ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.21
Committed: Sun Apr 17 17:45:13 2011 UTC (13 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.20: +9 -5 lines
Log Message:
Minor fixes

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.21 static const char RCSid[] = "$Id: bsdf.c,v 2.20 2011/04/11 03:47:46 greg Exp $";
3 greg 2.1 #endif
4     /*
5 greg 2.15 * bsdf.c
6     *
7     * Definitions for bidirectional scattering distribution functions.
8     *
9     * Created by Greg Ward on 1/10/11.
10     *
11     */
12    
13     #include <stdio.h>
14     #include <stdlib.h>
15     #include <math.h>
16     #include "ezxml.h"
17     #include "hilbert.h"
18     #include "bsdf.h"
19     #include "bsdf_m.h"
20     #include "bsdf_t.h"
21    
22     /* English ASCII strings corresponding to ennumerated errors */
23     const char *SDerrorEnglish[] = {
24     "No error",
25     "Memory error",
26     "File input/output error",
27     "File format error",
28     "Illegal argument",
29     "Invalid data",
30     "Unsupported feature",
31     "Internal program error",
32     "Unknown error"
33     };
34    
35     /* Additional information on last error (ASCII English) */
36     char SDerrorDetail[256];
37    
38     /* Cache of loaded BSDFs */
39     struct SDCache_s *SDcacheList = NULL;
40    
41     /* Retain BSDFs in cache list */
42     int SDretainSet = SDretainNone;
43    
44     /* Report any error to the indicated stream (in English) */
45     SDError
46     SDreportEnglish(SDError ec, FILE *fp)
47     {
48 greg 2.21 if (!ec)
49     return SDEnone;
50     if ((ec < SDEnone) | (ec > SDEunknown)) {
51     SDerrorDetail[0] = '\0';
52     ec = SDEunknown;
53     }
54 greg 2.15 if (fp == NULL)
55     return ec;
56     fputs(SDerrorEnglish[ec], fp);
57     if (SDerrorDetail[0]) {
58     fputs(": ", fp);
59     fputs(SDerrorDetail, fp);
60     }
61     fputc('\n', fp);
62     if (fp != stderr)
63     fflush(fp);
64     return ec;
65     }
66    
67     static double
68     to_meters( /* return factor to convert given unit to meters */
69     const char *unit
70     )
71     {
72     if (unit == NULL) return(1.); /* safe assumption? */
73     if (!strcasecmp(unit, "Meter")) return(1.);
74     if (!strcasecmp(unit, "Foot")) return(.3048);
75     if (!strcasecmp(unit, "Inch")) return(.0254);
76     if (!strcasecmp(unit, "Centimeter")) return(.01);
77     if (!strcasecmp(unit, "Millimeter")) return(.001);
78     sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
79     return(-1.);
80     }
81    
82     /* Load geometric dimensions and description (if any) */
83     static SDError
84 greg 2.16 SDloadGeometry(SDData *sd, ezxml_t wdb)
85 greg 2.15 {
86     ezxml_t geom;
87     double cfact;
88     const char *fmt, *mgfstr;
89    
90 greg 2.16 if (wdb == NULL) /* no geometry section? */
91     return SDEnone;
92     sd->dim[0] = sd->dim[1] = sd->dim[2] = .0;
93 greg 2.15 if ((geom = ezxml_child(wdb, "Width")) != NULL)
94 greg 2.16 sd->dim[0] = atof(ezxml_txt(geom)) *
95 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
96     if ((geom = ezxml_child(wdb, "Height")) != NULL)
97 greg 2.16 sd->dim[1] = atof(ezxml_txt(geom)) *
98 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
99     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
100 greg 2.16 sd->dim[2] = atof(ezxml_txt(geom)) *
101 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
102 greg 2.17 if ((sd->dim[0] < .0) | (sd->dim[1] < .0) | (sd->dim[2] < .0)) {
103     sprintf(SDerrorDetail, "Negative size in \"%s\"", sd->name);
104 greg 2.15 return SDEdata;
105 greg 2.17 }
106 greg 2.15 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
107     (mgfstr = ezxml_txt(geom)) == NULL)
108     return SDEnone;
109     if ((fmt = ezxml_attr(geom, "format")) != NULL &&
110     strcasecmp(fmt, "MGF")) {
111     sprintf(SDerrorDetail,
112     "Unrecognized geometry format '%s' in \"%s\"",
113 greg 2.16 fmt, sd->name);
114 greg 2.15 return SDEsupport;
115     }
116     cfact = to_meters(ezxml_attr(geom, "unit"));
117 greg 2.16 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
118     if (sd->mgf == NULL) {
119 greg 2.15 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
120     return SDEmemory;
121     }
122     if (cfact < 0.99 || cfact > 1.01)
123 greg 2.16 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
124 greg 2.15 else
125 greg 2.16 strcpy(sd->mgf, mgfstr);
126 greg 2.15 return SDEnone;
127     }
128    
129     /* Load a BSDF struct from the given file (free first and keep name) */
130     SDError
131     SDloadFile(SDData *sd, const char *fname)
132     {
133     SDError lastErr;
134 greg 2.16 ezxml_t fl, wtl;
135 greg 2.15
136     if ((sd == NULL) | (fname == NULL || !*fname))
137     return SDEargument;
138     /* free old data, keeping name */
139     SDfreeBSDF(sd);
140     /* parse XML file */
141     fl = ezxml_parse_file(fname);
142     if (fl == NULL) {
143     sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
144     return SDEfile;
145     }
146     if (ezxml_error(fl)[0]) {
147     sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
148     ezxml_free(fl);
149     return SDEformat;
150     }
151 greg 2.16 if (strcmp(ezxml_name(fl), "WindowElement")) {
152     sprintf(SDerrorDetail,
153     "BSDF \"%s\": top level node not 'WindowElement'",
154     sd->name);
155     ezxml_free(fl);
156     return SDEformat;
157     }
158     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
159     if (wtl == NULL) {
160     sprintf(SDerrorDetail, "BSDF \"%s\": no optical layer'",
161     sd->name);
162     ezxml_free(fl);
163     return SDEformat;
164     }
165 greg 2.15 /* load geometry if present */
166 greg 2.16 lastErr = SDloadGeometry(sd, ezxml_child(wtl, "Material"));
167     if (lastErr)
168 greg 2.15 return lastErr;
169     /* try loading variable resolution data */
170 greg 2.16 lastErr = SDloadTre(sd, wtl);
171 greg 2.15 /* check our result */
172     switch (lastErr) {
173     case SDEformat:
