ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.16
Committed: Sat Feb 19 01:48:59 2011 UTC (13 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.15: +56 -25 lines
Log Message:
Minor changes and fixes -- first working version of BSDF material

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.16 static const char RCSid[] = "$Id: bsdf.c,v 2.15 2011/02/18 00:40:25 greg Exp $";
3 greg 2.1 #endif
4     /*
5 greg 2.15 * bsdf.c
6     *
7     * Definitions for bidirectional scattering distribution functions.
8     *
9     * Created by Greg Ward on 1/10/11.
10     *
11     */
12    
13     #include <stdio.h>
14     #include <stdlib.h>
15     #include <math.h>
16     #include "ezxml.h"
17     #include "hilbert.h"
18     #include "bsdf.h"
19     #include "bsdf_m.h"
20     #include "bsdf_t.h"
21    
22     /* English ASCII strings corresponding to ennumerated errors */
23     const char *SDerrorEnglish[] = {
24     "No error",
25     "Memory error",
26     "File input/output error",
27     "File format error",
28     "Illegal argument",
29     "Invalid data",
30     "Unsupported feature",
31     "Internal program error",
32     "Unknown error"
33     };
34    
35     /* Additional information on last error (ASCII English) */
36     char SDerrorDetail[256];
37    
38     /* Cache of loaded BSDFs */
39     struct SDCache_s *SDcacheList = NULL;
40    
41     /* Retain BSDFs in cache list */
42     int SDretainSet = SDretainNone;
43    
44     /* Report any error to the indicated stream (in English) */
45     SDError
46     SDreportEnglish(SDError ec, FILE *fp)
47     {
48     if (fp == NULL)
49     return ec;
50     if (!ec)
51     return SDEnone;
52     fputs(SDerrorEnglish[ec], fp);
53     if (SDerrorDetail[0]) {
54     fputs(": ", fp);
55     fputs(SDerrorDetail, fp);
56     }
57     fputc('\n', fp);
58     if (fp != stderr)
59     fflush(fp);
60     return ec;
61     }
62    
63     static double
64     to_meters( /* return factor to convert given unit to meters */
65     const char *unit
66     )
67     {
68     if (unit == NULL) return(1.); /* safe assumption? */
69     if (!strcasecmp(unit, "Meter")) return(1.);
70     if (!strcasecmp(unit, "Foot")) return(.3048);
71     if (!strcasecmp(unit, "Inch")) return(.0254);
72     if (!strcasecmp(unit, "Centimeter")) return(.01);
73     if (!strcasecmp(unit, "Millimeter")) return(.001);
74     sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
75     return(-1.);
76     }
77    
78     /* Load geometric dimensions and description (if any) */
79     static SDError
80 greg 2.16 SDloadGeometry(SDData *sd, ezxml_t wdb)
81 greg 2.15 {
82     ezxml_t geom;
83     double cfact;
84     const char *fmt, *mgfstr;
85    
86 greg 2.16 if (wdb == NULL) /* no geometry section? */
87     return SDEnone;
88     sprintf(SDerrorDetail, "Negative size in \"%s\"", sd->name);
89     sd->dim[0] = sd->dim[1] = sd->dim[2] = .0;
90 greg 2.15 if ((geom = ezxml_child(wdb, "Width")) != NULL)
91 greg 2.16 sd->dim[0] = atof(ezxml_txt(geom)) *
92 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
93     if ((geom = ezxml_child(wdb, "Height")) != NULL)
94 greg 2.16 sd->dim[1] = atof(ezxml_txt(geom)) *
95 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
96     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
97 greg 2.16 sd->dim[2] = atof(ezxml_txt(geom)) *
98 greg 2.15 to_meters(ezxml_attr(geom, "unit"));
99 greg 2.16 if ((sd->dim[0] < .0) | (sd->dim[1] < .0) | (sd->dim[2] < .0))
100 greg 2.15 return SDEdata;
101     if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
102     (mgfstr = ezxml_txt(geom)) == NULL)
103     return SDEnone;
104     if ((fmt = ezxml_attr(geom, "format")) != NULL &&
105     strcasecmp(fmt, "MGF")) {
106     sprintf(SDerrorDetail,
107     "Unrecognized geometry format '%s' in \"%s\"",
108 greg 2.16 fmt, sd->name);
109 greg 2.15 return SDEsupport;
110     }
111     cfact = to_meters(ezxml_attr(geom, "unit"));
112 greg 2.16 sd->mgf = (char *)malloc(strlen(mgfstr)+32);
113     if (sd->mgf == NULL) {
114 greg 2.15 strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
115     return SDEmemory;
116     }
117     if (cfact < 0.99 || cfact > 1.01)
118 greg 2.16 sprintf(sd->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
119 greg 2.15 else
120 greg 2.16 strcpy(sd->mgf, mgfstr);
121 greg 2.15 return SDEnone;
122     }
123    
124     /* Load a BSDF struct from the given file (free first and keep name) */
125     SDError
126     SDloadFile(SDData *sd, const char *fname)
127     {
128     SDError lastErr;
129 greg 2.16 ezxml_t fl, wtl;
130 greg 2.15
131     if ((sd == NULL) | (fname == NULL || !*fname))
132     return SDEargument;
133     /* free old data, keeping name */
134     SDfreeBSDF(sd);
135     /* parse XML file */
136     fl = ezxml_parse_file(fname);
137     if (fl == NULL) {
138     sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
139     return SDEfile;
140     }
141     if (ezxml_error(fl)[0]) {
142     sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
143     ezxml_free(fl);
144     return SDEformat;
145     }
146 greg 2.16 if (strcmp(ezxml_name(fl), "WindowElement")) {
147     sprintf(SDerrorDetail,
148     "BSDF \"%s\": top level node not 'WindowElement'",
149     sd->name);
150     ezxml_free(fl);
151     return SDEformat;
152     }
153     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
154     if (wtl == NULL) {
155     sprintf(SDerrorDetail, "BSDF \"%s\": no optical layer'",
156     sd->name);
157     ezxml_free(fl);
158     return SDEformat;
159     }
160 greg 2.15 /* load geometry if present */
161 greg 2.16 lastErr = SDloadGeometry(sd, ezxml_child(wtl, "Material"));
162     if (lastErr)
163 greg 2.15 return lastErr;
164     /* try loading variable resolution data */
165 greg 2.16 lastErr = SDloadTre(sd, wtl);
166 greg 2.15 /* check our result */
167     switch (lastErr) {
