2.23 SDSpectralDF *rdf, *tdf;
495 greg 2.15 SDError ec;
496     int i;
497     /* check arguments */
498 greg 2.22 if ((projSA == NULL) | (v1 == NULL))
499 greg 2.15 return SDEargument;
500     /* initialize extrema */
501 greg 2.17 switch (qflags) {
502 greg 2.15 case SDqueryMax:
503     projSA[0] = .0;
504     break;
505     case SDqueryMin+SDqueryMax:
506     projSA[1] = .0;
507     /* fall through */
508     case SDqueryMin:
509     projSA[0] = 10.;
510     break;
511     case 0:
512     return SDEargument;
513     }
514 greg 2.23 if (v1[2] > 0) /* front surface query? */
515 greg 2.15 rdf = sd->rf;
516     else
517     rdf = sd->rb;
518 greg 2.23 tdf = NULL; /* transmitted component? */
519     if (v2 != NULL && v1[2] > 0 ^ v2[2] > 0) {
520     rdf = NULL;
521     tdf = sd->tf;
522     }
523 greg 2.15 ec = SDEdata; /* run through components */
524     for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
525 greg 2.22 ec = (*rdf->comp[i].func->queryProjSA)(projSA, v1, v2,
526     qflags, rdf->comp[i].dist);
527 greg 2.15 if (ec)
528     return ec;
529     }
530 greg 2.23 for (i = (tdf==NULL) ? 0 : tdf->ncomp; i--; ) {
531     ec = (*tdf->comp[i].func->queryProjSA)(projSA, v1, v2,
532     qflags, tdf->comp[i].dist);
533 greg 2.15 if (ec)
534     return ec;
535     }
536 greg 2.17 if (ec) { /* all diffuse? */
537     projSA[0] = M_PI;
538     if (qflags == SDqueryMin+SDqueryMax)
539     projSA[1] = M_PI;
540     }
541     return SDEnone;
542 greg 2.15 }
543    
544     /* Return BSDF for the given incident and scattered ray vectors */
545     SDError
546     SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
547     {
548     int inFront, outFront;
549     SDSpectralDF *sdf;
550     float coef[SDmaxCh];
551     int nch, i;
552     /* check arguments */
553     if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
554     return SDEargument;
555     /* whose side are we on? */
556 greg 2.23 inFront = (inVec[2] > 0);
557     outFront = (outVec[2] > 0);
558 greg 2.15 /* start with diffuse portion */
559     if (inFront & outFront) {
560     *sv = sd->rLambFront;
561     sdf = sd->rf;
562     } else if (!(inFront | outFront)) {
563     *sv = sd->rLambBack;
564     sdf = sd->rb;
565     } else /* inFront ^ outFront */ {
566     *sv = sd->tLamb;
567     sdf = sd->tf;
568     }
569     sv->cieY *= 1./M_PI;
570     /* add non-diffuse components */
571     i = (sdf != NULL) ? sdf->ncomp : 0;
572     while (i-- > 0) {
573     nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
574     sdf->comp[i].dist);
575     while (nch-- > 0) {
576     c_cmix(&sv->spec, sv->cieY, &sv->spec,
577     coef[nch], &sdf->comp[i].cspec[nch]);
578     sv->cieY += coef[nch];
579     }
580     }
581     /* make sure everything is set */
582     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
583     return SDEnone;
584     }
585    
586     /* Compute directional hemispherical scattering at this incident angle */
587     double
588     SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
589     {
590     double hsum;
591     SDSpectralDF *rdf;
592     const SDCDst *cd;
593     int i;
594     /* check arguments */
595     if ((inVec == NULL) | (sd == NULL))
596     return .0;
597     /* gather diffuse components */
598 greg 2.23 if (inVec[2] > 0) {
599 greg 2.15 hsum = sd->rLambFront.cieY;
600     rdf = sd->rf;
601     } else /* !inFront */ {
602     hsum = sd->rLambBack.cieY;
603     rdf = sd->rb;
604     }
605     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
606     hsum = .0;
607     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
608     hsum += sd->tLamb.cieY;
609     /* gather non-diffuse components */
610     i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
611     rdf != NULL) ? rdf->ncomp : 0;
612     while (i-- > 0) { /* non-diffuse reflection */
613     cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
614     if (cd != NULL)
615     hsum += cd->cTotal;
616     }
617     i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
618     sd->tf != NULL) ? sd->tf->ncomp : 0;
619     while (i-- > 0) { /* non-diffuse transmission */
620     cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]);
621     if (cd != NULL)
622     hsum += cd->cTotal;
623     }
624     return hsum;
625     }
626    
627     /* Sample BSDF direction based on the given random variable */
628     SDError
629     SDsampBSDF(SDValue *sv, FVECT outVec, const FVECT inVec,
630     double randX, int sflags, const SDData *sd)
631     {
632     SDError ec;
633     int inFront;
634     SDSpectralDF *rdf;
635     double rdiff;
636     float coef[SDmaxCh];
637     int i, j, n, nr;
638     SDComponent *sdc;
639     const SDCDst **cdarr = NULL;
640     /* check arguments */
641     if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL) |
642 greg 2.23 (randX < 0) | (randX >= 1.))
