ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.20
Committed: Mon Apr 11 03:47:46 2011 UTC (13 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.19: +8 -4 lines
Log Message:
Final fix to Klems angles -- I hope

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.20 static const char RCSid[] = "$Id: bsdf.c,v 2.19 2011/04/09 15:39:16 greg Exp $";
3 greg 2.1 #endif
4     /*
5 greg 2.15 * bsdf.c
6     *
7     * Definitions for bidirectional scattering distribution functions.
8     *
9     * Created by Greg Ward on 1/10/11.
10     *
11     */
12    
13     #include <stdio.h>
14     #include <stdlib.h>
15     #include <math.h>
16     #include "ezxml.h"
17     #include "hilbert.h"
18     #include "bsdf.h"
19     #include "bsdf_m.h"
20     #include "bsdf_t.h"
21    
22     /* English ASCII strings corresponding to ennumerated errors */
23     const char *SDerrorEnglish[] = {
24     "No error",
25     "Memory error",
26     "File input/output error",
27     "File format error",
28     "Illegal argument",
29     "Invalid data",
30     "Unsupported feature",
31     "Internal program error",
32     "Unknown error"
33     };
34    
35     /* Additional information on last error (ASCII English) */
36     char SDerrorDetail[256];
37    
38     /* Cache of loaded BSDFs */
39     struct SDCache_s *SDcacheList = NULL;
40    
41     /* Retain BSDFs in cache list */
42     int SDretainSet = SDretainNone;
43    
44     /* Report any error to the indicated stream (in English) */
45     SDError
46     SDreportEnglish(SDError ec, FILE *fp)
47     {
48     if (fp == NULL)
49     return ec;
50     if (!ec)
51     return SDEnone;
52     fputs(SDerrorEnglish[ec], fp);
53     if (SDerrorDetail[0]) {
54     fputs(": ", fp);
55     fputs(SDerrorDetail, fp);
56     }
57     fputc('\n', fp);
58     if (fp != stderr)
59     fflush(fp);
60     return ec;
61     }
62    
63     static double
64     to_meters( /* return factor to convert given unit to meters */
65     const char *unit
66     )
67     {
68     if (unit == NULL) return(1.); /* safe assumption? */
69     if (!strcasecmp(unit, "Meter")) return(1.);
70     if (!strcasecmp(unit, "Foot")) return(.3048);
71     if (!strcasecmp(unit, "Inch")) return(.0254);
72     if (!strcasecmp(unit, "Centimeter")) return(.01);
73     if (!strcasecmp(unit, "Millimeter")) return(.001);
74     sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
75     return(-1.);
76     }
77    
78     /* Load geometric dimensions and description (if any) */
79     static SDError
80 greg 2.16 SDloadGeometry(SDData *sd, ezxml_t wdb)
81 greg 2.15 {
82     ezxml_t geom;
83     double cfact;
84     const char *fmt, *mgfstr;
85    
86 greg 2.16 if (wdb == NULL) /* no geometry section? */
87     return SDEnone;
88     sd->dim[0] = sd->dim[1] = sd->dim[2] = .0;
89 greg 2.15 if ((geom = ezxml_child(wdb, "Width")) != NULL)
90 greg 2.16 sd->dim[0] = atof(ezxml_txt(geom)) *
91 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
92     if ((geom = ezxml_child(wdb, "Height")) != NULL)
93 greg 2.16 sd->dim[1] = atof(ezxml_txt(geom)) *
94 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
95     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
96 greg 2.16 sd->dim[2] = atof(ezxml_txt(geom)) *
97 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
98 greg 2.17 if ((sd->dim[0] < .0) | (sd->dim[1] < .0) | (sd->dim[2] < .0)) {
99     sprintf(SDerrorDetail, "Negative size in \"%s\"", sd->name);
100 greg 2.15 return SDEdata;
101 greg 2.17 }
102 greg 2.15 if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
103     (mgfstr = ezxml_txt(geom)) == NULL)
104     return SDEnone;
105     if ((fmt = ezxml_attr(geom, "format")) != NULL &&
106     strcasecmp(fmt, "MGF")) {
107     sprintf(SDerrorDetail,
108     "Unrecognized geometry format '%s' in \"%s\"",
109 greg 2.16 fmt, sd->name);
110 greg 2.15 return SDEsupport;
111     }
112     cfact = to_meters(ezxml_attr(geom, "unit"));
113 greg 2.16 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
114     if (sd->mgf == NULL) {
115 greg 2.15 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
116     return SDEmemory;
117     }
118     if (cfact < 0.99 || cfact > 1.01)
119 greg 2.16 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
120 greg 2.15 else
121 greg 2.16 strcpy(sd->mgf, mgfstr);
122 greg 2.15 return SDEnone;
123     }
124    
125     /* Load a BSDF struct from the given file (free first and keep name) */
126     SDError
127     SDloadFile(SDData *sd, const char *fname)
128     {
129     SDError lastErr;
130 greg 2.16 ezxml_t fl, wtl;
131 greg 2.15
132     if ((sd == NULL) | (fname == NULL || !*fname))
133     return SDEargument;
134     /* free old data, keeping name */
135     SDfreeBSDF(sd);
136     /* parse XML file */
137     fl = ezxml_parse_file(fname);
138     if (fl == NULL) {
139     sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
140     return SDEfile;
141     }
142     if (ezxml_error(fl)[0]) {
143     sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
144     ezxml_free(fl);
145     return SDEformat;
146     }
147 greg 2.16 if (strcmp(ezxml_name(fl), "WindowElement")) {
148     sprintf(SDerrorDetail,
149     "BSDF \"%s\": top level node not 'WindowElement'",
150     sd->name);
151     ezxml_free(fl);
152     return SDEformat;
153     }
154     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
155     if (wtl == NULL) {
156     sprintf(SDerrorDetail, "BSDF \"%s\": no optical layer'",
157     sd->name);
158     ezxml_free(fl);
159     return SDEformat;
160     }
161 greg 2.15 /* load geometry if present */
162 greg 2.16 lastErr = SDloadGeometry(sd, ezxml_child(wtl, "Material"));
163     if (lastErr)
164 greg 2.15 return lastErr;
165     /* try loading variable resolution data */
166 greg 2.16 lastErr = SDloadTre(sd, wtl);
167 greg 2.15 /* check our result */
168     switch (lastErr) {
169     case SDEformat:
170     case SDEdata:
171     case SDEsupport: /* possibly we just tried the wrong format */