168     case SDEformat:
169     case SDEdata:
170     case SDEsupport: /* possibly we just tried the wrong format */
171 greg 2.16 lastErr = SDloadMtx(sd, wtl);
172 greg 2.15 break;
173     default: /* variable res. OK else serious error */
174     break;
175     }
176     /* done with XML file */
177     ezxml_free(fl);
178 greg 2.16
179     if (lastErr) { /* was there a load error? */
180     SDfreeBSDF(sd);
181     return lastErr;
182     }
183     /* remove any insignificant components */
184     if (sd->rf != NULL && sd->rf->maxHemi <= .001) {
185     SDfreeSpectralDF(sd->rf); sd->rf = NULL;
186     }
187     if (sd->rb != NULL && sd->rb->maxHemi <= .001) {
188     SDfreeSpectralDF(sd->rb); sd->rb = NULL;
189     }
190     if (sd->tf != NULL && sd->tf->maxHemi <= .001) {
191     SDfreeSpectralDF(sd->tf); sd->tf = NULL;
192     }
193     /* return success */
194     return SDEnone;
195 greg 2.15 }
196    
197     /* Allocate new spectral distribution function */
198     SDSpectralDF *
199     SDnewSpectralDF(int nc)
200     {
201     SDSpectralDF *df;
202    
203     if (nc <= 0) {
204     strcpy(SDerrorDetail, "Zero component spectral DF request");
205     return NULL;
206     }
207     df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
208     (nc-1)*sizeof(SDComponent));
209     if (df == NULL) {
210     sprintf(SDerrorDetail,
211     "Cannot allocate %d component spectral DF", nc);
212     return NULL;
213     }
214     df->minProjSA = .0;
215     df->maxHemi = .0;
216     df->ncomp = nc;
217     memset(df->comp, 0, nc*sizeof(SDComponent));
218     return df;
219     }
220    
221     /* Free cached cumulative distributions for BSDF component */
222     void
223     SDfreeCumulativeCache(SDSpectralDF *df)
224     {
225     int n;
226     SDCDst *cdp;
227    
228     if (df == NULL)
229     return;
230     for (n = df->ncomp; n-- > 0; )
231     while ((cdp = df->comp[n].cdList) != NULL) {
232     df->comp[n].cdList = cdp->next;
233     free(cdp);
234     }
235     }
236    
237     /* Free a spectral distribution function */
238     void
239     SDfreeSpectralDF(SDSpectralDF *df)
240     {
241     int n;
242    
243     if (df == NULL)
244     return;
245     SDfreeCumulativeCache(df);
246     for (n = df->ncomp; n-- > 0; )
247     (*df->comp[n].func->freeSC)(df->comp[n].dist);
248     free(df);
249     }
250    
251     /* Shorten file path to useable BSDF name, removing suffix */
252     void
253 greg 2.16 SDclipName(char *res, const char *fname)
254 greg 2.15 {
255     const char *cp, *dot = NULL;
256    
257     for (cp = fname; *cp; cp++)
258     if (*cp == '.')
259     dot = cp;
260     if ((dot == NULL) | (dot < fname+2))
261     dot = cp;
262     if (dot - fname >= SDnameLn)
263     fname = dot - SDnameLn + 1;
264     while (fname < dot)
265     *res++ = *fname++;
266     *res = '\0';
267     }
268    
269     /* Initialize an unused BSDF struct (simply clears to zeroes) */
270     void
271     SDclearBSDF(SDData *sd)
272     {
273     if (sd != NULL)
274     memset(sd, 0, sizeof(SDData));
275     }
276    
277     /* Free data associated with BSDF struct */
278     void
279     SDfreeBSDF(SDData *sd)
280     {
281     if (sd == NULL)
282     return;
283     if (sd->mgf != NULL) {
284     free(sd->mgf);
285     sd->mgf = NULL;
286     }
287     if (sd->rf != NULL) {
288     SDfreeSpectralDF(sd->rf);
289     sd->rf = NULL;
290     }
291     if (sd->rb != NULL) {
292     SDfreeSpectralDF(sd->rb);
293     sd->rb = NULL;
294     }
295     if (sd->tf != NULL) {
296     SDfreeSpectralDF(sd->tf);
297     sd->tf = NULL;
298     }
299     sd->rLambFront.cieY = .0;
300 greg 2.16 sd->rLambFront.spec.flags = 0;
301 greg 2.15 sd->rLambBack.cieY = .0;
302 greg 2.16 sd->rLambBack.spec.flags = 0;
303 greg 2.15 sd->tLamb.cieY = .0;
304 greg 2.16 sd->tLamb.spec.flags = 0;
305 greg 2.15 }
306    
307     /* Find writeable BSDF by name, or allocate new cache entry if absent */
308     SDData *
309     SDgetCache(const char *bname)
310     {
311     struct SDCache_s *sdl;
312     char sdnam[SDnameLn];
313    
314     if (bname == NULL)
315     return NULL;
316    
317     SDclipName(sdnam, bname);
318     for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
319     if (!strcmp(sdl->bsdf.name, sdnam)) {
320     sdl->refcnt++;
321     return &sdl->bsdf;
322     }
323    
324     sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
325     if (sdl == NULL)
326     return NULL;
327    
328     strcpy(sdl->bsdf.name, sdnam);
329     sdl->next = SDcacheList;
330     SDcacheList = sdl;
331    
332     sdl->refcnt++;
333     return &sdl->bsdf;
334     }
335    
336     /* Get loaded BSDF from cache (or load and cache it on first call) */
337     /* Report any problem to stderr and return NULL on failure */
338     const SDData *
339     SDcacheFile(const char *fname)
340     {
341     SDData *sd;
342     SDError ec;
343    
344     if (fname == NULL || !*fname)
345     return NULL;
346     SDerrorDetail[0] = '\0';
347     if ((sd = SDgetCache(fname)) == NULL) {
348     SDreportEnglish(SDEmemory, stderr);
349     return NULL;
350     }
351     if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
352     SDreportEnglish(ec, stderr);
353     SDfreeCache(sd);
354     return NULL;
355     }
356     return sd;
357     }
358    
359     /* Free a BSDF from our cache (clear all if NULL) */
360     void
361     SDfreeCache(const SDData *sd)
362     {
363     struct SDCache_s *sdl, *sdLast = NULL;
364    
365     if (sd == NULL) { /* free entire list */
366     while ((sdl = SDcacheList) != NULL) {
367     SDcacheList = sdl->next;
368     SDfreeBSDF(&sdl->bsdf);
369     free(sdl);
370     }
371     return;
372     }
373     for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
374     if (&sdl->bsdf == sd)
375     break;
376     if (sdl == NULL || --sdl->refcnt)