174     case SDEdata:
175     case SDEsupport: /* possibly we just tried the wrong format */
176 greg 2.16 lastErr = SDloadMtx(sd, wtl);
177 greg 2.15 break;
178     default: /* variable res. OK else serious error */
179     break;
180     }
181     /* done with XML file */
182     ezxml_free(fl);
183 greg 2.16
184     if (lastErr) { /* was there a load error? */
185     SDfreeBSDF(sd);
186     return lastErr;
187     }
188     /* remove any insignificant components */
189     if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
190     SDfreeSpectralDF(sd->rf); sd->rf = NULL;
191     }
192     if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
193     SDfreeSpectralDF(sd->rb); sd->rb = NULL;
194     }
195     if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
196     SDfreeSpectralDF(sd->tf); sd->tf = NULL;
197     }
198     /* return success */
199     return SDEnone;
200 greg 2.15 }
201    
202     /* Allocate new spectral distribution function */
203     SDSpectralDF *
204     SDnewSpectralDF(int nc)
205     {
206     SDSpectralDF *df;
207    
208     if (nc <= 0) {
209     strcpy(SDerrorDetail, "Zero component spectral DF request");
210     return NULL;
211     }
212     df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
213     (nc-1)*sizeof(SDComponent));
214     if (df == NULL) {
215     sprintf(SDerrorDetail,
216     "Cannot allocate %d component spectral DF", nc);
217     return NULL;
218     }
219     df->minProjSA = .0;
220     df->maxHemi = .0;
221     df->ncomp = nc;
222     memset(df->comp, 0, nc*sizeof(SDComponent));
223     return df;
224     }
225    
226     /* Free cached cumulative distributions for BSDF component */
227     void
228     SDfreeCumulativeCache(SDSpectralDF *df)
229     {
230     int n;
231     SDCDst *cdp;
232    
233     if (df == NULL)
234     return;
235     for (n = df->ncomp; n-- > 0; )
236     while ((cdp = df->comp[n].cdList) != NULL) {
237     df->comp[n].cdList = cdp->next;
238     free(cdp);
239     }
240     }
241    
242     /* Free a spectral distribution function */
243     void
244     SDfreeSpectralDF(SDSpectralDF *df)
245     {
246     int n;
247    
248     if (df == NULL)
249     return;
250     SDfreeCumulativeCache(df);
251     for (n = df->ncomp; n-- > 0; )
252     (*df->comp[n].func->freeSC)(df->comp[n].dist);
253     free(df);
254     }
255    
256     /* Shorten file path to useable BSDF name, removing suffix */
257     void
258 greg 2.16 SDclipName(char *res, const char *fname)
259 greg 2.15 {
260     const char *cp, *dot = NULL;
261    
262     for (cp = fname; *cp; cp++)
263     if (*cp == '.')
264     dot = cp;
265     if ((dot == NULL) | (dot < fname+2))
266     dot = cp;
267     if (dot - fname >= SDnameLn)
268     fname = dot - SDnameLn + 1;
269     while (fname < dot)
270     *res++ = *fname++;
271     *res = '\0';
272     }
273    
274     /* Initialize an unused BSDF struct (simply clears to zeroes) */
275     void
276 greg 2.20 SDclearBSDF(SDData *sd, const char *fname)
277 greg 2.15 {
278 greg 2.20 if (sd == NULL)
279     return;
280     memset(sd, 0, sizeof(SDData));
281     if (fname == NULL)
282     return;
283     SDclipName(sd->name, fname);
284 greg 2.15 }
285    
286     /* Free data associated with BSDF struct */
287     void
288     SDfreeBSDF(SDData *sd)
289     {
290     if (sd == NULL)
291     return;
292     if (sd->mgf != NULL) {
293     free(sd->mgf);
294     sd->mgf = NULL;
295     }
296     if (sd->rf != NULL) {
297     SDfreeSpectralDF(sd->rf);
298     sd->rf = NULL;
299     }
300     if (sd->rb != NULL) {
301     SDfreeSpectralDF(sd->rb);
302     sd->rb = NULL;
303     }
304     if (sd->tf != NULL) {
305     SDfreeSpectralDF(sd->tf);
306     sd->tf = NULL;
307     }
308     sd->rLambFront.cieY = .0;
309 greg 2.16 sd->rLambFront.spec.flags = 0;
310 greg 2.15 sd->rLambBack.cieY = .0;
311 greg 2.16 sd->rLambBack.spec.flags = 0;
312 greg 2.15 sd->tLamb.cieY = .0;
313 greg 2.16 sd->tLamb.spec.flags = 0;
314 greg 2.15 }
315    
316     /* Find writeable BSDF by name, or allocate new cache entry if absent */
317     SDData *
318     SDgetCache(const char *bname)
319     {
320     struct SDCache_s *sdl;
321     char sdnam[SDnameLn];
322    
323     if (bname == NULL)
324     return NULL;
325    
326     SDclipName(sdnam, bname);
327     for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
328     if (!strcmp(sdl->bsdf.name, sdnam)) {
329     sdl->refcnt++;
330     return &sdl->bsdf;
331     }
332    
333     sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
334     if (sdl == NULL)
335     return NULL;
336    
337     strcpy(sdl->bsdf.name, sdnam);
338     sdl->next = SDcacheList;
339     SDcacheList = sdl;
340    
341 greg 2.21 sdl->refcnt = 1;
342 greg 2.15 return &sdl->bsdf;
343     }
344    
345     /* Get loaded BSDF from cache (or load and cache it on first call) */
346     /* Report any problem to stderr and return NULL on failure */
347     const SDData *
348     SDcacheFile(const char *fname)
349     {
350     SDData *sd;
351     SDError ec;
352    
353     if (fname == NULL || !*fname)
354     return NULL;
355     SDerrorDetail[0] = '\0';
356     if ((sd = SDgetCache(fname)) == NULL) {
357     SDreportEnglish(SDEmemory, stderr);
358     return NULL;
359     }
360     if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
361     SDreportEnglish(ec, stderr);
362     SDfreeCache(sd);
363     return NULL;
364     }
365     return sd;
366     }
367    
368     /* Free a BSDF from our cache (clear all if NULL) */
369     void
370     SDfreeCache(const SDData *sd)
371     {
372     struct SDCache_s *sdl, *sdLast = NULL;
373    
374     if (sd == NULL) { /* free entire list */
375     while ((sdl = SDcacheList) != NULL) {
376     SDcacheList = sdl->next;
377     SDfreeBSDF(&sdl->bsdf);
378     free(sdl);
379     }
380     return;
381     }
382     for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
383     if (&sdl->bsdf == sd)
384     break;