172 greg 2.16 lastErr = SDloadMtx(sd, wtl);
173 greg 2.15 break;
174     default: /* variable res. OK else serious error */
175     break;
176     }
177     /* done with XML file */
178     ezxml_free(fl);
179 greg 2.16
180     if (lastErr) { /* was there a load error? */
181     SDfreeBSDF(sd);
182     return lastErr;
183     }
184     /* remove any insignificant components */
185     if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
186     SDfreeSpectralDF(sd->rf); sd->rf = NULL;
187     }
188     if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
189     SDfreeSpectralDF(sd->rb); sd->rb = NULL;
190     }
191     if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
192     SDfreeSpectralDF(sd->tf); sd->tf = NULL;
193     }
194     /* return success */
195     return SDEnone;
196 greg 2.15 }
197    
198     /* Allocate new spectral distribution function */
199     SDSpectralDF *
200     SDnewSpectralDF(int nc)
201     {
202     SDSpectralDF *df;
203    
204     if (nc <= 0) {
205     strcpy(SDerrorDetail, "Zero component spectral DF request");
206     return NULL;
207     }
208     df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
209     (nc-1)*sizeof(SDComponent));
210     if (df == NULL) {
211     sprintf(SDerrorDetail,
212     "Cannot allocate %d component spectral DF", nc);
213     return NULL;
214     }
215     df->minProjSA = .0;
216     df->maxHemi = .0;
217     df->ncomp = nc;
218     memset(df->comp, 0, nc*sizeof(SDComponent));
219     return df;
220     }
221    
222     /* Free cached cumulative distributions for BSDF component */
223     void
224     SDfreeCumulativeCache(SDSpectralDF *df)
225     {
226     int n;
227     SDCDst *cdp;
228    
229     if (df == NULL)
230     return;
231     for (n = df->ncomp; n-- > 0; )
232     while ((cdp = df->comp[n].cdList) != NULL) {
233     df->comp[n].cdList = cdp->next;
234     free(cdp);
235     }
236     }
237    
238     /* Free a spectral distribution function */
239     void
240     SDfreeSpectralDF(SDSpectralDF *df)
241     {
242     int n;
243    
244     if (df == NULL)
245     return;
246     SDfreeCumulativeCache(df);
247     for (n = df->ncomp; n-- > 0; )
248     (*df->comp[n].func->freeSC)(df->comp[n].dist);
249     free(df);
250     }
251    
252     /* Shorten file path to useable BSDF name, removing suffix */
253     void
254 greg 2.16 SDclipName(char *res, const char *fname)
255 greg 2.15 {
256     const char *cp, *dot = NULL;
257    
258     for (cp = fname; *cp; cp++)
259     if (*cp == '.')
260     dot = cp;
261     if ((dot == NULL) | (dot < fname+2))
262     dot = cp;
263     if (dot - fname >= SDnameLn)
264     fname = dot - SDnameLn + 1;
265     while (fname < dot)
266     *res++ = *fname++;
267     *res = '\0';
268     }
269    
270     /* Initialize an unused BSDF struct (simply clears to zeroes) */
271     void
272 greg 2.20 SDclearBSDF(SDData *sd, const char *fname)
273 greg 2.15 {
274 greg 2.20 if (sd == NULL)
275     return;
276     memset(sd, 0, sizeof(SDData));
277     if (fname == NULL)
278     return;
279     SDclipName(sd->name, fname);
280 greg 2.15 }
281    
282     /* Free data associated with BSDF struct */
283     void
284     SDfreeBSDF(SDData *sd)
285     {
286     if (sd == NULL)
287     return;
288     if (sd->mgf != NULL) {
289     free(sd->mgf);
290     sd->mgf = NULL;
291     }
292     if (sd->rf != NULL) {
293     SDfreeSpectralDF(sd->rf);
294     sd->rf = NULL;
295     }
296     if (sd->rb != NULL) {
297     SDfreeSpectralDF(sd->rb);
298     sd->rb = NULL;
299     }
300     if (sd->tf != NULL) {
301     SDfreeSpectralDF(sd->tf);
302     sd->tf = NULL;
303     }
304     sd->rLambFront.cieY = .0;
305 greg 2.16 sd->rLambFront.spec.flags = 0;
306 greg 2.15 sd->rLambBack.cieY = .0;
307 greg 2.16 sd->rLambBack.spec.flags = 0;
308 greg 2.15 sd->tLamb.cieY = .0;
309 greg 2.16 sd->tLamb.spec.flags = 0;
310 greg 2.15 }
311    
312     /* Find writeable BSDF by name, or allocate new cache entry if absent */
313     SDData *
314     SDgetCache(const char *bname)
315     {
316     struct SDCache_s *sdl;
317     char sdnam[SDnameLn];
318    
319     if (bname == NULL)
320     return NULL;
321    
322     SDclipName(sdnam, bname);
323     for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
324     if (!strcmp(sdl->bsdf.name, sdnam)) {
325     sdl->refcnt++;
326     return &sdl->bsdf;
327     }
328    
329     sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
330     if (sdl == NULL)
331     return NULL;
332    
333     strcpy(sdl->bsdf.name, sdnam);
334     sdl->next = SDcacheList;
335     SDcacheList = sdl;
336    
337     sdl->refcnt++;
338     return &sdl->bsdf;
339     }
340    
341     /* Get loaded BSDF from cache (or load and cache it on first call) */
342     /* Report any problem to stderr and return NULL on failure */
343     const SDData *
344     SDcacheFile(const char *fname)
345     {
346     SDData *sd;
347     SDError ec;
348    
349     if (fname == NULL || !*fname)
350     return NULL;
351     SDerrorDetail[0] = '\0';
352     if ((sd = SDgetCache(fname)) == NULL) {
353     SDreportEnglish(SDEmemory, stderr);
354     return NULL;
355     }
356     if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
357     SDreportEnglish(ec, stderr);
358     SDfreeCache(sd);
359     return NULL;
360     }
361     return sd;
362     }
363    
364     /* Free a BSDF from our cache (clear all if NULL) */
365     void
366     SDfreeCache(const SDData *sd)
367     {
368     struct SDCache_s *sdl, *sdLast = NULL;
369    
370     if (sd == NULL) { /* free entire list */
371     while ((sdl = SDcacheList) != NULL) {
372     SDcacheList = sdl->next;
373     SDfreeBSDF(&sdl->bsdf);
374     free(sdl);
375     }
376     return;
377     }
378     for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
379     if (&sdl->bsdf == sd)
380     break;
381     if (sdl == NULL || --sdl->refcnt)
382     return; /* missing or still in use */