377     return; /* missing or still in use */
378     /* keep unreferenced data? */
379     if (SDisLoaded(sd) && SDretainSet) {
380     if (SDretainSet == SDretainAll)
381     return; /* keep everything */
382     /* else free cumulative data */
383     SDfreeCumulativeCache(sd->rf);
384     SDfreeCumulativeCache(sd->rb);
385     SDfreeCumulativeCache(sd->tf);
386     return;
387     }
388     /* remove from list and free */
389     if (sdLast == NULL)
390     SDcacheList = sdl->next;
391     else
392     sdLast->next = sdl->next;
393     SDfreeBSDF(&sdl->bsdf);
394     free(sdl);
395     }
396    
397     /* Sample an individual BSDF component */
398     SDError
399     SDsampComponent(SDValue *sv, FVECT outVec, const FVECT inVec,
400     double randX, SDComponent *sdc)
401     {
402     float coef[SDmaxCh];
403     SDError ec;
404     const SDCDst *cd;
405     double d;
406     int n;
407     /* check arguments */
408     if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL))
409     return SDEargument;
410     /* get cumulative distribution */
411     cd = (*sdc->func->getCDist)(inVec, sdc);
412     if (cd == NULL)
413     return SDEmemory;
414     if (cd->cTotal <= 1e-7) { /* anything to sample? */
415     sv->spec = c_dfcolor;
416     sv->cieY = .0;
417     memset(outVec, 0, 3*sizeof(double));
418     return SDEnone;
419     }
420     sv->cieY = cd->cTotal;
421     /* compute sample direction */
422     ec = (*sdc->func->sampCDist)(outVec, randX, cd);
423     if (ec)
424     return ec;
425     /* get BSDF color */
426     n = (*sdc->func->getBSDFs)(coef, outVec, inVec, sdc->dist);
427     if (n <= 0) {
428     strcpy(SDerrorDetail, "BSDF sample value error");
429     return SDEinternal;
430     }
431     sv->spec = sdc->cspec[0];
432     d = coef[0];
433     while (--n) {
434     c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
435     d += coef[n];
436     }
437     /* make sure everything is set */
438     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
439     return SDEnone;
440     }
441    
442     #define MS_MAXDIM 15
443    
444     /* Convert 1-dimensional random variable to N-dimensional */
445     void
446     SDmultiSamp(double t[], int n, double randX)
447     {
448     unsigned nBits;
449     double scale;
450     bitmask_t ndx, coord[MS_MAXDIM];
451    
452     while (n > MS_MAXDIM) /* punt for higher dimensions */
453     t[--n] = drand48();
454     nBits = (8*sizeof(bitmask_t) - 1) / n;
455     ndx = randX * (double)((bitmask_t)1 << (nBits*n));
456     /* get coordinate on Hilbert curve */
457     hilbert_i2c(n, nBits, ndx, coord);
458     /* convert back to [0,1) range */
459     scale = 1. / (double)((bitmask_t)1 << nBits);
460     while (n--)
461     t[n] = scale * ((double)coord[n] + drand48());
462     }
463    
464     #undef MS_MAXDIM
465    
466     /* Generate diffuse hemispherical sample */
467     static void
468     SDdiffuseSamp(FVECT outVec, int outFront, double randX)
469     {
470     /* convert to position on hemisphere */
471     SDmultiSamp(outVec, 2, randX);
472     SDsquare2disk(outVec, outVec[0], outVec[1]);
473     outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
474     if (outVec[2] > .0) /* a bit of paranoia */
475     outVec[2] = sqrt(outVec[2]);
476     if (!outFront) /* going out back? */
477     outVec[2] = -outVec[2];
478     }
479    
480     /* Query projected solid angle coverage for non-diffuse BSDF direction */
481     SDError
482     SDsizeBSDF(double *projSA, const FVECT vec, int qflags, const SDData *sd)
483     {
484     SDSpectralDF *rdf;
485     SDError ec;
486     int i;
487     /* check arguments */
488     if ((projSA == NULL) | (vec == NULL) | (sd == NULL))
489     return SDEargument;
490     /* initialize extrema */
491     switch (qflags & SDqueryMin+SDqueryMax) {
492     case SDqueryMax:
493     projSA[0] = .0;
494     break;
495     case SDqueryMin+SDqueryMax:
496     projSA[1] = .0;
497     /* fall through */
498     case SDqueryMin:
499     projSA[0] = 10.;
500     break;
501     case 0:
502     return SDEargument;
503     }
504     if (vec[2] > .0) /* front surface query? */
505     rdf = sd->rf;
506     else
507     rdf = sd->rb;
508     ec = SDEdata; /* run through components */
509     for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
510     ec = (*rdf->comp[i].func->queryProjSA)(projSA, vec, qflags,
511     rdf->comp[i].dist);
512     if (ec)
513     return ec;
514     }
515     for (i = (sd->tf==NULL) ? 0 : sd->tf->ncomp; i--; ) {
516     ec = (*sd->tf->comp[i].func->queryProjSA)(projSA, vec, qflags,
517     sd->tf->comp[i].dist);
518     if (ec)
519     return ec;
520     }
521     return ec;
522     }
523    
524     /* Return BSDF for the given incident and scattered ray vectors */
525     SDError
526     SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
527     {
528     int inFront, outFront;
529     SDSpectralDF *sdf;
530     float coef[SDmaxCh];
531     int nch, i;
532     /* check arguments */
533     if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
534     return SDEargument;
535     /* whose side are we on? */
536     inFront = (inVec[2] > .0);
537     outFront = (outVec[2] > .0);
538     /* start with diffuse portion */
539     if (inFront & outFront) {
540     *sv = sd->rLambFront;
541     sdf = sd->rf;
542     } else if (!(inFront | outFront)) {
543     *sv = sd->rLambBack;
544     sdf = sd->rb;
545     } else /* inFront ^ outFront */ {
546     *sv = sd->tLamb;
547     sdf = sd->tf;
548     }
549     sv->cieY *= 1./M_PI;
550     /* add non-diffuse components */
551     i = (sdf != NULL) ? sdf->ncomp : 0;
552     while (i-- > 0) {
553     nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
554     sdf->comp[i].dist);
555     while (nch-- > 0) {
556     c_cmix(&sv->spec, sv->cieY, &sv->spec,
557     coef[nch], &sdf->comp[i].cspec[nch]);
558     sv->cieY += coef[nch];