643 greg 2.15 return SDEargument;
644     /* whose side are we on? */
645 greg 2.23 inFront = (inVec[2] > 0);
646 greg 2.15 /* remember diffuse portions */
647     if (inFront) {
648     *sv = sd->rLambFront;
649     rdf = sd->rf;
650     } else /* !inFront */ {
651     *sv = sd->rLambBack;
652     rdf = sd->rb;
653     }
654     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
655     sv->cieY = .0;
656     rdiff = sv->cieY;
657     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
658     sv->cieY += sd->tLamb.cieY;
659     /* gather non-diffuse components */
660     i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
661     rdf != NULL) ? rdf->ncomp : 0;
662     j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
663     sd->tf != NULL) ? sd->tf->ncomp : 0;
664     n = i + j;
665     if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
666     return SDEmemory;
667     while (j-- > 0) { /* non-diffuse transmission */
668     cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]);
669     if (cdarr[i+j] == NULL) {
670     free(cdarr);
671     return SDEmemory;
672     }
673     sv->cieY += cdarr[i+j]->cTotal;
674     }
675     while (i-- > 0) { /* non-diffuse reflection */
676     cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
677     if (cdarr[i] == NULL) {
678     free(cdarr);
679     return SDEmemory;
680     }
681     sv->cieY += cdarr[i]->cTotal;
682     }
683     if (sv->cieY <= 1e-7) { /* anything to sample? */
684     sv->cieY = .0;
685     memset(outVec, 0, 3*sizeof(double));
686     return SDEnone;
687     }
688     /* scale random variable */
689     randX *= sv->cieY;
690     /* diffuse reflection? */
691     if (randX < rdiff) {
692     SDdiffuseSamp(outVec, inFront, randX/rdiff);
693     goto done;
694     }
695     randX -= rdiff;
696     /* diffuse transmission? */
697     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
698     if (randX < sd->tLamb.cieY) {
699     sv->spec = sd->tLamb.spec;
700     SDdiffuseSamp(outVec, !inFront, randX/sd->tLamb.cieY);
701     goto done;
702     }
703     randX -= sd->tLamb.cieY;
704     }
705     /* else one of cumulative dist. */
706     for (i = 0; i < n && randX < cdarr[i]->cTotal; i++)
707     randX -= cdarr[i]->cTotal;
708     if (i >= n)
709     return SDEinternal;
710     /* compute sample direction */
711     sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr];
712     ec = (*sdc->func->sampCDist)(outVec, randX/cdarr[i]->cTotal, cdarr[i]);
713     if (ec)
714     return ec;
715     /* compute color */
716     j = (*sdc->func->getBSDFs)(coef, outVec, inVec, sdc->dist);
717     if (j <= 0) {
718     sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
719     sd->name);
720     return SDEinternal;
721     }
722     sv->spec = sdc->cspec[0];
723     rdiff = coef[0];
724     while (--j) {
725     c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
726     rdiff += coef[j];
727     }
728     done:
729     if (cdarr != NULL)
730     free(cdarr);
731     /* make sure everything is set */
732     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
733     return SDEnone;
734     }
735    
736     /* Compute World->BSDF transform from surface normal and up (Y) vector */
737     SDError
738     SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
739     {
740     if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
741     return SDEargument;
742     VCOPY(vMtx[2], sNrm);
743 greg 2.23 if (normalize(vMtx[2]) == 0)
744 greg 2.15 return SDEargument;
745     fcross(vMtx[0], uVec, vMtx[2]);
746 greg 2.23 if (normalize(vMtx[0]) == 0)
747 greg 2.15 return SDEargument;
748     fcross(vMtx[1], vMtx[2], vMtx[0]);
749     return SDEnone;
750     }
751    
752     /* Compute inverse transform */
753     SDError
754     SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
755     {
756     RREAL mTmp[3][3];
757     double d;
758    
759     if ((iMtx == NULL) | (vMtx == NULL))
760     return SDEargument;