383     /* keep unreferenced data? */
384     if (SDisLoaded(sd) && SDretainSet) {
385     if (SDretainSet == SDretainAll)
386     return; /* keep everything */
387     /* else free cumulative data */
388     SDfreeCumulativeCache(sd->rf);
389     SDfreeCumulativeCache(sd->rb);
390     SDfreeCumulativeCache(sd->tf);
391     return;
392     }
393     /* remove from list and free */
394     if (sdLast == NULL)
395     SDcacheList = sdl->next;
396     else
397     sdLast->next = sdl->next;
398     SDfreeBSDF(&sdl->bsdf);
399     free(sdl);
400     }
401    
402     /* Sample an individual BSDF component */
403     SDError
404     SDsampComponent(SDValue *sv, FVECT outVec, const FVECT inVec,
405     double randX, SDComponent *sdc)
406     {
407     float coef[SDmaxCh];
408     SDError ec;
409     const SDCDst *cd;
410     double d;
411     int n;
412     /* check arguments */
413     if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL))
414     return SDEargument;
415     /* get cumulative distribution */
416     cd = (*sdc->func->getCDist)(inVec, sdc);
417     if (cd == NULL)
418     return SDEmemory;
419     if (cd->cTotal <= 1e-7) { /* anything to sample? */
420     sv->spec = c_dfcolor;
421     sv->cieY = .0;
422     memset(outVec, 0, 3*sizeof(double));
423     return SDEnone;
424     }
425     sv->cieY = cd->cTotal;
426     /* compute sample direction */
427     ec = (*sdc->func->sampCDist)(outVec, randX, cd);
428     if (ec)
429     return ec;
430     /* get BSDF color */
431     n = (*sdc->func->getBSDFs)(coef, outVec, inVec, sdc->dist);
432     if (n <= 0) {
433     strcpy(SDerrorDetail, "BSDF sample value error");
434     return SDEinternal;
435     }
436     sv->spec = sdc->cspec[0];
437     d = coef[0];
438     while (--n) {
439     c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
440     d += coef[n];
441     }
442     /* make sure everything is set */
443     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
444     return SDEnone;
445     }
446    
447     #define MS_MAXDIM 15
448    
449     /* Convert 1-dimensional random variable to N-dimensional */
450     void
451     SDmultiSamp(double t[], int n, double randX)
452     {
453     unsigned nBits;
454     double scale;
455     bitmask_t ndx, coord[MS_MAXDIM];
456    
457     while (n > MS_MAXDIM) /* punt for higher dimensions */
458 greg 2.19 t[--n] = rand()*(1./(RAND_MAX+.5));
459 greg 2.15 nBits = (8*sizeof(bitmask_t) - 1) / n;
460     ndx = randX * (double)((bitmask_t)1 << (nBits*n));
461     /* get coordinate on Hilbert curve */
462     hilbert_i2c(n, nBits, ndx, coord);
463     /* convert back to [0,1) range */
464     scale = 1. / (double)((bitmask_t)1 << nBits);
465     while (n--)
466 greg 2.19 t[n] = scale * ((double)coord[n] + rand()*(1./(RAND_MAX+.5)));
467 greg 2.15 }
468    
469     #undef MS_MAXDIM
470    
471     /* Generate diffuse hemispherical sample */
472     static void
473     SDdiffuseSamp(FVECT outVec, int outFront, double randX)
474     {
475     /* convert to position on hemisphere */
476     SDmultiSamp(outVec, 2, randX);
477     SDsquare2disk(outVec, outVec[0], outVec[1]);
478     outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
479     if (outVec[2] > .0) /* a bit of paranoia */
480     outVec[2] = sqrt(outVec[2]);
481     if (!outFront) /* going out back? */
482     outVec[2] = -outVec[2];
483     }
484    
485     /* Query projected solid angle coverage for non-diffuse BSDF direction */
486     SDError
487     SDsizeBSDF(double *projSA, const FVECT vec, int qflags, const SDData *sd)
488     {
489     SDSpectralDF *rdf;
490     SDError ec;
491     int i;
492     /* check arguments */
493     if ((projSA == NULL) | (vec == NULL) | (sd == NULL))
494     return SDEargument;
495     /* initialize extrema */
496 greg 2.17 switch (qflags) {
497 greg 2.15 case SDqueryMax:
498     projSA[0] = .0;
499     break;
500     case SDqueryMin+SDqueryMax:
501     projSA[1] = .0;
502     /* fall through */
503     case SDqueryMin:
504     projSA[0] = 10.;
505     break;
506     case 0:
507     return SDEargument;
508     }
509     if (vec[2] > .0) /* front surface query? */
510     rdf = sd->rf;
511     else
512     rdf = sd->rb;
513     ec = SDEdata; /* run through components */
514     for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
515     ec = (*rdf->comp[i].func->queryProjSA)(projSA, vec, qflags,
516     rdf->comp[i].dist);
517     if (ec)
518     return ec;
519     }
520     for (i = (sd->tf==NULL) ? 0 : sd->tf->ncomp; i--; ) {
521     ec = (*sd->tf->comp[i].func->queryProjSA)(projSA, vec, qflags,
522     sd->tf->comp[i].dist);
523     if (ec)
524     return ec;
525     }
526 greg 2.17 if (ec) { /* all diffuse? */
527     projSA[0] = M_PI;
528     if (qflags == SDqueryMin+SDqueryMax)
529     projSA[1] = M_PI;
530     }
531     return SDEnone;
532 greg 2.15 }
533    
534     /* Return BSDF for the given incident and scattered ray vectors */
535     SDError
536     SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
537     {
538     int inFront, outFront;
539     SDSpectralDF *sdf;
540     float coef[SDmaxCh];
541     int nch, i;
542     /* check arguments */
543     if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
544     return SDEargument;
545     /* whose side are we on? */
546     inFront = (inVec[2] > .0);
547     outFront = (outVec[2] > .0);
548     /* start with diffuse portion */
549     if (inFront & outFront) {
550     *sv = sd->rLambFront;
551     sdf = sd->rf;
552     } else if (!(inFront | outFront)) {
553     *sv = sd->rLambBack;
554     sdf = sd->rb;
555     } else /* inFront ^ outFront */ {
556     *sv = sd->tLamb;
557     sdf = sd->tf;
558     }
559     sv->cieY *= 1./M_PI;
560     /* add non-diffuse components */
561     i = (sdf != NULL) ? sdf->ncomp : 0;
562     while (i-- > 0) {
563     nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
564     sdf->comp[i].dist);
565     while (nch-- > 0) {