385 greg 2.21 if (sdl == NULL || (sdl->refcnt -= (sdl->refcnt > 0)))
386 greg 2.15 return; /* missing or still in use */
387     /* keep unreferenced data? */
388     if (SDisLoaded(sd) && SDretainSet) {
389     if (SDretainSet == SDretainAll)
390     return; /* keep everything */
391     /* else free cumulative data */
392     SDfreeCumulativeCache(sd->rf);
393     SDfreeCumulativeCache(sd->rb);
394     SDfreeCumulativeCache(sd->tf);
395     return;
396     }
397     /* remove from list and free */
398     if (sdLast == NULL)
399     SDcacheList = sdl->next;
400     else
401     sdLast->next = sdl->next;
402     SDfreeBSDF(&sdl->bsdf);
403     free(sdl);
404     }
405    
406     /* Sample an individual BSDF component */
407     SDError
408     SDsampComponent(SDValue *sv, FVECT outVec, const FVECT inVec,
409     double randX, SDComponent *sdc)
410     {
411     float coef[SDmaxCh];
412     SDError ec;
413     const SDCDst *cd;
414     double d;
415     int n;
416     /* check arguments */
417     if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL))
418     return SDEargument;
419     /* get cumulative distribution */
420     cd = (*sdc->func->getCDist)(inVec, sdc);
421     if (cd == NULL)
422     return SDEmemory;
423     if (cd->cTotal <= 1e-7) { /* anything to sample? */
424     sv->spec = c_dfcolor;
425     sv->cieY = .0;
426     memset(outVec, 0, 3*sizeof(double));
427     return SDEnone;
428     }
429     sv->cieY = cd->cTotal;
430     /* compute sample direction */
431     ec = (*sdc->func->sampCDist)(outVec, randX, cd);
432     if (ec)
433     return ec;
434     /* get BSDF color */
435     n = (*sdc->func->getBSDFs)(coef, outVec, inVec, sdc->dist);
436     if (n <= 0) {
437     strcpy(SDerrorDetail, "BSDF sample value error");
438     return SDEinternal;
439     }
440     sv->spec = sdc->cspec[0];
441     d = coef[0];
442     while (--n) {
443     c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
444     d += coef[n];
445     }
446     /* make sure everything is set */
447     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
448     return SDEnone;
449     }
450    
451     #define MS_MAXDIM 15
452    
453     /* Convert 1-dimensional random variable to N-dimensional */
454     void
455     SDmultiSamp(double t[], int n, double randX)
456     {
457     unsigned nBits;
458     double scale;
459     bitmask_t ndx, coord[MS_MAXDIM];
460    
461     while (n > MS_MAXDIM) /* punt for higher dimensions */
462 greg 2.19 t[--n] = rand()*(1./(RAND_MAX+.5));
463 greg 2.15 nBits = (8*sizeof(bitmask_t) - 1) / n;
464     ndx = randX * (double)((bitmask_t)1 << (nBits*n));
465     /* get coordinate on Hilbert curve */
466     hilbert_i2c(n, nBits, ndx, coord);
467     /* convert back to [0,1) range */
468     scale = 1. / (double)((bitmask_t)1 << nBits);
469     while (n--)
470 greg 2.19 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
471 greg 2.15 }
472    
473     #undef MS_MAXDIM
474    
475     /* Generate diffuse hemispherical sample */
476     static void
477     SDdiffuseSamp(FVECT outVec, int outFront, double randX)
478     {
479     /* convert to position on hemisphere */
480     SDmultiSamp(outVec, 2, randX);
481     SDsquare2disk(outVec, outVec[0], outVec[1]);
482     outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
483     if (outVec[2] > .0) /* a bit of paranoia */
484     outVec[2] = sqrt(outVec[2]);
485     if (!outFront) /* going out back? */
486     outVec[2] = -outVec[2];
487     }
488    
489     /* Query projected solid angle coverage for non-diffuse BSDF direction */
490     SDError
491     SDsizeBSDF(double *projSA, const FVECT vec, int qflags, const SDData *sd)
492     {
493     SDSpectralDF *rdf;
494     SDError ec;
495     int i;
496     /* check arguments */
497     if ((projSA == NULL) | (vec == NULL) | (sd == NULL))
498     return SDEargument;
499     /* initialize extrema */
500 greg 2.17 switch (qflags) {
501 greg 2.15 case SDqueryMax:
502     projSA[0] = .0;
503     break;
504     case SDqueryMin+SDqueryMax:
505     projSA[1] = .0;
506     /* fall through */
507     case SDqueryMin:
508     projSA[0] = 10.;
509     break;
510     case 0:
511     return SDEargument;
512     }
513     if (vec[2] > .0) /* front surface query? */
514     rdf = sd->rf;
515     else
516     rdf = sd->rb;
517     ec = SDEdata; /* run through components */
518     for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
519     ec = (*rdf->comp[i].func->queryProjSA)(projSA, vec, qflags,
520     rdf->comp[i].dist);
521     if (ec)
522     return ec;
523     }
524     for (i = (sd->tf==NULL) ? 0 : sd->tf->ncomp; i--; ) {
525     ec = (*sd->tf->comp[i].func->queryProjSA)(projSA, vec, qflags,
526     sd->tf->comp[i].dist);
527     if (ec)
528     return ec;
529     }
530 greg 2.17 if (ec) { /* all diffuse? */
531     projSA[0] = M_PI;
532     if (qflags == SDqueryMin+SDqueryMax)
533     projSA[1] = M_PI;
534     }
535     return SDEnone;
536 greg 2.15 }
537    
538     /* Return BSDF for the given incident and scattered ray vectors */
539     SDError
540     SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
541     {
542     int inFront, outFront;
543     SDSpectralDF *sdf;
544     float coef[SDmaxCh];
545     int nch, i;
546     /* check arguments */
547     if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
548     return SDEargument;
549     /* whose side are we on? */
550     inFront = (inVec[2] > .0);
551     outFront = (outVec[2] > .0);
552     /* start with diffuse portion */
553     if (inFront & outFront) {
554     *sv = sd->rLambFront;
555     sdf = sd->rf;
556     } else if (!(inFront | outFront)) {
557     *sv = sd->rLambBack;
558     sdf = sd->rb;
559     } else /* inFront ^ outFront */ {
560     *sv = sd->tLamb;
561     sdf = sd->tf;
562     }
563     sv->cieY *= 1./M_PI;
564     /* add non-diffuse components */
565     i = (sdf != NULL) ? sdf->ncomp : 0;
566     while (i-- > 0) {
567     nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