761     /* compute determinant */
762     mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
763     mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
764     mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
765     d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
766 greg 2.23 if (d == 0) {
767 greg 2.15 strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
768     return SDEargument;
769     }
770     d = 1./d; /* invert matrix */
771     mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
772     mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
773     mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
774     mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
775     mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
776     mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
777     mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
778     memcpy(iMtx, mTmp, sizeof(mTmp));
779     return SDEnone;
780     }
781    
782     /* Transform and normalize direction (column) vector */
783     SDError
784     SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
785     {
786     FVECT vTmp;
787    
788     if ((resVec == NULL) | (inpVec == NULL))
789     return SDEargument;
790     if (vMtx == NULL) { /* assume they just want to normalize */
791     if (resVec != inpVec)
792     VCOPY(resVec, inpVec);
793 greg 2.23 return (normalize(resVec) > 0) ? SDEnone : SDEargument;
794 greg 2.15 }
795     vTmp[0] = DOT(vMtx[0], inpVec);
796     vTmp[1] = DOT(vMtx[1], inpVec);
797     vTmp[2] = DOT(vMtx[2], inpVec);
798 greg 2.23 if (normalize(vTmp) == 0)
799 greg 2.15 return SDEargument;
800     VCOPY(resVec, vTmp);
801     return SDEnone;
802     }
803    
804     /*################################################################*/
805     /*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/
806    
807     /*
808 greg 2.1 * Routines for handling BSDF data
809     */
810    
811     #include "standard.h"
812     #include "paths.h"
813     #include <ctype.h>
814    
815     #define MAXLATS 46 /* maximum number of latitudes */
816    
817     /* BSDF angle specification */
818     typedef struct {
819     char name[64]; /* basis name */
820     int nangles; /* total number of directions */
821     struct {
822     float tmin; /* starting theta */
823     short nphis; /* number of phis (0 term) */
824     } lat[MAXLATS+1]; /* latitudes */
825     } ANGLE_BASIS;
826    
827 greg 2.4 #define MAXABASES 7 /* limit on defined bases */
828 greg 2.1
829     static ANGLE_BASIS abase_list[MAXABASES] = {
830     {
831     "LBNL/Klems Full", 145,
832     { {-5., 1},
833     {5., 8},
834     {15., 16},
835     {25., 20},
836     {35., 24},
837     {45., 24},
838     {55., 24},
839     {65., 16},
840     {75., 12},
841     {90., 0} }
842     }, {
843     "LBNL/Klems Half", 73,
844     { {-6.5, 1},
845     {6.5, 8},
846     {19.5, 12},
847     {32.5, 16},
848     {46.5, 20},
849     {61.5, 12},
850     {76.5, 4},
851     {90., 0} }
852     }, {
853     "LBNL/Klems Quarter", 41,
854     { {-9., 1},
855     {9., 8},
856     {27., 12},
857     {46., 12},
858     {66., 8},
859     {90., 0} }
860     }
861     };
862    
863     static int nabases = 3; /* current number of defined bases */
864    
865 greg 2.9 #define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6)
866    
867     static int
868     fequal(double a, double b)
869     {
870 greg 2.23 if (b != 0)
871 greg 2.9 a = a/b - 1.;
872     return((a <= 1e-6) & (a >= -1e-6));
873     }
874 greg 2.3
875 greg 2.14 /* Returns the name of the given tag */
876 greg 2.3 #ifdef ezxml_name
877     #undef ezxml_name
878     static char *
879     ezxml_name(ezxml_t xml)
880     {
881     if (xml == NULL)
882     return(NULL);
883     return(xml->name);
884     }
885     #endif
886    
887 greg 2.14 /* Returns the given tag's character content or empty string if none */
888 greg 2.3 #ifdef ezxml_txt