559     }
560     }
561     /* make sure everything is set */
562     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
563     return SDEnone;
564     }
565    
566     /* Compute directional hemispherical scattering at this incident angle */
567     double
568     SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
569     {
570     double hsum;
571     SDSpectralDF *rdf;
572     const SDCDst *cd;
573     int i;
574     /* check arguments */
575     if ((inVec == NULL) | (sd == NULL))
576     return .0;
577     /* gather diffuse components */
578     if (inVec[2] > .0) {
579     hsum = sd->rLambFront.cieY;
580     rdf = sd->rf;
581     } else /* !inFront */ {
582     hsum = sd->rLambBack.cieY;
583     rdf = sd->rb;
584     }
585     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
586     hsum = .0;
587     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
588     hsum += sd->tLamb.cieY;
589     /* gather non-diffuse components */
590     i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
591     rdf != NULL) ? rdf->ncomp : 0;
592     while (i-- > 0) { /* non-diffuse reflection */
593     cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
594     if (cd != NULL)
595     hsum += cd->cTotal;
596     }
597     i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
598     sd->tf != NULL) ? sd->tf->ncomp : 0;
599     while (i-- > 0) { /* non-diffuse transmission */
600     cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]);
601     if (cd != NULL)
602     hsum += cd->cTotal;
603     }
604     return hsum;
605     }
606    
607     /* Sample BSDF direction based on the given random variable */
608     SDError
609     SDsampBSDF(SDValue *sv, FVECT outVec, const FVECT inVec,
610     double randX, int sflags, const SDData *sd)
611     {
612     SDError ec;
613     int inFront;
614     SDSpectralDF *rdf;
615     double rdiff;
616     float coef[SDmaxCh];
617     int i, j, n, nr;
618     SDComponent *sdc;
619     const SDCDst **cdarr = NULL;
620     /* check arguments */
621     if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL) |
622     (randX < .0) | (randX >= 1.))
623     return SDEargument;
624     /* whose side are we on? */
625     inFront = (inVec[2] > .0);
626     /* remember diffuse portions */
627     if (inFront) {
628     *sv = sd->rLambFront;
629     rdf = sd->rf;
630     } else /* !inFront */ {
631     *sv = sd->rLambBack;
632     rdf = sd->rb;
633     }
634     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
635     sv->cieY = .0;
636     rdiff = sv->cieY;
637     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
638     sv->cieY += sd->tLamb.cieY;
639     /* gather non-diffuse components */
640     i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
641     rdf != NULL) ? rdf->ncomp : 0;
642     j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
643     sd->tf != NULL) ? sd->tf->ncomp : 0;
644     n = i + j;
645     if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
646     return SDEmemory;
647     while (j-- > 0) { /* non-diffuse transmission */
648     cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]);
649     if (cdarr[i+j] == NULL) {
650     free(cdarr);
651     return SDEmemory;
652     }
653     sv->cieY += cdarr[i+j]->cTotal;
654     }
655     while (i-- > 0) { /* non-diffuse reflection */
656     cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
657     if (cdarr[i] == NULL) {
658     free(cdarr);
659     return SDEmemory;
660     }
661     sv->cieY += cdarr[i]->cTotal;
662     }
663     if (sv->cieY <= 1e-7) { /* anything to sample? */
664     sv->cieY = .0;
665     memset(outVec, 0, 3*sizeof(double));
666     return SDEnone;
667     }
668     /* scale random variable */
669     randX *= sv->cieY;
670     /* diffuse reflection? */
671     if (randX < rdiff) {
672     SDdiffuseSamp(outVec, inFront, randX/rdiff);
673     goto done;
674     }
675     randX -= rdiff;
676     /* diffuse transmission? */
677     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
678     if (randX < sd->tLamb.cieY) {
679     sv->spec = sd->tLamb.spec;
680     SDdiffuseSamp(outVec, !inFront, randX/sd->tLamb.cieY);
681     goto done;
682     }
683     randX -= sd->tLamb.cieY;
684     }
685     /* else one of cumulative dist. */
686     for (i = 0; i < n && randX < cdarr[i]->cTotal; i++)
687     randX -= cdarr[i]->cTotal;
688     if (i >= n)
689     return SDEinternal;
690     /* compute sample direction */
691     sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr];
692     ec = (*sdc->func->sampCDist)(outVec, randX/cdarr[i]->cTotal, cdarr[i]);
693     if (ec)
694     return ec;
695     /* compute color */
696     j = (*sdc->func->getBSDFs)(coef, outVec, inVec, sdc->dist);
697     if (j <= 0) {
698     sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
699     sd->name);
700     return SDEinternal;
701     }
702     sv->spec = sdc->cspec[0];
703     rdiff = coef[0];
704     while (--j) {
705     c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
706     rdiff += coef[j];
707     }
708     done:
709     if (cdarr != NULL)
710     free(cdarr);
711     /* make sure everything is set */
712     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
713     return SDEnone;
714     }
715    
716     /* Compute World->BSDF transform from surface normal and up (Y) vector */
717     SDError
718     SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
719     {
720     if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
721     return SDEargument;
722     VCOPY(vMtx[2], sNrm);
723     if (normalize(vMtx[2]) == .0)
724     return SDEargument;
725     fcross(vMtx[0], uVec, vMtx[2]);
726     if (normalize(vMtx[0]) == .0)
727     return SDEargument;
728     fcross(vMtx[1], vMtx[2], vMtx[0]);
729     return SDEnone;
730     }
731    
732     /* Compute inverse transform */
733     SDError