566     c_cmix(&sv->spec, sv->cieY, &sv->spec,
567     coef[nch], &sdf->comp[i].cspec[nch]);
568     sv->cieY += coef[nch];
569     }
570     }
571     /* make sure everything is set */
572     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
573     return SDEnone;
574     }
575    
576     /* Compute directional hemispherical scattering at this incident angle */
577     double
578     SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
579     {
580     double hsum;
581     SDSpectralDF *rdf;
582     const SDCDst *cd;
583     int i;
584     /* check arguments */
585     if ((inVec == NULL) | (sd == NULL))
586     return .0;
587     /* gather diffuse components */
588     if (inVec[2] > .0) {
589     hsum = sd->rLambFront.cieY;
590     rdf = sd->rf;
591     } else /* !inFront */ {
592     hsum = sd->rLambBack.cieY;
593     rdf = sd->rb;
594     }
595     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
596     hsum = .0;
597     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
598     hsum += sd->tLamb.cieY;
599     /* gather non-diffuse components */
600     i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
601     rdf != NULL) ? rdf->ncomp : 0;
602     while (i-- > 0) { /* non-diffuse reflection */
603     cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
604     if (cd != NULL)
605     hsum += cd->cTotal;
606     }
607     i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
608     sd->tf != NULL) ? sd->tf->ncomp : 0;
609     while (i-- > 0) { /* non-diffuse transmission */
610     cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]);
611     if (cd != NULL)
612     hsum += cd->cTotal;
613     }
614     return hsum;
615     }
616    
617     /* Sample BSDF direction based on the given random variable */
618     SDError
619     SDsampBSDF(SDValue *sv, FVECT outVec, const FVECT inVec,
620     double randX, int sflags, const SDData *sd)
621     {
622     SDError ec;
623     int inFront;
624     SDSpectralDF *rdf;
625     double rdiff;
626     float coef[SDmaxCh];
627     int i, j, n, nr;
628     SDComponent *sdc;
629     const SDCDst **cdarr = NULL;
630     /* check arguments */
631     if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL) |
632     (randX < .0) | (randX >= 1.))
633     return SDEargument;
634     /* whose side are we on? */
635     inFront = (inVec[2] > .0);
636     /* remember diffuse portions */
637     if (inFront) {
638     *sv = sd->rLambFront;
639     rdf = sd->rf;
640     } else /* !inFront */ {
641     *sv = sd->rLambBack;
642     rdf = sd->rb;
643     }
644     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
645     sv->cieY = .0;
646     rdiff = sv->cieY;
647     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
648     sv->cieY += sd->tLamb.cieY;
649     /* gather non-diffuse components */
650     i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
651     rdf != NULL) ? rdf->ncomp : 0;
652     j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
653     sd->tf != NULL) ? sd->tf->ncomp : 0;
654     n = i + j;
655     if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
656     return SDEmemory;
657     while (j-- > 0) { /* non-diffuse transmission */
658     cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]);
659     if (cdarr[i+j] == NULL) {
660     free(cdarr);
661     return SDEmemory;
662     }
663     sv->cieY += cdarr[i+j]->cTotal;
664     }
665     while (i-- > 0) { /* non-diffuse reflection */
666     cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
667     if (cdarr[i] == NULL) {
668     free(cdarr);
669     return SDEmemory;
670     }
671     sv->cieY += cdarr[i]->cTotal;
672     }
673     if (sv->cieY <= 1e-7) { /* anything to sample? */
674     sv->cieY = .0;
675     memset(outVec, 0, 3*sizeof(double));
676     return SDEnone;
677     }
678     /* scale random variable */
679     randX *= sv->cieY;
680     /* diffuse reflection? */
681     if (randX < rdiff) {
682     SDdiffuseSamp(outVec, inFront, randX/rdiff);
683     goto done;
684     }
685     randX -= rdiff;
686     /* diffuse transmission? */
687     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
688     if (randX < sd->tLamb.cieY) {
689     sv->spec = sd->tLamb.spec;
690     SDdiffuseSamp(outVec, !inFront, randX/sd->tLamb.cieY);
691     goto done;
692     }
693     randX -= sd->tLamb.cieY;
694     }
695     /* else one of cumulative dist. */
696     for (i = 0; i < n && randX < cdarr[i]->cTotal; i++)
697     randX -= cdarr[i]->cTotal;
698     if (i >= n)
699     return SDEinternal;
700     /* compute sample direction */
701     sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr];
702     ec = (*sdc->func->sampCDist)(outVec, randX/cdarr[i]->cTotal, cdarr[i]);
703     if (ec)
704     return ec;
705     /* compute color */
706     j = (*sdc->func->getBSDFs)(coef, outVec, inVec, sdc->dist);
707     if (j <= 0) {
708     sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
709     sd->name);
710     return SDEinternal;
711     }
712     sv->spec = sdc->cspec[0];
713     rdiff = coef[0];
714     while (--j) {
715     c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
716     rdiff += coef[j];
717     }
718     done:
719     if (cdarr != NULL)
720     free(cdarr);
721     /* make sure everything is set */
722     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
723     return SDEnone;
724     }
725    
726     /* Compute World->BSDF transform from surface normal and up (Y) vector */
727     SDError
728     SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
729     {
730     if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
731     return SDEargument;
732     VCOPY(vMtx[2], sNrm);
733     if (normalize(vMtx[2]) == .0)
734     return SDEargument;
735     fcross(vMtx[0], uVec, vMtx[2]);
736     if (normalize(vMtx[0]) == .0)
737     return SDEargument;
738     fcross(vMtx[1], vMtx[2], vMtx[0]);
739     return SDEnone;
740     }
741    
742     /* Compute inverse transform */
743     SDError