568     sdf->comp[i].dist);
569     while (nch-- > 0) {
570     c_cmix(&sv->spec, sv->cieY, &sv->spec,
571     coef[nch], &sdf->comp[i].cspec[nch]);
572     sv->cieY += coef[nch];
573     }
574     }
575     /* make sure everything is set */
576     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
577     return SDEnone;
578     }
579    
580     /* Compute directional hemispherical scattering at this incident angle */
581     double
582     SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
583     {
584     double hsum;
585     SDSpectralDF *rdf;
586     const SDCDst *cd;
587     int i;
588     /* check arguments */
589     if ((inVec == NULL) | (sd == NULL))
590     return .0;
591     /* gather diffuse components */
592     if (inVec[2] > .0) {
593     hsum = sd->rLambFront.cieY;
594     rdf = sd->rf;
595     } else /* !inFront */ {
596     hsum = sd->rLambBack.cieY;
597     rdf = sd->rb;
598     }
599     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
600     hsum = .0;
601     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
602     hsum += sd->tLamb.cieY;
603     /* gather non-diffuse components */
604     i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
605     rdf != NULL) ? rdf->ncomp : 0;
606     while (i-- > 0) { /* non-diffuse reflection */
607     cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
608     if (cd != NULL)
609     hsum += cd->cTotal;
610     }
611     i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
612     sd->tf != NULL) ? sd->tf->ncomp : 0;
613     while (i-- > 0) { /* non-diffuse transmission */
614     cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]);
615     if (cd != NULL)
616     hsum += cd->cTotal;
617     }
618     return hsum;
619     }
620    
621     /* Sample BSDF direction based on the given random variable */
622     SDError
623     SDsampBSDF(SDValue *sv, FVECT outVec, const FVECT inVec,
624     double randX, int sflags, const SDData *sd)
625     {
626     SDError ec;
627     int inFront;
628     SDSpectralDF *rdf;
629     double rdiff;
630     float coef[SDmaxCh];
631     int i, j, n, nr;
632     SDComponent *sdc;
633     const SDCDst **cdarr = NULL;
634     /* check arguments */
635     if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL) |
636     (randX < .0) | (randX >= 1.))
637     return SDEargument;
638     /* whose side are we on? */
639     inFront = (inVec[2] > .0);
640     /* remember diffuse portions */
641     if (inFront) {
642     *sv = sd->rLambFront;
643     rdf = sd->rf;
644     } else /* !inFront */ {
645     *sv = sd->rLambBack;
646     rdf = sd->rb;
647     }
648     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
649     sv->cieY = .0;
650     rdiff = sv->cieY;
651     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
652     sv->cieY += sd->tLamb.cieY;
653     /* gather non-diffuse components */
654     i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
655     rdf != NULL) ? rdf->ncomp : 0;
656     j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
657     sd->tf != NULL) ? sd->tf->ncomp : 0;
658     n = i + j;
659     if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
660     return SDEmemory;
661     while (j-- > 0) { /* non-diffuse transmission */
662     cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]);
663     if (cdarr[i+j] == NULL) {
664     free(cdarr);
665     return SDEmemory;
666     }
667     sv->cieY += cdarr[i+j]->cTotal;
668     }
669     while (i-- > 0) { /* non-diffuse reflection */
670     cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
671     if (cdarr[i] == NULL) {
672     free(cdarr);
673     return SDEmemory;
674     }
675     sv->cieY += cdarr[i]->cTotal;
676     }
677     if (sv->cieY <= 1e-7) { /* anything to sample? */
678     sv->cieY = .0;
679     memset(outVec, 0, 3*sizeof(double));
680     return SDEnone;
681     }
682     /* scale random variable */
683     randX *= sv->cieY;
684     /* diffuse reflection? */
685     if (randX < rdiff) {
686     SDdiffuseSamp(outVec, inFront, randX/rdiff);
687     goto done;
688     }
689     randX -= rdiff;
690     /* diffuse transmission? */
691     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
692     if (randX < sd->tLamb.cieY) {
693     sv->spec = sd->tLamb.spec;
694     SDdiffuseSamp(outVec, !inFront, randX/sd->tLamb.cieY);
695     goto done;
696     }
697     randX -= sd->tLamb.cieY;
698     }
699     /* else one of cumulative dist. */
700     for (i = 0; i < n && randX < cdarr[i]->cTotal; i++)
701     randX -= cdarr[i]->cTotal;
702     if (i >= n)
703     return SDEinternal;
704     /* compute sample direction */
705     sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr];
706     ec = (*sdc->func->sampCDist)(outVec, randX/cdarr[i]->cTotal, cdarr[i]);
707     if (ec)
708     return ec;
709     /* compute color */
710     j = (*sdc->func->getBSDFs)(coef, outVec, inVec, sdc->dist);
711     if (j <= 0) {
712     sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
713     sd->name);
714     return SDEinternal;
715     }
716     sv->spec = sdc->cspec[0];
717     rdiff = coef[0];
718     while (--j) {
719     c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
720     rdiff += coef[j];
721     }
722     done:
723     if (cdarr != NULL)
724     free(cdarr);
725     /* make sure everything is set */
726     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
727     return SDEnone;
728     }
729    
730     /* Compute World->BSDF transform from surface normal and up (Y) vector */
731     SDError
732     SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
733     {
734     if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
735     return SDEargument;
736     VCOPY(vMtx[2], sNrm);
737     if (normalize(vMtx[2]) == .0)
738     return SDEargument;
739     fcross(vMtx[0], uVec, vMtx[2]);
740     if (normalize(vMtx[0]) == .0)
741     return SDEargument;
742     fcross(vMtx[1], vMtx[2], vMtx[0]);
743     return SDEnone;
744     }