889     #undef ezxml_txt
890     static char *
891     ezxml_txt(ezxml_t xml)
892     {
893     if (xml == NULL)
894     return("");
895     return(xml->txt);
896     }
897     #endif
898    
899 greg 2.1
900     static int
901     ab_getvec( /* get vector for this angle basis index */
902     FVECT v,
903     int ndx,
904     void *p
905     )
906     {
907     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
908     int li;
909 greg 2.2 double pol, azi, d;
910 greg 2.1
911     if ((ndx < 0) | (ndx >= ab->nangles))
912     return(0);
913     for (li = 0; ndx >= ab->lat[li].nphis; li++)
914     ndx -= ab->lat[li].nphis;
915 greg 2.2 pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin);
916 greg 2.1 azi = 2.*PI*ndx/ab->lat[li].nphis;
917 greg 2.2 v[2] = d = cos(pol);
918     d = sqrt(1. - d*d); /* sin(pol) */
919 greg 2.1 v[0] = cos(azi)*d;
920     v[1] = sin(azi)*d;
921     return(1);
922     }
923    
924    
925     static int
926     ab_getndx( /* get index corresponding to the given vector */
927     FVECT v,
928     void *p
929     )
930     {
931     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
932     int li, ndx;
933 greg 2.2 double pol, azi, d;
934 greg 2.1
935     if ((v[2] < -1.0) | (v[2] > 1.0))
936     return(-1);
937 greg 2.2 pol = 180.0/PI*acos(v[2]);
938 greg 2.1 azi = 180.0/PI*atan2(v[1], v[0]);
939     if (azi < 0.0) azi += 360.0;
940 greg 2.2 for (li = 1; ab->lat[li].tmin <= pol; li++)
941 greg 2.1 if (!ab->lat[li].nphis)
942     return(-1);
943     --li;
944     ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
945     if (ndx >= ab->lat[li].nphis) ndx = 0;
946     while (li--)
947     ndx += ab->lat[li].nphis;
948     return(ndx);
949     }
950    
951    
952     static double
953     ab_getohm( /* get solid angle for this angle basis index */
954     int ndx,
955     void *p
956     )
957     {
958     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
959     int li;
960     double theta, theta1;
961    
962     if ((ndx < 0) | (ndx >= ab->nangles))
963     return(0);
964     for (li = 0; ndx >= ab->lat[li].nphis; li++)
965     ndx -= ab->lat[li].nphis;
966     theta1 = PI/180. * ab->lat[li+1].tmin;
967     if (ab->lat[li].nphis == 1) { /* special case */
968     if (ab->lat[li].tmin > FTINY)
969     error(USER, "unsupported BSDF coordinate system");
970     return(2.*PI*(1. - cos(theta1)));
971     }
972     theta = PI/180. * ab->lat[li].tmin;
973     return(2.*PI*(cos(theta) - cos(theta1))/(double)ab->lat[li].nphis);
974     }
975    
976    
977     static int
978     ab_getvecR( /* get reverse vector for this angle basis index */
979     FVECT v,
980     int ndx,
981     void *p
982     )
983     {
984     if (!ab_getvec(v, ndx, p))
985     return(0);
986    
987     v[0] = -v[0];
988     v[1] = -v[1];
989     v[2] = -v[2];
990    
991     return(1);
992     }
993    
994    
995     static int
996     ab_getndxR( /* get index corresponding to the reverse vector */
997     FVECT v,
998     void *p
999     )
1000     {
1001     FVECT v2;
1002    
1003     v2[0] = -v[0];
1004     v2[1] = -v[1];
1005     v2[2] = -v[2];
1006    
1007     return ab_getndx(v2, p);
1008     }
1009    
1010    
1011     static void
1012 greg 2.4 load_angle_basis( /* load custom BSDF angle basis */
1013 greg 2.3 ezxml_t wab
1014     )
1015     {
1016     char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
1017     ezxml_t wbb;
1018     int i;
1019    
1020 greg 2.4 if (!abname || !*abname)
1021 greg 2.3 return;
1022     for (i = nabases; i--; )
1023 greg 2.12 if (!strcasecmp(abname, abase_list[i].name))
1024 greg 2.4 return; /* assume it's the same */
1025 greg 2.3 if (nabases >= MAXABASES)
1026     error(INTERNAL, "too many angle bases");
1027     strcpy(abase_list[nabases].name, abname);
1028     abase_list[nabases].nangles = 0;
1029     for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
1030     wbb != NULL; i++, wbb = wbb->next) {
1031     if (i >= MAXLATS)