734     SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
735     {
736     RREAL mTmp[3][3];
737     double d;
738    
739     if ((iMtx == NULL) | (vMtx == NULL))
740     return SDEargument;
741     /* compute determinant */
742     mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
743     mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
744     mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
745     d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
746     if (d == .0) {
747     strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
748     return SDEargument;
749     }
750     d = 1./d; /* invert matrix */
751     mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
752     mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
753     mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
754     mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
755     mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
756     mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
757     mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
758     memcpy(iMtx, mTmp, sizeof(mTmp));
759     return SDEnone;
760     }
761    
762     /* Transform and normalize direction (column) vector */
763     SDError
764     SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
765     {
766     FVECT vTmp;
767    
768     if ((resVec == NULL) | (inpVec == NULL))
769     return SDEargument;
770     if (vMtx == NULL) { /* assume they just want to normalize */
771     if (resVec != inpVec)
772     VCOPY(resVec, inpVec);
773     return (normalize(resVec) > .0) ? SDEnone : SDEargument;
774     }
775     vTmp[0] = DOT(vMtx[0], inpVec);
776     vTmp[1] = DOT(vMtx[1], inpVec);
777     vTmp[2] = DOT(vMtx[2], inpVec);
778     if (normalize(vTmp) == .0)
779     return SDEargument;
780     VCOPY(resVec, vTmp);
781     return SDEnone;
782     }
783    
784     /*################################################################*/
785     /*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/
786    
787     /*
788 greg 2.1 * Routines for handling BSDF data
789     */
790    
791     #include "standard.h"
792     #include "paths.h"
793     #include <ctype.h>
794    
795     #define MAXLATS 46 /* maximum number of latitudes */
796    
797     /* BSDF angle specification */
798     typedef struct {
799     char name[64]; /* basis name */
800     int nangles; /* total number of directions */
801     struct {
802     float tmin; /* starting theta */
803     short nphis; /* number of phis (0 term) */
804     } lat[MAXLATS+1]; /* latitudes */
805     } ANGLE_BASIS;
806    
807 greg 2.4 #define MAXABASES 7 /* limit on defined bases */
808 greg 2.1
809     static ANGLE_BASIS abase_list[MAXABASES] = {
810     {
811     "LBNL/Klems Full", 145,
812     { {-5., 1},
813     {5., 8},
814     {15., 16},
815     {25., 20},
816     {35., 24},
817     {45., 24},
818     {55., 24},
819     {65., 16},
820     {75., 12},
821     {90., 0} }
822     }, {
823     "LBNL/Klems Half", 73,
824     { {-6.5, 1},
825     {6.5, 8},
826     {19.5, 12},
827     {32.5, 16},
828     {46.5, 20},
829     {61.5, 12},
830     {76.5, 4},
831     {90., 0} }
832     }, {
833     "LBNL/Klems Quarter", 41,
834     { {-9., 1},
835     {9., 8},
836     {27., 12},
837     {46., 12},
838     {66., 8},
839     {90., 0} }
840     }
841     };
842    
843     static int nabases = 3; /* current number of defined bases */
844    
845 greg 2.9 #define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6)
846    
847     static int
848     fequal(double a, double b)
849     {
850     if (b != .0)
851     a = a/b - 1.;
852     return((a <= 1e-6) & (a >= -1e-6));
853     }
854 greg 2.3
855 greg 2.14 /* Returns the name of the given tag */
856 greg 2.3 #ifdef ezxml_name
857     #undef ezxml_name
858     static char *
859     ezxml_name(ezxml_t xml)
860     {
861     if (xml == NULL)
862     return(NULL);
863     return(xml->name);
864     }
865     #endif
866    
867 greg 2.14 /* Returns the given tag's character content or empty string if none */
868 greg 2.3 #ifdef ezxml_txt
869     #undef ezxml_txt
870     static char *
871     ezxml_txt(ezxml_t xml)
872     {
873     if (xml == NULL)
874     return("");
875     return(xml->txt);
876     }
877     #endif
878    
879 greg 2.1
880     static int
881     ab_getvec( /* get vector for this angle basis index */
882     FVECT v,
883     int ndx,
884     void *p
885     )
886     {
887     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
888     int li;
889 greg 2.2 double pol, azi, d;
890 greg 2.1
891     if ((ndx < 0) | (ndx >= ab->nangles))
892     return(0);
893     for (li = 0; ndx >= ab->lat[li].nphis; li++)
894     ndx -= ab->lat[li].nphis;
895 greg 2.2 pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin);
896 greg 2.1 azi = 2.*PI*ndx/ab->lat[li].nphis;
897 greg 2.2 v[2] = d = cos(pol);
898     d = sqrt(1. - d*d); /* sin(pol) */
899 greg 2.1 v[0] = cos(azi)*d;
900     v[1] = sin(azi)*d;
901     return(1);
902     }
903    
904    
905     static int
906     ab_getndx( /* get index corresponding to the given vector */
907     FVECT v,
908     void *p
909     )
910     {
911     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
912     int li, ndx;
913 greg 2.2 double pol, azi, d;
914 greg 2.1
915     if ((v[2] < -1.0) | (v[2] > 1.0))
916     return(-1);
917 greg 2.2 pol = 180.0/PI*acos(v[2]);
918 greg 2.1 azi = 180.0/PI*atan2(v[1], v[0]);
919     if (azi < 0.0) azi += 360.0;
920 greg 2.2 for (li = 1; ab->lat[li].tmin <= pol; li++)
921 greg 2.1 if (!ab->lat[li].nphis)
922     return(-1);
923     --li;
924     ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
925     if (ndx >= ab->lat[li].nphis) ndx = 0;
926     while (li--)
927     ndx += ab->lat[li].nphis;
928     return(ndx);
929     }
930    
931    
932     static double
933     ab_getohm( /* get solid angle for this angle basis index */