745    
746     /* Compute inverse transform */
747     SDError
748     SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
749     {
750     RREAL mTmp[3][3];
751     double d;
752    
753     if ((iMtx == NULL) | (vMtx == NULL))
754     return SDEargument;
755     /* compute determinant */
756     mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
757     mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
758     mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
759     d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
760     if (d == .0) {
761     strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
762     return SDEargument;
763     }
764     d = 1./d; /* invert matrix */
765     mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
766     mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
767     mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
768     mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
769     mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
770     mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
771     mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
772     memcpy(iMtx, mTmp, sizeof(mTmp));
773     return SDEnone;
774     }
775    
776     /* Transform and normalize direction (column) vector */
777     SDError
778     SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
779     {
780     FVECT vTmp;
781    
782     if ((resVec == NULL) | (inpVec == NULL))
783     return SDEargument;
784     if (vMtx == NULL) { /* assume they just want to normalize */
785     if (resVec != inpVec)
786     VCOPY(resVec, inpVec);
787     return (normalize(resVec) > .0) ? SDEnone : SDEargument;
788     }
789     vTmp[0] = DOT(vMtx[0], inpVec);
790     vTmp[1] = DOT(vMtx[1], inpVec);
791     vTmp[2] = DOT(vMtx[2], inpVec);
792     if (normalize(vTmp) == .0)
793     return SDEargument;
794     VCOPY(resVec, vTmp);
795     return SDEnone;
796     }
797    
798     /*################################################################*/
799     /*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/
800    
801     /*
802 greg 2.1 * Routines for handling BSDF data
803     */
804    
805     #include "standard.h"
806     #include "paths.h"
807     #include <ctype.h>
808    
809     #define MAXLATS 46 /* maximum number of latitudes */
810    
811     /* BSDF angle specification */
812     typedef struct {
813     char name[64]; /* basis name */
814     int nangles; /* total number of directions */
815     struct {
816     float tmin; /* starting theta */
817     short nphis; /* number of phis (0 term) */
818     } lat[MAXLATS+1]; /* latitudes */
819     } ANGLE_BASIS;
820    
821 greg 2.4 #define MAXABASES 7 /* limit on defined bases */
822 greg 2.1
823     static ANGLE_BASIS abase_list[MAXABASES] = {
824     {
825     "LBNL/Klems Full", 145,
826     { {-5., 1},
827     {5., 8},
828     {15., 16},
829     {25., 20},
830     {35., 24},
831     {45., 24},
832     {55., 24},
833     {65., 16},
834     {75., 12},
835     {90., 0} }
836     }, {
837     "LBNL/Klems Half", 73,
838     { {-6.5, 1},
839     {6.5, 8},
840     {19.5, 12},
841     {32.5, 16},
842     {46.5, 20},
843     {61.5, 12},
844     {76.5, 4},
845     {90., 0} }
846     }, {
847     "LBNL/Klems Quarter", 41,
848     { {-9., 1},
849     {9., 8},
850     {27., 12},
851     {46., 12},
852     {66., 8},
853     {90., 0} }
854     }
855     };
856    
857     static int nabases = 3; /* current number of defined bases */
858    
859 greg 2.9 #define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6)
860    
861     static int
862     fequal(double a, double b)
863     {
864     if (b != .0)
865     a = a/b - 1.;
866     return((a <= 1e-6) & (a >= -1e-6));
867     }
868 greg 2.3
869 greg 2.14 /* Returns the name of the given tag */
870 greg 2.3 #ifdef ezxml_name
871     #undef ezxml_name
872     static char *
873     ezxml_name(ezxml_t xml)
874     {
875     if (xml == NULL)
876     return(NULL);
877     return(xml->name);
878     }
879     #endif
880    
881 greg 2.14 /* Returns the given tag's character content or empty string if none */
882 greg 2.3 #ifdef ezxml_txt
883     #undef ezxml_txt
884     static char *
885     ezxml_txt(ezxml_t xml)
886     {
887     if (xml == NULL)
888     return("");
889     return(xml->txt);
890     }
891     #endif
892    
893 greg 2.1
894     static int
895     ab_getvec( /* get vector for this angle basis index */
896     FVECT v,
897     int ndx,
898     void *p
899     )
900     {
901     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
902     int li;
903 greg 2.2 double pol, azi, d;
904 greg 2.1
905     if ((ndx < 0) | (ndx >= ab->nangles))
906     return(0);
907     for (li = 0; ndx >= ab->lat[li].nphis; li++)
908     ndx -= ab->lat[li].nphis;
909 greg 2.2 pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin);
910 greg 2.1 azi = 2.*PI*ndx/ab->lat[li].nphis;
911 greg 2.2 v[2] = d = cos(pol);
912     d = sqrt(1. - d*d); /* sin(pol) */
913 greg 2.1 v[0] = cos(azi)*d;
914     v[1] = sin(azi)*d;
915     return(1);
916     }
917    
918    
919     static int
920     ab_getndx( /* get index corresponding to the given vector */
921     FVECT v,
922     void *p
923     )
924     {
925     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
926     int li, ndx;
927 greg 2.2 double pol, azi, d;
928 greg 2.1
929     if ((v[2] < -1.0) | (v[2] > 1.0))
930     return(-1);
931 greg 2.2 pol = 180.0/PI*acos(v[2]);
932 greg 2.1 azi = 180.0/PI*atan2(v[1], v[0]);
933     if (azi < 0.0) azi += 360.0;
934 greg 2.2 for (li = 1; ab->lat[li].tmin <= pol; li++)
935 greg 2.1 if (!ab->lat[li].nphis)
936     return(-1);
937     --li;
938     ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
939     if (ndx >= ab->lat[li].nphis) ndx = 0;
940     while (li--)
941     ndx += ab->lat[li].nphis;
942     return(ndx);
943     }
944    
945    
946     static double
947     ab_getohm( /* get solid angle for this angle basis index */