1032     error(INTERNAL, "too many latitudes in custom basis");
1033     abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
1034     ezxml_child(ezxml_child(wbb,
1035     "ThetaBounds"), "UpperTheta")));
1036     if (!i)
1037     abase_list[nabases].lat[i].tmin =
1038     -abase_list[nabases].lat[i+1].tmin;
1039 greg 2.9 else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
1040 greg 2.3 "ThetaBounds"), "LowerTheta"))),
1041     abase_list[nabases].lat[i].tmin))
1042     error(WARNING, "theta values disagree in custom basis");
1043     abase_list[nabases].nangles +=
1044     abase_list[nabases].lat[i].nphis =
1045     atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
1046     }
1047     abase_list[nabases++].lat[i].nphis = 0;
1048     }
1049    
1050    
1051 greg 2.6 static void
1052     load_geometry( /* load geometric dimensions and description (if any) */
1053     struct BSDF_data *dp,
1054     ezxml_t wdb
1055     )
1056     {
1057     ezxml_t geom;
1058     double cfact;
1059     const char *fmt, *mgfstr;
1060    
1061     dp->dim[0] = dp->dim[1] = dp->dim[2] = 0;
1062     dp->mgf = NULL;
1063     if ((geom = ezxml_child(wdb, "Width")) != NULL)
1064     dp->dim[0] = atof(ezxml_txt(geom)) *
1065     to_meters(ezxml_attr(geom, "unit"));
1066     if ((geom = ezxml_child(wdb, "Height")) != NULL)
1067     dp->dim[1] = atof(ezxml_txt(geom)) *
1068     to_meters(ezxml_attr(geom, "unit"));
1069     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
1070     dp->dim[2] = atof(ezxml_txt(geom)) *
1071     to_meters(ezxml_attr(geom, "unit"));
1072     if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
1073     (mgfstr = ezxml_txt(geom)) == NULL)
1074     return;
1075     if ((fmt = ezxml_attr(geom, "format")) != NULL &&
1076     strcasecmp(fmt, "MGF")) {
1077     sprintf(errmsg, "unrecognized geometry format '%s'", fmt);
1078     error(WARNING, errmsg);
1079     return;
1080     }
1081     cfact = to_meters(ezxml_attr(geom, "unit"));
1082     dp->mgf = (char *)malloc(strlen(mgfstr)+32);
1083     if (dp->mgf == NULL)
1084     error(SYSTEM, "out of memory in load_geometry");
1085     if (cfact < 0.99 || cfact > 1.01)
1086     sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
1087     else
1088     strcpy(dp->mgf, mgfstr);
1089     }
1090    
1091    
1092 greg 2.3 static void
1093 greg 2.1 load_bsdf_data( /* load BSDF distribution for this wavelength */
1094     struct BSDF_data *dp,
1095     ezxml_t wdb
1096     )
1097     {
1098     char *cbasis = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
1099     char *rbasis = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
1100     char *sdata;
1101     int i;
1102    
1103 greg 2.4 if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) {
1104 greg 2.1 error(WARNING, "missing column/row basis for BSDF");
1105     return;
1106     }
1107     for (i = nabases; i--; )
1108 greg 2.12 if (!strcasecmp(cbasis, abase_list[i].name)) {
1109 greg 2.1 dp->ninc = abase_list[i].nangles;
1110     dp->ib_priv = (void *)&abase_list[i];
1111     dp->ib_vec = ab_getvecR;
1112     dp->ib_ndx = ab_getndxR;
1113     dp->ib_ohm = ab_getohm;
1114     break;
1115     }
1116     if (i < 0) {
1117 greg 2.4 sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis);
1118 greg 2.1 error(WARNING, errmsg);
1119     return;
1120     }
1121     for (i = nabases; i--; )
1122 greg 2.12 if (!strcasecmp(rbasis, abase_list[i].name)) {
1123 greg 2.1 dp->nout = abase_list[i].nangles;
1124     dp->ob_priv = (void *)&abase_list[i];
1125     dp->ob_vec = ab_getvec;
1126     dp->ob_ndx = ab_getndx;
1127     dp->ob_ohm = ab_getohm;
1128     break;
1129     }
1130     if (i < 0) {
1131 greg 2.16 sprintf(errmsg, "undefined RowAngleBasis '%s'", rbasis);
1132 greg 2.1 error(WARNING, errmsg);
1133     return;
1134     }
1135     /* read BSDF data */
1136     sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
1137 greg 2.4 if (!sdata || !*sdata) {