744     SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
745     {
746     RREAL mTmp[3][3];
747     double d;
748    
749     if ((iMtx == NULL) | (vMtx == NULL))
750     return SDEargument;
751     /* compute determinant */
752     mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
753     mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
754     mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
755     d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
756     if (d == .0) {
757     strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
758     return SDEargument;
759     }
760     d = 1./d; /* invert matrix */
761     mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
762     mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
763     mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
764     mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
765     mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
766     mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
767     mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
768     memcpy(iMtx, mTmp, sizeof(mTmp));
769     return SDEnone;
770     }
771    
772     /* Transform and normalize direction (column) vector */
773     SDError
774     SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
775     {
776     FVECT vTmp;
777    
778     if ((resVec == NULL) | (inpVec == NULL))
779     return SDEargument;
780     if (vMtx == NULL) { /* assume they just want to normalize */
781     if (resVec != inpVec)
782     VCOPY(resVec, inpVec);
783     return (normalize(resVec) > .0) ? SDEnone : SDEargument;
784     }
785     vTmp[0] = DOT(vMtx[0], inpVec);
786     vTmp[1] = DOT(vMtx[1], inpVec);
787     vTmp[2] = DOT(vMtx[2], inpVec);
788     if (normalize(vTmp) == .0)
789     return SDEargument;
790     VCOPY(resVec, vTmp);
791     return SDEnone;
792     }
793    
794     /*################################################################*/
795     /*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/
796    
797     /*
798 greg 2.1 * Routines for handling BSDF data
799     */
800    
801     #include "standard.h"
802     #include "paths.h"
803     #include <ctype.h>
804    
805     #define MAXLATS 46 /* maximum number of latitudes */
806    
807     /* BSDF angle specification */
808     typedef struct {
809     char name[64]; /* basis name */
810     int nangles; /* total number of directions */
811     struct {
812     float tmin; /* starting theta */
813     short nphis; /* number of phis (0 term) */
814     } lat[MAXLATS+1]; /* latitudes */
815     } ANGLE_BASIS;
816    
817 greg 2.4 #define MAXABASES 7 /* limit on defined bases */
818 greg 2.1
819     static ANGLE_BASIS abase_list[MAXABASES] = {
820     {
821     "LBNL/Klems Full", 145,
822     { {-5., 1},
823     {5., 8},
824     {15., 16},
825     {25., 20},
826     {35., 24},
827     {45., 24},
828     {55., 24},
829     {65., 16},
830     {75., 12},
831     {90., 0} }
832     }, {
833     "LBNL/Klems Half", 73,
834     { {-6.5, 1},
835     {6.5, 8},
836     {19.5, 12},
837     {32.5, 16},
838     {46.5, 20},
839     {61.5, 12},
840     {76.5, 4},
841     {90., 0} }
842     }, {
843     "LBNL/Klems Quarter", 41,
844     { {-9., 1},
845     {9., 8},
846     {27., 12},
847     {46., 12},
848     {66., 8},
849     {90., 0} }
850     }
851     };
852    
853     static int nabases = 3; /* current number of defined bases */
854    
855 greg 2.9 #define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6)
856    
857     static int
858     fequal(double a, double b)
859     {
860     if (b != .0)
861     a = a/b - 1.;
862     return((a <= 1e-6) & (a >= -1e-6));
863     }
864 greg 2.3
865 greg 2.14 /* Returns the name of the given tag */
866 greg 2.3 #ifdef ezxml_name
867     #undef ezxml_name
868     static char *
869     ezxml_name(ezxml_t xml)
870     {
871     if (xml == NULL)
872     return(NULL);
873     return(xml->name);
874     }
875     #endif
876    
877 greg 2.14 /* Returns the given tag's character content or empty string if none */
878 greg 2.3 #ifdef ezxml_txt
879     #undef ezxml_txt
880     static char *
881     ezxml_txt(ezxml_t xml)
882     {
883     if (xml == NULL)
884     return("");
885     return(xml->txt);
886     }
887     #endif
888    
889 greg 2.1
890     static int
891     ab_getvec( /* get vector for this angle basis index */
892     FVECT v,
893     int ndx,
894     void *p
895     )
896     {
897     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
898     int li;
899 greg 2.2 double pol, azi, d;
900 greg 2.1
901     if ((ndx < 0) | (ndx >= ab->nangles))
902     return(0);
903     for (li = 0; ndx >= ab->lat[li].nphis; li++)
904     ndx -= ab->lat[li].nphis;
905 greg 2.2 pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin);
906 greg 2.1 azi = 2.*PI*ndx/ab->lat[li].nphis;
907 greg 2.2 v[2] = d = cos(pol);
908     d = sqrt(1. - d*d); /* sin(pol) */
909 greg 2.1 v[0] = cos(azi)*d;
910     v[1] = sin(azi)*d;
911     return(1);
912     }
913    
914    
915     static int
916     ab_getndx( /* get index corresponding to the given vector */
917     FVECT v,
918     void *p
919     )
920     {
921     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
922     int li, ndx;
923 greg 2.2 double pol, azi, d;
924 greg 2.1
925     if ((v[2] < -1.0) | (v[2] > 1.0))
926     return(-1);
927 greg 2.2 pol = 180.0/PI*acos(v[2]);
928 greg 2.1 azi = 180.0/PI*atan2(v[1], v[0]);
929     if (azi < 0.0) azi += 360.0;
930 greg 2.2 for (li = 1; ab->lat[li].tmin <= pol; li++)
931 greg 2.1 if (!ab->lat[li].nphis)
932     return(-1);
933     --li;
934     ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
935     if (ndx >= ab->lat[li].nphis) ndx = 0;
936     while (li--)
937     ndx += ab->lat[li].nphis;
938     return(ndx);
939     }
940    
941    
942     static double
943     ab_getohm( /* get solid angle for this angle basis index */
944     int ndx,
945     void *p
946     )
947     {