948     int ndx,
949     void *p
950     )
951     {
952     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
953     int li;
954     double theta, theta1;
955    
956     if ((ndx < 0) | (ndx >= ab->nangles))
957     return(0);
958     for (li = 0; ndx >= ab->lat[li].nphis; li++)
959     ndx -= ab->lat[li].nphis;
960     theta1 = PI/180. * ab->lat[li+1].tmin;
961     if (ab->lat[li].nphis == 1) { /* special case */
962     if (ab->lat[li].tmin > FTINY)
963     error(USER, "unsupported BSDF coordinate system");
964     return(2.*PI*(1. - cos(theta1)));
965     }
966     theta = PI/180. * ab->lat[li].tmin;
967     return(2.*PI*(cos(theta) - cos(theta1))/(double)ab->lat[li].nphis);
968     }
969    
970    
971     static int
972     ab_getvecR( /* get reverse vector for this angle basis index */
973     FVECT v,
974     int ndx,
975     void *p
976     )
977     {
978     if (!ab_getvec(v, ndx, p))
979     return(0);
980    
981     v[0] = -v[0];
982     v[1] = -v[1];
983     v[2] = -v[2];
984    
985     return(1);
986     }
987    
988    
989     static int
990     ab_getndxR( /* get index corresponding to the reverse vector */
991     FVECT v,
992     void *p
993     )
994     {
995     FVECT v2;
996    
997     v2[0] = -v[0];
998     v2[1] = -v[1];
999     v2[2] = -v[2];
1000    
1001     return ab_getndx(v2, p);
1002     }
1003    
1004    
1005     static void
1006 greg 2.4 load_angle_basis( /* load custom BSDF angle basis */
1007 greg 2.3 ezxml_t wab
1008     )
1009     {
1010     char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
1011     ezxml_t wbb;
1012     int i;
1013    
1014 greg 2.4 if (!abname || !*abname)
1015 greg 2.3 return;
1016     for (i = nabases; i--; )
1017 greg 2.12 if (!strcasecmp(abname, abase_list[i].name))
1018 greg 2.4 return; /* assume it's the same */
1019 greg 2.3 if (nabases >= MAXABASES)
1020     error(INTERNAL, "too many angle bases");
1021     strcpy(abase_list[nabases].name, abname);
1022     abase_list[nabases].nangles = 0;
1023     for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
1024     wbb != NULL; i++, wbb = wbb->next) {
1025     if (i >= MAXLATS)
1026     error(INTERNAL, "too many latitudes in custom basis");
1027     abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
1028     ezxml_child(ezxml_child(wbb,
1029     "ThetaBounds"), "UpperTheta")));
1030     if (!i)
1031     abase_list[nabases].lat[i].tmin =
1032     -abase_list[nabases].lat[i+1].tmin;
1033 greg 2.9 else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
1034 greg 2.3 "ThetaBounds"), "LowerTheta"))),
1035     abase_list[nabases].lat[i].tmin))
1036     error(WARNING, "theta values disagree in custom basis");
1037     abase_list[nabases].nangles +=
1038     abase_list[nabases].lat[i].nphis =
1039     atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
1040     }
1041     abase_list[nabases++].lat[i].nphis = 0;
1042     }
1043    
1044    
1045 greg 2.6 static void
1046     load_geometry( /* load geometric dimensions and description (if any) */
1047     struct BSDF_data *dp,
1048     ezxml_t wdb
1049     )
1050     {
1051     ezxml_t geom;
1052     double cfact;
1053     const char *fmt, *mgfstr;
1054    
1055     dp->dim[0] = dp->dim[1] = dp->dim[2] = 0;
1056     dp->mgf = NULL;
1057     if ((geom = ezxml_child(wdb, "Width")) != NULL)
1058     dp->dim[0] = atof(ezxml_txt(geom)) *
1059     to_meters(ezxml_attr(geom, "unit"));
1060     if ((geom = ezxml_child(wdb, "Height")) != NULL)
1061     dp->dim[1] = atof(ezxml_txt(geom)) *
1062     to_meters(ezxml_attr(geom, "unit"));
1063     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
1064     dp->dim[2] = atof(ezxml_txt(geom)) *
1065     to_meters(ezxml_attr(geom, "unit"));
1066     if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
1067     (mgfstr = ezxml_txt(geom)) == NULL)
1068     return;
1069     if ((fmt = ezxml_attr(geom, "format")) != NULL &&
1070     strcasecmp(fmt, "MGF")) {
1071     sprintf(errmsg, "unrecognized geometry format '%s'", fmt);
1072     error(WARNING, errmsg);
1073     return;
1074     }
1075     cfact = to_meters(ezxml_attr(geom, "unit"));
1076     dp->mgf = (char *)malloc(strlen(mgfstr)+32);
1077     if (dp->mgf == NULL)
1078     error(SYSTEM, "out of memory in load_geometry");
1079     if (cfact < 0.99 || cfact > 1.01)
1080     sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
1081     else
1082     strcpy(dp->mgf, mgfstr);
1083     }
1084    
1085    
1086 greg 2.3 static void
1087 greg 2.1 load_bsdf_data( /* load BSDF distribution for this wavelength */
1088     struct BSDF_data *dp,
1089     ezxml_t wdb
1090     )
1091     {
1092     char *cbasis = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
1093     char *rbasis = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
1094     char *sdata;
1095     int i;
1096    
1097 greg 2.4 if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) {
1098 greg 2.1 error(WARNING, "missing column/row basis for BSDF");
1099     return;
1100     }
1101     for (i = nabases; i--; )
1102 greg 2.12 if (!strcasecmp(cbasis, abase_list[i].name)) {
1103 greg 2.1 dp->ninc = abase_list[i].nangles;
1104     dp->ib_priv = (void *)&abase_list[i];
1105     dp->ib_vec = ab_getvecR;
1106     dp->ib_ndx = ab_getndxR;
1107     dp->ib_ohm = ab_getohm;
1108     break;
1109     }
1110     if (i < 0) {
1111 greg 2.4 sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis);
1112 greg 2.1 error(WARNING, errmsg);
1113     return;
1114     }
1115     for (i = nabases; i--; )
1116 greg 2.12 if (!strcasecmp(rbasis, abase_list[i].name)) {
1117 greg 2.1 dp->nout = abase_list[i].nangles;
1118     dp->ob_priv = (void *)&abase_list[i];
1119     dp->ob_vec = ab_getvec;
1120     dp->ob_ndx = ab_getndx;
1121     dp->ob_ohm = ab_getohm;
1122     break;
1123     }
1124     if (i < 0) {
1125 greg 2.16 sprintf(errmsg, "undefined RowAngleBasis '%s'", rbasis);
1126 greg 2.1 error(WARNING, errmsg);
1127     return;
1128     }
1129     /* read BSDF data */