1138 greg 2.1 error(WARNING, "missing BSDF ScatteringData");
1139     return;
1140     }
1141     dp->bsdf = (float *)malloc(sizeof(float)*dp->ninc*dp->nout);
1142     if (dp->bsdf == NULL)
1143     error(SYSTEM, "out of memory in load_bsdf_data");
1144     for (i = 0; i < dp->ninc*dp->nout; i++) {
1145     char *sdnext = fskip(sdata);
1146     if (sdnext == NULL) {
1147     error(WARNING, "bad/missing BSDF ScatteringData");
1148     free(dp->bsdf); dp->bsdf = NULL;
1149     return;
1150     }
1151     while (*sdnext && isspace(*sdnext))
1152     sdnext++;
1153     if (*sdnext == ',') sdnext++;
1154     dp->bsdf[i] = atof(sdata);
1155     sdata = sdnext;
1156     }
1157     while (isspace(*sdata))
1158     sdata++;
1159     if (*sdata) {
1160     sprintf(errmsg, "%d extra characters after BSDF ScatteringData",
1161 greg 2.5 (int)strlen(sdata));
1162 greg 2.1 error(WARNING, errmsg);
1163     }
1164     }
1165    
1166    
1167     static int
1168     check_bsdf_data( /* check that BSDF data is sane */
1169     struct BSDF_data *dp
1170     )
1171     {
1172 greg 2.2 double *omega_iarr, *omega_oarr;
1173 greg 2.7 double dom, contrib, hemi_total, full_total;
1174 greg 2.1 int nneg;
1175 greg 2.2 FVECT v;
1176 greg 2.1 int i, o;
1177    
1178     if (dp == NULL || dp->bsdf == NULL)
1179     return(0);
1180 greg 2.2 omega_iarr = (double *)calloc(dp->ninc, sizeof(double));
1181     omega_oarr = (double *)calloc(dp->nout, sizeof(double));
1182     if ((omega_iarr == NULL) | (omega_oarr == NULL))
1183 greg 2.1 error(SYSTEM, "out of memory in check_bsdf_data");
1184 greg 2.2 /* incoming projected solid angles */
1185     hemi_total = .0;
1186     for (i = dp->ninc; i--; ) {
1187     dom = getBSDF_incohm(dp,i);
1188 greg 2.23 if (dom <= 0) {
1189 greg 2.2 error(WARNING, "zero/negative incoming solid angle");
1190     continue;
1191     }
1192     if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) {
1193     error(WARNING, "illegal incoming BSDF direction");
1194     free(omega_iarr); free(omega_oarr);
1195     return(0);
1196     }
1197     hemi_total += omega_iarr[i] = dom * -v[2];
1198     }
1199     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1200     sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%",
1201     100.*(hemi_total/PI - 1.));
1202     error(WARNING, errmsg);
1203     }
1204     dom = PI / hemi_total; /* fix normalization */
1205     for (i = dp->ninc; i--; )
1206     omega_iarr[i] *= dom;
1207     /* outgoing projected solid angles */
1208 greg 2.1 hemi_total = .0;
1209     for (o = dp->nout; o--; ) {
1210     dom = getBSDF_outohm(dp,o);
1211 greg 2.23 if (dom <= 0) {
1212 greg 2.2 error(WARNING, "zero/negative outgoing solid angle");
1213 greg 2.1 continue;
1214     }
1215     if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) {
1216     error(WARNING, "illegal outgoing BSDF direction");
1217 greg 2.2 free(omega_iarr); free(omega_oarr);
1218 greg 2.1 return(0);
1219     }
1220 greg 2.2 hemi_total += omega_oarr[o] = dom * v[2];
1221 greg 2.1 }
1222     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1223     sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%",
1224     100.*(hemi_total/PI - 1.));
1225     error(WARNING, errmsg);
1226     }
1227 greg 2.2 dom = PI / hemi_total; /* fix normalization */
1228 greg 2.1 for (o = dp->nout; o--; )
1229 greg 2.2 omega_oarr[o] *= dom;
1230     nneg = 0; /* check outgoing totals */
1231     for (i = 0; i < dp->ninc; i++) {
1232 greg 2.1 hemi_total = .0;
1233     for (o = dp->nout; o--; ) {
1234     double f = BSDF_value(dp,i,o);
1235 greg 2.23 if (f >= 0)
1236 greg 2.2 hemi_total += f*omega_oarr[o];
1237     else {
1238     nneg += (f < -FTINY);
1239     BSDF_value(dp,i,o) = .0f;
1240     }
1241 greg 2.1 }
1242 greg 2.8 if (hemi_total > 1.01) {
1243 greg 2.2 sprintf(errmsg,
1244     "incoming BSDF direction %d passes %.1f%% of light",
1245     i, 100.*hemi_total);
1246 greg 2.1 error(WARNING, errmsg);
1247     }
1248     }