948     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
949     int li;
950     double theta, theta1;
951    
952     if ((ndx < 0) | (ndx >= ab->nangles))
953     return(0);
954     for (li = 0; ndx >= ab->lat[li].nphis; li++)
955     ndx -= ab->lat[li].nphis;
956     theta1 = PI/180. * ab->lat[li+1].tmin;
957     if (ab->lat[li].nphis == 1) { /* special case */
958     if (ab->lat[li].tmin > FTINY)
959     error(USER, "unsupported BSDF coordinate system");
960     return(2.*PI*(1. - cos(theta1)));
961     }
962     theta = PI/180. * ab->lat[li].tmin;
963     return(2.*PI*(cos(theta) - cos(theta1))/(double)ab->lat[li].nphis);
964     }
965    
966    
967     static int
968     ab_getvecR( /* get reverse vector for this angle basis index */
969     FVECT v,
970     int ndx,
971     void *p
972     )
973     {
974     if (!ab_getvec(v, ndx, p))
975     return(0);
976    
977     v[0] = -v[0];
978     v[1] = -v[1];
979     v[2] = -v[2];
980    
981     return(1);
982     }
983    
984    
985     static int
986     ab_getndxR( /* get index corresponding to the reverse vector */
987     FVECT v,
988     void *p
989     )
990     {
991     FVECT v2;
992    
993     v2[0] = -v[0];
994     v2[1] = -v[1];
995     v2[2] = -v[2];
996    
997     return ab_getndx(v2, p);
998     }
999    
1000    
1001     static void
1002 greg 2.4 load_angle_basis( /* load custom BSDF angle basis */
1003 greg 2.3 ezxml_t wab
1004     )
1005     {
1006     char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
1007     ezxml_t wbb;
1008     int i;
1009    
1010 greg 2.4 if (!abname || !*abname)
1011 greg 2.3 return;
1012     for (i = nabases; i--; )
1013 greg 2.12 if (!strcasecmp(abname, abase_list[i].name))
1014 greg 2.4 return; /* assume it's the same */
1015 greg 2.3 if (nabases >= MAXABASES)
1016     error(INTERNAL, "too many angle bases");
1017     strcpy(abase_list[nabases].name, abname);
1018     abase_list[nabases].nangles = 0;
1019     for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
1020     wbb != NULL; i++, wbb = wbb->next) {
1021     if (i >= MAXLATS)
1022     error(INTERNAL, "too many latitudes in custom basis");
1023     abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
1024     ezxml_child(ezxml_child(wbb,
1025     "ThetaBounds"), "UpperTheta")));
1026     if (!i)
1027     abase_list[nabases].lat[i].tmin =
1028     -abase_list[nabases].lat[i+1].tmin;
1029 greg 2.9 else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
1030 greg 2.3 "ThetaBounds"), "LowerTheta"))),
1031     abase_list[nabases].lat[i].tmin))
1032     error(WARNING, "theta values disagree in custom basis");
1033     abase_list[nabases].nangles +=
1034     abase_list[nabases].lat[i].nphis =
1035     atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
1036     }
1037     abase_list[nabases++].lat[i].nphis = 0;
1038     }
1039    
1040    
1041 greg 2.6 static void
1042     load_geometry( /* load geometric dimensions and description (if any) */
1043     struct BSDF_data *dp,
1044     ezxml_t wdb
1045     )
1046     {
1047     ezxml_t geom;
1048     double cfact;
1049     const char *fmt, *mgfstr;
1050    
1051     dp->dim[0] = dp->dim[1] = dp->dim[2] = 0;
1052     dp->mgf = NULL;
1053     if ((geom = ezxml_child(wdb, "Width")) != NULL)
1054     dp->dim[0] = atof(ezxml_txt(geom)) *
1055     to_meters(ezxml_attr(geom, "unit"));
1056     if ((geom = ezxml_child(wdb, "Height")) != NULL)
1057     dp->dim[1] = atof(ezxml_txt(geom)) *
1058     to_meters(ezxml_attr(geom, "unit"));
1059     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
1060     dp->dim[2] = atof(ezxml_txt(geom)) *
1061     to_meters(ezxml_attr(geom, "unit"));
1062     if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
1063     (mgfstr = ezxml_txt(geom)) == NULL)
1064     return;
1065     if ((fmt = ezxml_attr(geom, "format")) != NULL &&
1066     strcasecmp(fmt, "MGF")) {
1067     sprintf(errmsg, "unrecognized geometry format '%s'", fmt);
1068     error(WARNING, errmsg);
1069     return;
1070     }
1071     cfact = to_meters(ezxml_attr(geom, "unit"));
1072     dp->mgf = (char *)malloc(strlen(mgfstr)+32);
1073     if (dp->mgf == NULL)
1074     error(SYSTEM, "out of memory in load_geometry");
1075     if (cfact < 0.99 || cfact > 1.01)
1076     sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
1077     else
1078     strcpy(dp->mgf, mgfstr);
1079     }
1080    
1081    
1082 greg 2.3 static void
1083 greg 2.1 load_bsdf_data( /* load BSDF distribution for this wavelength */
1084     struct BSDF_data *dp,
1085     ezxml_t wdb
1086     )
1087     {
1088     char *cbasis = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
1089     char *rbasis = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
1090     char *sdata;
1091     int i;
1092    
1093 greg 2.4 if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) {
1094 greg 2.1 error(WARNING, "missing column/row basis for BSDF");
1095     return;
1096     }
1097     for (i = nabases; i--; )
1098 greg 2.12 if (!strcasecmp(cbasis, abase_list[i].name)) {
1099 greg 2.1 dp->ninc = abase_list[i].nangles;
1100     dp->ib_priv = (void *)&abase_list[i];
1101     dp->ib_vec = ab_getvecR;
1102     dp->ib_ndx = ab_getndxR;
1103     dp->ib_ohm = ab_getohm;
1104     break;
1105     }
1106     if (i < 0) {
1107 greg 2.4 sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis);
1108 greg 2.1 error(WARNING, errmsg);
1109     return;
1110     }
1111     for (i = nabases; i--; )
1112 greg 2.12 if (!strcasecmp(rbasis, abase_list[i].name)) {
1113 greg 2.1 dp->nout = abase_list[i].nangles;
1114     dp->ob_priv = (void *)&abase_list[i];
1115     dp->ob_vec = ab_getvec;
1116     dp->ob_ndx = ab_getndx;
1117     dp->ob_ohm = ab_getohm;
1118     break;
1119     }
1120     if (i < 0) {
1121 greg 2.16 sprintf(errmsg, "undefined RowAngleBasis '%s'", rbasis);
1122 greg 2.1 error(WARNING, errmsg);
1123     return;
1124     }
1125     /* read BSDF data */
1126     sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