1130     sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
1131 greg 2.4 if (!sdata || !*sdata) {
1132 greg 2.1 error(WARNING, "missing BSDF ScatteringData");
1133     return;
1134     }
1135     dp->bsdf = (float *)malloc(sizeof(float)*dp->ninc*dp->nout);
1136     if (dp->bsdf == NULL)
1137     error(SYSTEM, "out of memory in load_bsdf_data");
1138     for (i = 0; i < dp->ninc*dp->nout; i++) {
1139     char *sdnext = fskip(sdata);
1140     if (sdnext == NULL) {
1141     error(WARNING, "bad/missing BSDF ScatteringData");
1142     free(dp->bsdf); dp->bsdf = NULL;
1143     return;
1144     }
1145     while (*sdnext && isspace(*sdnext))
1146     sdnext++;
1147     if (*sdnext == ',') sdnext++;
1148     dp->bsdf[i] = atof(sdata);
1149     sdata = sdnext;
1150     }
1151     while (isspace(*sdata))
1152     sdata++;
1153     if (*sdata) {
1154     sprintf(errmsg, "%d extra characters after BSDF ScatteringData",
1155 greg 2.5 (int)strlen(sdata));
1156 greg 2.1 error(WARNING, errmsg);
1157     }
1158     }
1159    
1160    
1161     static int
1162     check_bsdf_data( /* check that BSDF data is sane */
1163     struct BSDF_data *dp
1164     )
1165     {
1166 greg 2.2 double *omega_iarr, *omega_oarr;
1167 greg 2.7 double dom, contrib, hemi_total, full_total;
1168 greg 2.1 int nneg;
1169 greg 2.2 FVECT v;
1170 greg 2.1 int i, o;
1171    
1172     if (dp == NULL || dp->bsdf == NULL)
1173     return(0);
1174 greg 2.2 omega_iarr = (double *)calloc(dp->ninc, sizeof(double));
1175     omega_oarr = (double *)calloc(dp->nout, sizeof(double));
1176     if ((omega_iarr == NULL) | (omega_oarr == NULL))
1177 greg 2.1 error(SYSTEM, "out of memory in check_bsdf_data");
1178 greg 2.2 /* incoming projected solid angles */
1179     hemi_total = .0;
1180     for (i = dp->ninc; i--; ) {
1181     dom = getBSDF_incohm(dp,i);
1182     if (dom <= .0) {
1183     error(WARNING, "zero/negative incoming solid angle");
1184     continue;
1185     }
1186     if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) {
1187     error(WARNING, "illegal incoming BSDF direction");
1188     free(omega_iarr); free(omega_oarr);
1189     return(0);
1190     }
1191     hemi_total += omega_iarr[i] = dom * -v[2];
1192     }
1193     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1194     sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%",
1195     100.*(hemi_total/PI - 1.));
1196     error(WARNING, errmsg);
1197     }
1198     dom = PI / hemi_total; /* fix normalization */
1199     for (i = dp->ninc; i--; )
1200     omega_iarr[i] *= dom;
1201     /* outgoing projected solid angles */
1202 greg 2.1 hemi_total = .0;
1203     for (o = dp->nout; o--; ) {
1204     dom = getBSDF_outohm(dp,o);
1205     if (dom <= .0) {
1206 greg 2.2 error(WARNING, "zero/negative outgoing solid angle");
1207 greg 2.1 continue;
1208     }
1209     if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) {
1210     error(WARNING, "illegal outgoing BSDF direction");
1211 greg 2.2 free(omega_iarr); free(omega_oarr);
1212 greg 2.1 return(0);
1213     }
1214 greg 2.2 hemi_total += omega_oarr[o] = dom * v[2];
1215 greg 2.1 }
1216     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1217     sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%",
1218     100.*(hemi_total/PI - 1.));
1219     error(WARNING, errmsg);
1220     }
1221 greg 2.2 dom = PI / hemi_total; /* fix normalization */
1222 greg 2.1 for (o = dp->nout; o--; )
1223 greg 2.2 omega_oarr[o] *= dom;
1224     nneg = 0; /* check outgoing totals */
1225     for (i = 0; i < dp->ninc; i++) {
1226 greg 2.1 hemi_total = .0;
1227     for (o = dp->nout; o--; ) {
1228     double f = BSDF_value(dp,i,o);
1229 greg 2.2 if (f >= .0)
1230     hemi_total += f*omega_oarr[o];
1231     else {
1232     nneg += (f < -FTINY);
1233     BSDF_value(dp,i,o) = .0f;
1234     }
1235 greg 2.1 }
1236 greg 2.8 if (hemi_total > 1.01) {
1237 greg 2.2 sprintf(errmsg,
1238     "incoming BSDF direction %d passes %.1f%% of light",
1239     i, 100.*hemi_total);
1240 greg 2.1 error(WARNING, errmsg);
1241     }
1242     }
1243 greg 2.2 if (nneg) {
1244     sprintf(errmsg, "%d negative BSDF values (ignored)", nneg);
1245 greg 2.1 error(WARNING, errmsg);
1246     }
1247 greg 2.7 full_total = .0; /* reverse roles and check again */
1248 greg 2.2 for (o = 0; o < dp->nout; o++) {
1249     hemi_total = .0;
1250     for (i = dp->ninc; i--; )
1251     hemi_total += BSDF_value(dp,i,o) * omega_iarr[i];
1252    
1253 greg 2.8 if (hemi_total > 1.01) {
1254 greg 2.2 sprintf(errmsg,
1255     "outgoing BSDF direction %d collects %.1f%% of light",
1256     o, 100.*hemi_total);
1257     error(WARNING, errmsg);
1258     }
1259 greg 2.7 full_total += hemi_total*omega_oarr[o];
1260     }
1261     full_total /= PI;
1262 greg 2.8 if (full_total > 1.00001) {
1263     sprintf(errmsg, "BSDF transfers %.4f%% of light",
1264 greg 2.7 100.*full_total);
1265     error(WARNING, errmsg);
1266 greg 2.2 }
1267     free(omega_iarr); free(omega_oarr);
1268 greg 2.1 return(1);
1269     }
1270    
1271 greg 2.6
1272 greg 2.1 struct BSDF_data *
1273     load_BSDF( /* load BSDF data from file */
1274     char *fname
1275     )
1276     {
1277     char *path;
1278     ezxml_t fl, wtl, wld, wdb;
1279     struct BSDF_data *dp;
1280    
1281     path = getpath(fname, getrlibpath(), R_OK);
1282     if (path == NULL) {
1283     sprintf(errmsg, "cannot find BSDF file \"%s\"", fname);
1284     error(WARNING, errmsg);
1285     return(NULL);
1286     }
1287     fl = ezxml_parse_file(path);
1288     if (fl == NULL) {
1289     sprintf(errmsg, "cannot open BSDF \"%s\"", path);
1290     error(WARNING, errmsg);
1291     return(NULL);
1292     }
1293     if (ezxml_error(fl)[0]) {
1294     sprintf(errmsg, "BSDF \"%s\" %s", path, ezxml_error(fl));
1295     error(WARNING, errmsg);
1296     ezxml_free(fl);
1297     return(NULL);
1298     }
1299     if (strcmp(ezxml_name(fl), "WindowElement")) {
1300     sprintf(errmsg,
1301     "BSDF \"%s\": top level node not 'WindowElement'",