934     int ndx,
935     void *p
936     )
937     {
938     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
939     int li;
940     double theta, theta1;
941    
942     if ((ndx < 0) | (ndx >= ab->nangles))
943     return(0);
944     for (li = 0; ndx >= ab->lat[li].nphis; li++)
945     ndx -= ab->lat[li].nphis;
946     theta1 = PI/180. * ab->lat[li+1].tmin;
947     if (ab->lat[li].nphis == 1) { /* special case */
948     if (ab->lat[li].tmin > FTINY)
949     error(USER, "unsupported BSDF coordinate system");
950     return(2.*PI*(1. - cos(theta1)));
951     }
952     theta = PI/180. * ab->lat[li].tmin;
953     return(2.*PI*(cos(theta) - cos(theta1))/(double)ab->lat[li].nphis);
954     }
955    
956    
957     static int
958     ab_getvecR( /* get reverse vector for this angle basis index */
959     FVECT v,
960     int ndx,
961     void *p
962     )
963     {
964     if (!ab_getvec(v, ndx, p))
965     return(0);
966    
967     v[0] = -v[0];
968     v[1] = -v[1];
969     v[2] = -v[2];
970    
971     return(1);
972     }
973    
974    
975     static int
976     ab_getndxR( /* get index corresponding to the reverse vector */
977     FVECT v,
978     void *p
979     )
980     {
981     FVECT v2;
982    
983     v2[0] = -v[0];
984     v2[1] = -v[1];
985     v2[2] = -v[2];
986    
987     return ab_getndx(v2, p);
988     }
989    
990    
991     static void
992 greg 2.4 load_angle_basis( /* load custom BSDF angle basis */
993 greg 2.3 ezxml_t wab
994     )
995     {
996     char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
997     ezxml_t wbb;
998     int i;
999    
1000 greg 2.4 if (!abname || !*abname)
1001 greg 2.3 return;
1002     for (i = nabases; i--; )
1003 greg 2.12 if (!strcasecmp(abname, abase_list[i].name))
1004 greg 2.4 return; /* assume it's the same */
1005 greg 2.3 if (nabases >= MAXABASES)
1006     error(INTERNAL, "too many angle bases");
1007     strcpy(abase_list[nabases].name, abname);
1008     abase_list[nabases].nangles = 0;
1009     for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
1010     wbb != NULL; i++, wbb = wbb->next) {
1011     if (i >= MAXLATS)
1012     error(INTERNAL, "too many latitudes in custom basis");
1013     abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
1014     ezxml_child(ezxml_child(wbb,
1015     "ThetaBounds"), "UpperTheta")));
1016     if (!i)
1017     abase_list[nabases].lat[i].tmin =
1018     -abase_list[nabases].lat[i+1].tmin;
1019 greg 2.9 else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
1020 greg 2.3 "ThetaBounds"), "LowerTheta"))),
1021     abase_list[nabases].lat[i].tmin))
1022     error(WARNING, "theta values disagree in custom basis");
1023     abase_list[nabases].nangles +=
1024     abase_list[nabases].lat[i].nphis =
1025     atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
1026     }
1027     abase_list[nabases++].lat[i].nphis = 0;
1028     }
1029    
1030    
1031 greg 2.6 static void
1032     load_geometry( /* load geometric dimensions and description (if any) */
1033     struct BSDF_data *dp,
1034     ezxml_t wdb
1035     )
1036     {
1037     ezxml_t geom;
1038     double cfact;
1039     const char *fmt, *mgfstr;
1040    
1041     dp->dim[0] = dp->dim[1] = dp->dim[2] = 0;
1042     dp->mgf = NULL;
1043     if ((geom = ezxml_child(wdb, "Width")) != NULL)
1044     dp->dim[0] = atof(ezxml_txt(geom)) *
1045     to_meters(ezxml_attr(geom, "unit"));
1046     if ((geom = ezxml_child(wdb, "Height")) != NULL)
1047     dp->dim[1] = atof(ezxml_txt(geom)) *
1048     to_meters(ezxml_attr(geom, "unit"));
1049     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
1050     dp->dim[2] = atof(ezxml_txt(geom)) *
1051     to_meters(ezxml_attr(geom, "unit"));
1052     if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
1053     (mgfstr = ezxml_txt(geom)) == NULL)
1054     return;
1055     if ((fmt = ezxml_attr(geom, "format")) != NULL &&
1056     strcasecmp(fmt, "MGF")) {
1057     sprintf(errmsg, "unrecognized geometry format '%s'", fmt);
1058     error(WARNING, errmsg);
1059     return;
1060     }
1061     cfact = to_meters(ezxml_attr(geom, "unit"));
1062     dp->mgf = (char *)malloc(strlen(mgfstr)+32);
1063     if (dp->mgf == NULL)
1064     error(SYSTEM, "out of memory in load_geometry");
1065     if (cfact < 0.99 || cfact > 1.01)
1066     sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
1067     else
1068     strcpy(dp->mgf, mgfstr);
1069     }
1070    
1071    
1072 greg 2.3 static void
1073 greg 2.1 load_bsdf_data( /* load BSDF distribution for this wavelength */
1074     struct BSDF_data *dp,
1075     ezxml_t wdb
1076     )
1077     {
1078     char *cbasis = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
1079     char *rbasis = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
1080     char *sdata;
1081     int i;
1082    
1083 greg 2.4 if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) {
1084 greg 2.1 error(WARNING, "missing column/row basis for BSDF");
1085     return;
1086     }
1087     for (i = nabases; i--; )
1088 greg 2.12 if (!strcasecmp(cbasis, abase_list[i].name)) {
1089 greg 2.1 dp->ninc = abase_list[i].nangles;
1090     dp->ib_priv = (void *)&abase_list[i];
1091     dp->ib_vec = ab_getvecR;
1092     dp->ib_ndx = ab_getndxR;
1093     dp->ib_ohm = ab_getohm;
1094     break;
1095     }
1096     if (i < 0) {
1097 greg 2.4 sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis);
1098 greg 2.1 error(WARNING, errmsg);
1099     return;
1100     }
1101     for (i = nabases; i--; )
1102 greg 2.12 if (!strcasecmp(rbasis, abase_list[i].name)) {
1103 greg 2.1 dp->nout = abase_list[i].nangles;
1104     dp->ob_priv = (void *)&abase_list[i];
1105     dp->ob_vec = ab_getvec;
1106     dp->ob_ndx = ab_getndx;
1107     dp->ob_ohm = ab_getohm;
1108     break;
1109     }
1110     if (i < 0) {
1111 greg 2.16 sprintf(errmsg, "undefined RowAngleBasis '%s'", rbasis);