1249 greg 2.2 if (nneg) {
1250     sprintf(errmsg, "%d negative BSDF values (ignored)", nneg);
1251 greg 2.1 error(WARNING, errmsg);
1252     }
1253 greg 2.7 full_total = .0; /* reverse roles and check again */
1254 greg 2.2 for (o = 0; o < dp->nout; o++) {
1255     hemi_total = .0;
1256     for (i = dp->ninc; i--; )
1257     hemi_total += BSDF_value(dp,i,o) * omega_iarr[i];
1258    
1259 greg 2.8 if (hemi_total > 1.01) {
1260 greg 2.2 sprintf(errmsg,
1261     "outgoing BSDF direction %d collects %.1f%% of light",
1262     o, 100.*hemi_total);
1263     error(WARNING, errmsg);
1264     }
1265 greg 2.7 full_total += hemi_total*omega_oarr[o];
1266     }
1267     full_total /= PI;
1268 greg 2.8 if (full_total > 1.00001) {
1269     sprintf(errmsg, "BSDF transfers %.4f%% of light",
1270 greg 2.7 100.*full_total);
1271     error(WARNING, errmsg);
1272 greg 2.2 }
1273     free(omega_iarr); free(omega_oarr);
1274 greg 2.1 return(1);
1275     }
1276    
1277 greg 2.6
1278 greg 2.1 struct BSDF_data *
1279     load_BSDF( /* load BSDF data from file */
1280     char *fname
1281     )
1282     {
1283     char *path;
1284     ezxml_t fl, wtl, wld, wdb;
1285     struct BSDF_data *dp;
1286    
1287     path = getpath(fname, getrlibpath(), R_OK);
1288     if (path == NULL) {
1289     sprintf(errmsg, "cannot find BSDF file \"%s\"", fname);
1290     error(WARNING, errmsg);
1291     return(NULL);
1292     }
1293     fl = ezxml_parse_file(path);
1294     if (fl == NULL) {
1295     sprintf(errmsg, "cannot open BSDF \"%s\"", path);
1296     error(WARNING, errmsg);
1297     return(NULL);
1298     }
1299     if (ezxml_error(fl)[0]) {
1300     sprintf(errmsg, "BSDF \"%s\" %s", path, ezxml_error(fl));
1301     error(WARNING, errmsg);
1302     ezxml_free(fl);
1303     return(NULL);
1304     }
1305     if (strcmp(ezxml_name(fl), "WindowElement")) {
1306     sprintf(errmsg,
1307     "BSDF \"%s\": top level node not 'WindowElement'",
1308     path);
1309     error(WARNING, errmsg);
1310     ezxml_free(fl);
1311     return(NULL);
1312     }
1313     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
1314 greg 2.10 if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl,
1315     "DataDefinition"), "IncidentDataStructure")),
1316     "Columns")) {
1317     sprintf(errmsg,
1318     "BSDF \"%s\": unsupported IncidentDataStructure",
1319     path);
1320     error(WARNING, errmsg);
1321     ezxml_free(fl);
1322     return(NULL);
1323     }
1324 greg 2.3 load_angle_basis(ezxml_child(ezxml_child(wtl,
1325     "DataDefinition"), "AngleBasis"));
1326 greg 2.1 dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data));
1327 greg 2.6 load_geometry(dp, ezxml_child(wtl, "Material"));
1328 greg 2.1 for (wld = ezxml_child(wtl, "WavelengthData");
1329     wld != NULL; wld = wld->next) {
1330 greg 2.13 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1331     "Visible"))
1332 greg 2.1 continue;
1333 greg 2.13 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1334     wdb != NULL; wdb = wdb->next)
1335     if (!strcasecmp(ezxml_txt(ezxml_child(wdb,
1336     "WavelengthDataDirection")),
1337 greg 2.1 "Transmission Front"))
1338 greg 2.13 break;
1339     if (wdb != NULL) { /* load front BTDF */
1340     load_bsdf_data(dp, wdb);
1341     break; /* ignore the rest */
1342     }
1343 greg 2.1 }
1344     ezxml_free(fl); /* done with XML file */
1345     if (!check_bsdf_data(dp)) {
1346     sprintf(errmsg, "bad/missing BTDF data in \"%s\"", path);
1347     error(WARNING, errmsg);
1348     free_BSDF(dp);
1349     dp = NULL;
1350     }
1351     return(dp);
1352     }
1353    
1354    
1355     void
1356     free_BSDF( /* free BSDF data structure */
1357     struct BSDF_data *b
1358     )
1359     {
1360     if (b == NULL)
1361     return;
1362 greg 2.6 if (b->mgf != NULL)
1363     free(b->mgf);
1364 greg 2.1 if (b->bsdf != NULL)
1365     free(b->bsdf);
1366     free(b);
1367     }
1368    
1369    
1370     int