1127 greg 2.4 if (!sdata || !*sdata) {
1128 greg 2.1 error(WARNING, "missing BSDF ScatteringData");
1129     return;
1130     }
1131     dp->bsdf = (float *)malloc(sizeof(float)*dp->ninc*dp->nout);
1132     if (dp->bsdf == NULL)
1133     error(SYSTEM, "out of memory in load_bsdf_data");
1134     for (i = 0; i < dp->ninc*dp->nout; i++) {
1135     char *sdnext = fskip(sdata);
1136     if (sdnext == NULL) {
1137     error(WARNING, "bad/missing BSDF ScatteringData");
1138     free(dp->bsdf); dp->bsdf = NULL;
1139     return;
1140     }
1141     while (*sdnext && isspace(*sdnext))
1142     sdnext++;
1143     if (*sdnext == ',') sdnext++;
1144     dp->bsdf[i] = atof(sdata);
1145     sdata = sdnext;
1146     }
1147     while (isspace(*sdata))
1148     sdata++;
1149     if (*sdata) {
1150     sprintf(errmsg, "%d extra characters after BSDF ScatteringData",
1151 greg 2.5 (int)strlen(sdata));
1152 greg 2.1 error(WARNING, errmsg);
1153     }
1154     }
1155    
1156    
1157     static int
1158     check_bsdf_data( /* check that BSDF data is sane */
1159     struct BSDF_data *dp
1160     )
1161     {
1162 greg 2.2 double *omega_iarr, *omega_oarr;
1163 greg 2.7 double dom, contrib, hemi_total, full_total;
1164 greg 2.1 int nneg;
1165 greg 2.2 FVECT v;
1166 greg 2.1 int i, o;
1167    
1168     if (dp == NULL || dp->bsdf == NULL)
1169     return(0);
1170 greg 2.2 omega_iarr = (double *)calloc(dp->ninc, sizeof(double));
1171     omega_oarr = (double *)calloc(dp->nout, sizeof(double));
1172     if ((omega_iarr == NULL) | (omega_oarr == NULL))
1173 greg 2.1 error(SYSTEM, "out of memory in check_bsdf_data");
1174 greg 2.2 /* incoming projected solid angles */
1175     hemi_total = .0;
1176     for (i = dp->ninc; i--; ) {
1177     dom = getBSDF_incohm(dp,i);
1178     if (dom <= .0) {
1179     error(WARNING, "zero/negative incoming solid angle");
1180     continue;
1181     }
1182     if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) {
1183     error(WARNING, "illegal incoming BSDF direction");
1184     free(omega_iarr); free(omega_oarr);
1185     return(0);
1186     }
1187     hemi_total += omega_iarr[i] = dom * -v[2];
1188     }
1189     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1190     sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%",
1191     100.*(hemi_total/PI - 1.));
1192     error(WARNING, errmsg);
1193     }
1194     dom = PI / hemi_total; /* fix normalization */
1195     for (i = dp->ninc; i--; )
1196     omega_iarr[i] *= dom;
1197     /* outgoing projected solid angles */
1198 greg 2.1 hemi_total = .0;
1199     for (o = dp->nout; o--; ) {
1200     dom = getBSDF_outohm(dp,o);
1201     if (dom <= .0) {
1202 greg 2.2 error(WARNING, "zero/negative outgoing solid angle");
1203 greg 2.1 continue;
1204     }
1205     if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) {
1206     error(WARNING, "illegal outgoing BSDF direction");
1207 greg 2.2 free(omega_iarr); free(omega_oarr);
1208 greg 2.1 return(0);
1209     }
1210 greg 2.2 hemi_total += omega_oarr[o] = dom * v[2];
1211 greg 2.1 }
1212     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1213     sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%",
1214     100.*(hemi_total/PI - 1.));
1215     error(WARNING, errmsg);
1216     }
1217 greg 2.2 dom = PI / hemi_total; /* fix normalization */
1218 greg 2.1 for (o = dp->nout; o--; )
1219 greg 2.2 omega_oarr[o] *= dom;
1220     nneg = 0; /* check outgoing totals */
1221     for (i = 0; i < dp->ninc; i++) {
1222 greg 2.1 hemi_total = .0;
1223     for (o = dp->nout; o--; ) {
1224     double f = BSDF_value(dp,i,o);
1225 greg 2.2 if (f >= .0)
1226     hemi_total += f*omega_oarr[o];
1227     else {
1228     nneg += (f < -FTINY);
1229     BSDF_value(dp,i,o) = .0f;
1230     }
1231 greg 2.1 }
1232 greg 2.8 if (hemi_total > 1.01) {
1233 greg 2.2 sprintf(errmsg,
1234     "incoming BSDF direction %d passes %.1f%% of light",
1235     i, 100.*hemi_total);
1236 greg 2.1 error(WARNING, errmsg);
1237     }
1238     }
1239 greg 2.2 if (nneg) {
1240     sprintf(errmsg, "%d negative BSDF values (ignored)", nneg);
1241 greg 2.1 error(WARNING, errmsg);
1242     }
1243 greg 2.7 full_total = .0; /* reverse roles and check again */
1244 greg 2.2 for (o = 0; o < dp->nout; o++) {
1245     hemi_total = .0;
1246     for (i = dp->ninc; i--; )
1247     hemi_total += BSDF_value(dp,i,o) * omega_iarr[i];
1248    
1249 greg 2.8 if (hemi_total > 1.01) {
1250 greg 2.2 sprintf(errmsg,
1251     "outgoing BSDF direction %d collects %.1f%% of light",
1252     o, 100.*hemi_total);
1253     error(WARNING, errmsg);
1254     }
1255 greg 2.7 full_total += hemi_total*omega_oarr[o];
1256     }
1257     full_total /= PI;
1258 greg 2.8 if (full_total > 1.00001) {
1259     sprintf(errmsg, "BSDF transfers %.4f%% of light",
1260 greg 2.7 100.*full_total);
1261     error(WARNING, errmsg);
1262 greg 2.2 }
1263     free(omega_iarr); free(omega_oarr);
1264 greg 2.1 return(1);
1265     }
1266    
1267 greg 2.6
1268 greg 2.1 struct BSDF_data *
1269     load_BSDF( /* load BSDF data from file */
1270     char *fname
1271     )
1272     {
1273     char *path;
1274     ezxml_t fl, wtl, wld, wdb;
1275     struct BSDF_data *dp;
1276    
1277     path = getpath(fname, getrlibpath(), R_OK);
1278     if (path == NULL) {
1279     sprintf(errmsg, "cannot find BSDF file \"%s\"", fname);
1280     error(WARNING, errmsg);
1281     return(NULL);
1282     }
1283     fl = ezxml_parse_file(path);
1284     if (fl == NULL) {
1285     sprintf(errmsg, "cannot open BSDF \"%s\"", path);
1286     error(WARNING, errmsg);
1287     return(NULL);
1288     }
1289     if (ezxml_error(fl)[0]) {
1290     sprintf(errmsg, "BSDF \"%s\" %s", path, ezxml_error(fl));
1291     error(WARNING, errmsg);
1292     ezxml_free(fl);
1293     return(NULL);
1294     }
1295     if (strcmp(ezxml_name(fl), "WindowElement")) {
1296     sprintf(errmsg,
1297     "BSDF \"%s\": top level node not 'WindowElement'",
1298     path);