1302     path);
1303     error(WARNING, errmsg);
1304     ezxml_free(fl);
1305     return(NULL);
1306     }
1307     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
1308 greg 2.10 if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl,
1309     "DataDefinition"), "IncidentDataStructure")),
1310     "Columns")) {
1311     sprintf(errmsg,
1312     "BSDF \"%s\": unsupported IncidentDataStructure",
1313     path);
1314     error(WARNING, errmsg);
1315     ezxml_free(fl);
1316     return(NULL);
1317     }
1318 greg 2.3 load_angle_basis(ezxml_child(ezxml_child(wtl,
1319     "DataDefinition"), "AngleBasis"));
1320 greg 2.1 dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data));
1321 greg 2.6 load_geometry(dp, ezxml_child(wtl, "Material"));
1322 greg 2.1 for (wld = ezxml_child(wtl, "WavelengthData");
1323     wld != NULL; wld = wld->next) {
1324 greg 2.13 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1325     "Visible"))
1326 greg 2.1 continue;
1327 greg 2.13 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1328     wdb != NULL; wdb = wdb->next)
1329     if (!strcasecmp(ezxml_txt(ezxml_child(wdb,
1330     "WavelengthDataDirection")),
1331 greg 2.1 "Transmission Front"))
1332 greg 2.13 break;
1333     if (wdb != NULL) { /* load front BTDF */
1334     load_bsdf_data(dp, wdb);
1335     break; /* ignore the rest */
1336     }
1337 greg 2.1 }
1338     ezxml_free(fl); /* done with XML file */
1339     if (!check_bsdf_data(dp)) {
1340     sprintf(errmsg, "bad/missing BTDF data in \"%s\"", path);
1341     error(WARNING, errmsg);
1342     free_BSDF(dp);
1343     dp = NULL;
1344     }
1345     return(dp);
1346     }
1347    
1348    
1349     void
1350     free_BSDF( /* free BSDF data structure */
1351     struct BSDF_data *b
1352     )
1353     {
1354     if (b == NULL)
1355     return;
1356 greg 2.6 if (b->mgf != NULL)
1357     free(b->mgf);
1358 greg 2.1 if (b->bsdf != NULL)
1359     free(b->bsdf);
1360     free(b);
1361     }
1362    
1363    
1364     int
1365     r_BSDF_incvec( /* compute random input vector at given location */
1366     FVECT v,
1367     struct BSDF_data *b,
1368     int i,
1369     double rv,
1370     MAT4 xm
1371     )
1372     {
1373     FVECT pert;
1374     double rad;
1375     int j;
1376    
1377     if (!getBSDF_incvec(v, b, i))
1378     return(0);
1379     rad = sqrt(getBSDF_incohm(b, i) / PI);
1380     multisamp(pert, 3, rv);
1381     for (j = 0; j < 3; j++)
1382     v[j] += rad*(2.*pert[j] - 1.);
1383     if (xm != NULL)
1384     multv3(v, v, xm);
1385     return(normalize(v) != 0.0);
1386     }
1387    
1388    
1389     int
1390     r_BSDF_outvec( /* compute random output vector at given location */
1391     FVECT v,
1392     struct BSDF_data *b,
1393     int o,
1394     double rv,
1395     MAT4 xm
1396     )
1397     {
1398     FVECT pert;
1399     double rad;
1400     int j;
1401    
1402     if (!getBSDF_outvec(v, b, o))
1403     return(0);
1404     rad = sqrt(getBSDF_outohm(b, o) / PI);
1405     multisamp(pert, 3, rv);
1406     for (j = 0; j < 3; j++)
1407     v[j] += rad*(2.*pert[j] - 1.);
1408     if (xm != NULL)
1409     multv3(v, v, xm);
1410     return(normalize(v) != 0.0);
1411     }
1412    
1413    
1414     static int
1415     addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */
1416     char *xfarg[],
1417     FVECT xp,
1418     FVECT yp,
1419     FVECT zp
1420     )
1421     {
1422     static char bufs[3][16];
1423     int bn = 0;
1424     char **xfp = xfarg;
1425     double theta;
1426    
1427     if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
1428     /* Special case for X' along Z-axis */
1429     theta = -atan2(yp[0], yp[1]);
1430     *xfp++ = "-ry";
1431     *xfp++ = xp[2] < 0.0 ? "90" : "-90";
1432     *xfp++ = "-rz";
1433     sprintf(bufs[bn], "%f", theta*(180./PI));
1434     *xfp++ = bufs[bn++];
1435     return(xfp - xfarg);
1436     }
1437     theta = atan2(yp[2], zp[2]);
1438     if (!FEQ(theta,0.0)) {
1439     *xfp++ = "-rx";
1440     sprintf(bufs[bn], "%f", theta*(180./PI));
1441     *xfp++ = bufs[bn++];
1442     }
1443     theta = asin(-xp[2]);
1444     if (!FEQ(theta,0.0)) {
1445     *xfp++ = "-ry";
1446     sprintf(bufs[bn], " %f", theta*(180./PI));
1447     *xfp++ = bufs[bn++];
1448     }
1449     theta = atan2(xp[1], xp[0]);
1450     if (!FEQ(theta,0.0)) {
1451     *xfp++ = "-rz";
1452     sprintf(bufs[bn], "%f", theta*(180./PI));
1453     *xfp++ = bufs[bn++];
1454     }
1455     *xfp = NULL;
1456     return(xfp - xfarg);
1457     }
1458    
1459    
1460     int
1461     getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */
1462     MAT4 xm,
1463     FVECT nrm,
1464 greg 2.6 UpDir ud,
1465     char *xfbuf
1466 greg 2.1 )
1467     {
1468     char *xfargs[7];
1469     XF myxf;
1470     FVECT updir, xdest, ydest;
1471 greg 2.6 int i;
1472 greg 2.1
1473     updir[0] = updir[1] = updir[2] = 0.;
1474     switch (ud) {
1475     case UDzneg:
1476     updir[2] = -1.;
1477     break;
1478     case UDyneg:
1479     updir[1] = -1.;
1480     break;
1481     case UDxneg:
1482     updir[0] = -1.;
1483     break;
1484     case UDxpos:
1485     updir[0] = 1.;
1486     break;
1487     case UDypos:
1488     updir[1] = 1.;
1489     break;
1490     case UDzpos:
1491     updir[2] = 1.;
1492     break;
1493     case UDunknown:
1494     return(0);
1495     }
1496     fcross(xdest, updir, nrm);
1497     if (normalize(xdest) == 0.0)
1498     return(0);
1499     fcross(ydest, nrm, xdest);
1500     xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs);
1501     copymat4(xm, myxf.xfm);
1502 greg 2.6 if (xfbuf == NULL)
1503     return(1);
1504     /* return xf arguments as well */
1505     for (i = 0; xfargs[i] != NULL; i++) {
1506     *xfbuf++ = ' ';
1507     strcpy(xfbuf, xfargs[i]);
1508     while (*xfbuf) ++xfbuf;
1509     }
1510 greg 2.1 return(1);
1511     }
1512 greg 2.15
1513     /*######### END DEPRECATED ROUTINES #######*/
1514     /*################################################################*/