1371     r_BSDF_incvec( /* compute random input vector at given location */
1372     FVECT v,
1373     struct BSDF_data *b,
1374     int i,
1375     double rv,
1376     MAT4 xm
1377     )
1378     {
1379     FVECT pert;
1380     double rad;
1381     int j;
1382    
1383     if (!getBSDF_incvec(v, b, i))
1384     return(0);
1385     rad = sqrt(getBSDF_incohm(b, i) / PI);
1386     multisamp(pert, 3, rv);
1387     for (j = 0; j < 3; j++)
1388     v[j] += rad*(2.*pert[j] - 1.);
1389     if (xm != NULL)
1390     multv3(v, v, xm);
1391     return(normalize(v) != 0.0);
1392     }
1393    
1394    
1395     int
1396     r_BSDF_outvec( /* compute random output vector at given location */
1397     FVECT v,
1398     struct BSDF_data *b,
1399     int o,
1400     double rv,
1401     MAT4 xm
1402     )
1403     {
1404     FVECT pert;
1405     double rad;
1406     int j;
1407    
1408     if (!getBSDF_outvec(v, b, o))
1409     return(0);
1410     rad = sqrt(getBSDF_outohm(b, o) / PI);
1411     multisamp(pert, 3, rv);
1412     for (j = 0; j < 3; j++)
1413     v[j] += rad*(2.*pert[j] - 1.);
1414     if (xm != NULL)
1415     multv3(v, v, xm);
1416     return(normalize(v) != 0.0);
1417     }
1418    
1419    
1420     static int
1421     addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */
1422     char *xfarg[],
1423     FVECT xp,
1424     FVECT yp,
1425     FVECT zp
1426     )
1427     {
1428     static char bufs[3][16];
1429     int bn = 0;
1430     char **xfp = xfarg;
1431     double theta;
1432    
1433     if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
1434     /* Special case for X' along Z-axis */
1435     theta = -atan2(yp[0], yp[1]);
1436     *xfp++ = "-ry";
1437     *xfp++ = xp[2] < 0.0 ? "90" : "-90";
1438     *xfp++ = "-rz";
1439     sprintf(bufs[bn], "%f", theta*(180./PI));
1440     *xfp++ = bufs[bn++];
1441     return(xfp - xfarg);
1442     }
1443     theta = atan2(yp[2], zp[2]);
1444     if (!FEQ(theta,0.0)) {
1445     *xfp++ = "-rx";
1446     sprintf(bufs[bn], "%f", theta*(180./PI));
1447     *xfp++ = bufs[bn++];
1448     }
1449     theta = asin(-xp[2]);
1450     if (!FEQ(theta,0.0)) {
1451     *xfp++ = "-ry";
1452     sprintf(bufs[bn], " %f", theta*(180./PI));
1453     *xfp++ = bufs[bn++];
1454     }
1455     theta = atan2(xp[1], xp[0]);
1456     if (!FEQ(theta,0.0)) {
1457     *xfp++ = "-rz";
1458     sprintf(bufs[bn], "%f", theta*(180./PI));
1459     *xfp++ = bufs[bn++];
1460     }
1461     *xfp = NULL;
1462     return(xfp - xfarg);
1463     }
1464    
1465    
1466     int
1467     getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */
1468     MAT4 xm,
1469     FVECT nrm,
1470 greg 2.6 UpDir ud,
1471     char *xfbuf
1472 greg 2.1 )
1473     {
1474     char *xfargs[7];
1475     XF myxf;
1476     FVECT updir, xdest, ydest;
1477 greg 2.6 int i;
1478 greg 2.1
1479     updir[0] = updir[1] = updir[2] = 0.;
1480     switch (ud) {
1481     case UDzneg:
1482     updir[2] = -1.;
1483     break;
1484     case UDyneg:
1485     updir[1] = -1.;
1486     break;
1487     case UDxneg:
1488     updir[0] = -1.;
1489     break;
1490     case UDxpos:
1491     updir[0] = 1.;
1492     break;
1493     case UDypos:
1494     updir[1] = 1.;
1495     break;
1496     case UDzpos:
1497     updir[2] = 1.;
1498     break;
1499     case UDunknown:
1500     return(0);
1501     }
1502     fcross(xdest, updir, nrm);
1503     if (normalize(xdest) == 0.0)
1504     return(0);
1505     fcross(ydest, nrm, xdest);
1506     xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs);
1507     copymat4(xm, myxf.xfm);
1508 greg 2.6 if (xfbuf == NULL)
1509     return(1);
1510     /* return xf arguments as well */
1511     for (i = 0; xfargs[i] != NULL; i++) {
1512     *xfbuf++ = ' ';
1513     strcpy(xfbuf, xfargs[i]);
1514     while (*xfbuf) ++xfbuf;
1515     }
1516 greg 2.1 return(1);
1517     }
1518 greg 2.15
1519     /*######### END DEPRECATED ROUTINES #######*/
1520     /*################################################################*/