1112 greg 2.1 error(WARNING, errmsg);
1113     return;
1114     }
1115     /* read BSDF data */
1116     sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
1117 greg 2.4 if (!sdata || !*sdata) {
1118 greg 2.1 error(WARNING, "missing BSDF ScatteringData");
1119     return;
1120     }
1121     dp->bsdf = (float *)malloc(sizeof(float)*dp->ninc*dp->nout);
1122     if (dp->bsdf == NULL)
1123     error(SYSTEM, "out of memory in load_bsdf_data");
1124     for (i = 0; i < dp->ninc*dp->nout; i++) {
1125     char *sdnext = fskip(sdata);
1126     if (sdnext == NULL) {
1127     error(WARNING, "bad/missing BSDF ScatteringData");
1128     free(dp->bsdf); dp->bsdf = NULL;
1129     return;
1130     }
1131     while (*sdnext && isspace(*sdnext))
1132     sdnext++;
1133     if (*sdnext == ',') sdnext++;
1134     dp->bsdf[i] = atof(sdata);
1135     sdata = sdnext;
1136     }
1137     while (isspace(*sdata))
1138     sdata++;
1139     if (*sdata) {
1140     sprintf(errmsg, "%d extra characters after BSDF ScatteringData",
1141 greg 2.5 (int)strlen(sdata));
1142 greg 2.1 error(WARNING, errmsg);
1143     }
1144     }
1145    
1146    
1147     static int
1148     check_bsdf_data( /* check that BSDF data is sane */
1149     struct BSDF_data *dp
1150     )
1151     {
1152 greg 2.2 double *omega_iarr, *omega_oarr;
1153 greg 2.7 double dom, contrib, hemi_total, full_total;
1154 greg 2.1 int nneg;
1155 greg 2.2 FVECT v;
1156 greg 2.1 int i, o;
1157    
1158     if (dp == NULL || dp->bsdf == NULL)
1159     return(0);
1160 greg 2.2 omega_iarr = (double *)calloc(dp->ninc, sizeof(double));
1161     omega_oarr = (double *)calloc(dp->nout, sizeof(double));
1162     if ((omega_iarr == NULL) | (omega_oarr == NULL))
1163 greg 2.1 error(SYSTEM, "out of memory in check_bsdf_data");
1164 greg 2.2 /* incoming projected solid angles */
1165     hemi_total = .0;
1166     for (i = dp->ninc; i--; ) {
1167     dom = getBSDF_incohm(dp,i);
1168     if (dom <= .0) {
1169     error(WARNING, "zero/negative incoming solid angle");
1170     continue;
1171     }
1172     if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) {
1173     error(WARNING, "illegal incoming BSDF direction");
1174     free(omega_iarr); free(omega_oarr);
1175     return(0);
1176     }
1177     hemi_total += omega_iarr[i] = dom * -v[2];
1178     }
1179     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1180     sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%",
1181     100.*(hemi_total/PI - 1.));
1182     error(WARNING, errmsg);
1183     }
1184     dom = PI / hemi_total; /* fix normalization */
1185     for (i = dp->ninc; i--; )
1186     omega_iarr[i] *= dom;
1187     /* outgoing projected solid angles */
1188 greg 2.1 hemi_total = .0;
1189     for (o = dp->nout; o--; ) {
1190     dom = getBSDF_outohm(dp,o);
1191     if (dom <= .0) {
1192 greg 2.2 error(WARNING, "zero/negative outgoing solid angle");
1193 greg 2.1 continue;
1194     }
1195     if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) {
1196     error(WARNING, "illegal outgoing BSDF direction");
1197 greg 2.2 free(omega_iarr); free(omega_oarr);
1198 greg 2.1 return(0);
1199     }
1200 greg 2.2 hemi_total += omega_oarr[o] = dom * v[2];
1201 greg 2.1 }
1202     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1203     sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%",
1204     100.*(hemi_total/PI - 1.));
1205     error(WARNING, errmsg);
1206     }
1207 greg 2.2 dom = PI / hemi_total; /* fix normalization */
1208 greg 2.1 for (o = dp->nout; o--; )
1209 greg 2.2 omega_oarr[o] *= dom;
1210     nneg = 0; /* check outgoing totals */
1211     for (i = 0; i < dp->ninc; i++) {
1212 greg 2.1 hemi_total = .0;
1213     for (o = dp->nout; o--; ) {
1214     double f = BSDF_value(dp,i,o);
1215 greg 2.2 if (f >= .0)
1216     hemi_total += f*omega_oarr[o];
1217     else {
1218     nneg += (f < -FTINY);
1219     BSDF_value(dp,i,o) = .0f;
1220     }
1221 greg 2.1 }
1222 greg 2.8 if (hemi_total > 1.01) {
1223 greg 2.2 sprintf(errmsg,
1224     "incoming BSDF direction %d passes %.1f%% of light",
1225     i, 100.*hemi_total);
1226 greg 2.1 error(WARNING, errmsg);
1227     }
1228     }
1229 greg 2.2 if (nneg) {
1230     sprintf(errmsg, "%d negative BSDF values (ignored)", nneg);
1231 greg 2.1 error(WARNING, errmsg);
1232     }
1233 greg 2.7 full_total = .0; /* reverse roles and check again */
1234 greg 2.2 for (o = 0; o < dp->nout; o++) {
1235     hemi_total = .0;
1236     for (i = dp->ninc; i--; )
1237     hemi_total += BSDF_value(dp,i,o) * omega_iarr[i];
1238    
1239 greg 2.8 if (hemi_total > 1.01) {
1240 greg 2.2 sprintf(errmsg,
1241     "outgoing BSDF direction %d collects %.1f%% of light",
1242     o, 100.*hemi_total);
1243     error(WARNING, errmsg);
1244     }
1245 greg 2.7 full_total += hemi_total*omega_oarr[o];
1246     }
1247     full_total /= PI;
1248 greg 2.8 if (full_total > 1.00001) {
1249     sprintf(errmsg, "BSDF transfers %.4f%% of light",
1250 greg 2.7 100.*full_total);
1251     error(WARNING, errmsg);
1252 greg 2.2 }
1253     free(omega_iarr); free(omega_oarr);
1254 greg 2.1 return(1);
1255     }
1256    
1257 greg 2.6
1258 greg 2.1 struct BSDF_data *
1259     load_BSDF( /* load BSDF data from file */
1260     char *fname
1261     )
1262     {
1263     char *path;
1264     ezxml_t fl, wtl, wld, wdb;
1265     struct BSDF_data *dp;
1266    
1267     path = getpath(fname, getrlibpath(), R_OK);
1268     if (path == NULL) {
1269     sprintf(errmsg, "cannot find BSDF file \"%s\"", fname);
1270     error(WARNING, errmsg);
1271     return(NULL);
1272     }
1273     fl = ezxml_parse_file(path);
1274     if (fl == NULL) {
1275     sprintf(errmsg, "cannot open BSDF \"%s\"", path);
1276     error(WARNING, errmsg);
1277     return(NULL);
1278     }
1279     if (ezxml_error(fl)[0]) {
1280     sprintf(errmsg, "BSDF \"%s\" %s", path, ezxml_error(fl));