1299     error(WARNING, errmsg);
1300     ezxml_free(fl);
1301     return(NULL);
1302     }
1303     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
1304 greg 2.10 if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl,
1305     "DataDefinition"), "IncidentDataStructure")),
1306     "Columns")) {
1307     sprintf(errmsg,
1308     "BSDF \"%s\": unsupported IncidentDataStructure",
1309     path);
1310     error(WARNING, errmsg);
1311     ezxml_free(fl);
1312     return(NULL);
1313     }
1314 greg 2.3 load_angle_basis(ezxml_child(ezxml_child(wtl,
1315     "DataDefinition"), "AngleBasis"));
1316 greg 2.1 dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data));
1317 greg 2.6 load_geometry(dp, ezxml_child(wtl, "Material"));
1318 greg 2.1 for (wld = ezxml_child(wtl, "WavelengthData");
1319     wld != NULL; wld = wld->next) {
1320 greg 2.13 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1321     "Visible"))
1322 greg 2.1 continue;
1323 greg 2.13 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1324     wdb != NULL; wdb = wdb->next)
1325     if (!strcasecmp(ezxml_txt(ezxml_child(wdb,
1326     "WavelengthDataDirection")),
1327 greg 2.1 "Transmission Front"))
1328 greg 2.13 break;
1329     if (wdb != NULL) { /* load front BTDF */
1330     load_bsdf_data(dp, wdb);
1331     break; /* ignore the rest */
1332     }
1333 greg 2.1 }
1334     ezxml_free(fl); /* done with XML file */
1335     if (!check_bsdf_data(dp)) {
1336     sprintf(errmsg, "bad/missing BTDF data in \"%s\"", path);
1337     error(WARNING, errmsg);
1338     free_BSDF(dp);
1339     dp = NULL;
1340     }
1341     return(dp);
1342     }
1343    
1344    
1345     void
1346     free_BSDF( /* free BSDF data structure */
1347     struct BSDF_data *b
1348     )
1349     {
1350     if (b == NULL)
1351     return;
1352 greg 2.6 if (b->mgf != NULL)
1353     free(b->mgf);
1354 greg 2.1 if (b->bsdf != NULL)
1355     free(b->bsdf);
1356     free(b);
1357     }
1358    
1359    
1360     int
1361     r_BSDF_incvec( /* compute random input vector at given location */
1362     FVECT v,
1363     struct BSDF_data *b,
1364     int i,
1365     double rv,
1366     MAT4 xm
1367     )
1368     {
1369     FVECT pert;
1370     double rad;
1371     int j;
1372    
1373     if (!getBSDF_incvec(v, b, i))
1374     return(0);
1375     rad = sqrt(getBSDF_incohm(b, i) / PI);
1376     multisamp(pert, 3, rv);
1377     for (j = 0; j < 3; j++)
1378     v[j] += rad*(2.*pert[j] - 1.);
1379     if (xm != NULL)
1380     multv3(v, v, xm);
1381     return(normalize(v) != 0.0);
1382     }
1383    
1384    
1385     int
1386     r_BSDF_outvec( /* compute random output vector at given location */
1387     FVECT v,
1388     struct BSDF_data *b,
1389     int o,
1390     double rv,
1391     MAT4 xm
1392     )
1393     {
1394     FVECT pert;
1395     double rad;
1396     int j;
1397    
1398     if (!getBSDF_outvec(v, b, o))
1399     return(0);
1400     rad = sqrt(getBSDF_outohm(b, o) / PI);
1401     multisamp(pert, 3, rv);
1402     for (j = 0; j < 3; j++)
1403     v[j] += rad*(2.*pert[j] - 1.);
1404     if (xm != NULL)
1405     multv3(v, v, xm);
1406     return(normalize(v) != 0.0);
1407     }
1408    
1409    
1410     static int
1411     addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */
1412     char *xfarg[],
1413     FVECT xp,
1414     FVECT yp,
1415     FVECT zp
1416     )
1417     {
1418     static char bufs[3][16];
1419     int bn = 0;
1420     char **xfp = xfarg;
1421     double theta;
1422    
1423     if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
1424     /* Special case for X' along Z-axis */
1425     theta = -atan2(yp[0], yp[1]);
1426     *xfp++ = "-ry";
1427     *xfp++ = xp[2] < 0.0 ? "90" : "-90";
1428     *xfp++ = "-rz";
1429     sprintf(bufs[bn], "%f", theta*(180./PI));
1430     *xfp++ = bufs[bn++];
1431     return(xfp - xfarg);
1432     }
1433     theta = atan2(yp[2], zp[2]);
1434     if (!FEQ(theta,0.0)) {
1435     *xfp++ = "-rx";
1436     sprintf(bufs[bn], "%f", theta*(180./PI));
1437     *xfp++ = bufs[bn++];
1438     }
1439     theta = asin(-xp[2]);
1440     if (!FEQ(theta,0.0)) {
1441     *xfp++ = "-ry";
1442     sprintf(bufs[bn], " %f", theta*(180./PI));
1443     *xfp++ = bufs[bn++];
1444     }
1445     theta = atan2(xp[1], xp[0]);
1446     if (!FEQ(theta,0.0)) {
1447     *xfp++ = "-rz";
1448     sprintf(bufs[bn], "%f", theta*(180./PI));
1449     *xfp++ = bufs[bn++];
1450     }
1451     *xfp = NULL;
1452     return(xfp - xfarg);
1453     }
1454    
1455    
1456     int
1457     getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */
1458     MAT4 xm,
1459     FVECT nrm,
1460 greg 2.6 UpDir ud,
1461     char *xfbuf
1462 greg 2.1 )
1463     {
1464     char *xfargs[7];
1465     XF myxf;
1466     FVECT updir, xdest, ydest;
1467 greg 2.6 int i;
1468 greg 2.1
1469     updir[0] = updir[1] = updir[2] = 0.;
1470     switch (ud) {
1471     case UDzneg:
1472     updir[2] = -1.;
1473     break;
1474     case UDyneg:
1475     updir[1] = -1.;
1476     break;
1477     case UDxneg:
1478     updir[0] = -1.;
1479     break;
1480     case UDxpos:
1481     updir[0] = 1.;
1482     break;
1483     case UDypos:
1484     updir[1] = 1.;
1485     break;
1486     case UDzpos:
1487     updir[2] = 1.;
1488     break;
1489     case UDunknown:
1490     return(0);
1491     }
1492     fcross(xdest, updir, nrm);
1493     if (normalize(xdest) == 0.0)
1494     return(0);
1495     fcross(ydest, nrm, xdest);
1496     xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs);
1497     copymat4(xm, myxf.xfm);
1498 greg 2.6 if (xfbuf == NULL)
1499     return(1);
1500     /* return xf arguments as well */
1501     for (i = 0; xfargs[i] != NULL; i++) {
1502     *xfbuf++ = ' ';
1503     strcpy(xfbuf, xfargs[i]);
1504     while (*xfbuf) ++xfbuf;
1505     }
1506 greg 2.1 return(1);
1507     }
1508 greg 2.15
1509     /*######### END DEPRECATED ROUTINES #######*/
1510     /*################################################################*/