1281     error(WARNING, errmsg);
1282     ezxml_free(fl);
1283     return(NULL);
1284     }
1285     if (strcmp(ezxml_name(fl), "WindowElement")) {
1286     sprintf(errmsg,
1287     "BSDF \"%s\": top level node not 'WindowElement'",
1288     path);
1289     error(WARNING, errmsg);
1290     ezxml_free(fl);
1291     return(NULL);
1292     }
1293     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
1294 greg 2.10 if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl,
1295     "DataDefinition"), "IncidentDataStructure")),
1296     "Columns")) {
1297     sprintf(errmsg,
1298     "BSDF \"%s\": unsupported IncidentDataStructure",
1299     path);
1300     error(WARNING, errmsg);
1301     ezxml_free(fl);
1302     return(NULL);
1303     }
1304 greg 2.3 load_angle_basis(ezxml_child(ezxml_child(wtl,
1305     "DataDefinition"), "AngleBasis"));
1306 greg 2.1 dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data));
1307 greg 2.6 load_geometry(dp, ezxml_child(wtl, "Material"));
1308 greg 2.1 for (wld = ezxml_child(wtl, "WavelengthData");
1309     wld != NULL; wld = wld->next) {
1310 greg 2.13 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1311     "Visible"))
1312 greg 2.1 continue;
1313 greg 2.13 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1314     wdb != NULL; wdb = wdb->next)
1315     if (!strcasecmp(ezxml_txt(ezxml_child(wdb,
1316     "WavelengthDataDirection")),
1317 greg 2.1 "Transmission Front"))
1318 greg 2.13 break;
1319     if (wdb != NULL) { /* load front BTDF */
1320     load_bsdf_data(dp, wdb);
1321     break; /* ignore the rest */
1322     }
1323 greg 2.1 }
1324     ezxml_free(fl); /* done with XML file */
1325     if (!check_bsdf_data(dp)) {
1326     sprintf(errmsg, "bad/missing BTDF data in \"%s\"", path);
1327     error(WARNING, errmsg);
1328     free_BSDF(dp);
1329     dp = NULL;
1330     }
1331     return(dp);
1332     }
1333    
1334    
1335     void
1336     free_BSDF( /* free BSDF data structure */
1337     struct BSDF_data *b
1338     )
1339     {
1340     if (b == NULL)
1341     return;
1342 greg 2.6 if (b->mgf != NULL)
1343     free(b->mgf);
1344 greg 2.1 if (b->bsdf != NULL)
1345     free(b->bsdf);
1346     free(b);
1347     }
1348    
1349    
1350     int
1351     r_BSDF_incvec( /* compute random input vector at given location */
1352     FVECT v,
1353     struct BSDF_data *b,
1354     int i,
1355     double rv,
1356     MAT4 xm
1357     )
1358     {
1359     FVECT pert;
1360     double rad;
1361     int j;
1362    
1363     if (!getBSDF_incvec(v, b, i))
1364     return(0);
1365     rad = sqrt(getBSDF_incohm(b, i) / PI);
1366     multisamp(pert, 3, rv);
1367     for (j = 0; j < 3; j++)
1368     v[j] += rad*(2.*pert[j] - 1.);
1369     if (xm != NULL)
1370     multv3(v, v, xm);
1371     return(normalize(v) != 0.0);
1372     }
1373    
1374    
1375     int
1376     r_BSDF_outvec( /* compute random output vector at given location */
1377     FVECT v,
1378     struct BSDF_data *b,
1379     int o,
1380     double rv,
1381     MAT4 xm
1382     )
1383     {
1384     FVECT pert;
1385     double rad;
1386     int j;
1387    
1388     if (!getBSDF_outvec(v, b, o))
1389     return(0);
1390     rad = sqrt(getBSDF_outohm(b, o) / PI);
1391     multisamp(pert, 3, rv);
1392     for (j = 0; j < 3; j++)
1393     v[j] += rad*(2.*pert[j] - 1.);
1394     if (xm != NULL)
1395     multv3(v, v, xm);
1396     return(normalize(v) != 0.0);
1397     }
1398    
1399    
1400     static int
1401     addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */
1402     char *xfarg[],
1403     FVECT xp,
1404     FVECT yp,
1405     FVECT zp
1406     )
1407     {
1408     static char bufs[3][16];
1409     int bn = 0;
1410     char **xfp = xfarg;
1411     double theta;
1412    
1413     if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
1414     /* Special case for X' along Z-axis */
1415     theta = -atan2(yp[0], yp[1]);
1416     *xfp++ = "-ry";
1417     *xfp++ = xp[2] < 0.0 ? "90" : "-90";
1418     *xfp++ = "-rz";
1419     sprintf(bufs[bn], "%f", theta*(180./PI));
1420     *xfp++ = bufs[bn++];
1421     return(xfp - xfarg);
1422     }
1423     theta = atan2(yp[2], zp[2]);
1424     if (!FEQ(theta,0.0)) {
1425     *xfp++ = "-rx";
1426     sprintf(bufs[bn], "%f", theta*(180./PI));
1427     *xfp++ = bufs[bn++];
1428     }
1429     theta = asin(-xp[2]);
1430     if (!FEQ(theta,0.0)) {
1431     *xfp++ = "-ry";
1432     sprintf(bufs[bn], " %f", theta*(180./PI));
1433     *xfp++ = bufs[bn++];
1434     }
1435     theta = atan2(xp[1], xp[0]);
1436     if (!FEQ(theta,0.0)) {
1437     *xfp++ = "-rz";
1438     sprintf(bufs[bn], "%f", theta*(180./PI));
1439     *xfp++ = bufs[bn++];
1440     }
1441     *xfp = NULL;
1442     return(xfp - xfarg);
1443     }
1444    
1445    
1446     int
1447     getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */
1448     MAT4 xm,
1449     FVECT nrm,
1450 greg 2.6 UpDir ud,
1451     char *xfbuf
1452 greg 2.1 )
1453     {
1454     char *xfargs[7];
1455     XF myxf;
1456     FVECT updir, xdest, ydest;
1457 greg 2.6 int i;
1458 greg 2.1
1459     updir[0] = updir[1] = updir[2] = 0.;
1460     switch (ud) {
1461     case UDzneg:
1462     updir[2] = -1.;
1463     break;
1464     case UDyneg:
1465     updir[1] = -1.;
1466     break;
1467     case UDxneg:
1468     updir[0] = -1.;
1469     break;
1470     case UDxpos:
1471     updir[0] = 1.;
1472     break;
1473     case UDypos:
1474     updir[1] = 1.;
1475     break;
1476     case UDzpos:
1477     updir[2] = 1.;
1478     break;
1479     case UDunknown:
1480     return(0);
1481     }
1482     fcross(xdest, updir, nrm);
1483     if (normalize(xdest) == 0.0)
1484     return(0);
1485     fcross(ydest, nrm, xdest);
1486     xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs);
1487     copymat4(xm, myxf.xfm);
1488 greg 2.6 if (xfbuf == NULL)
1489     return(1);
1490     /* return xf arguments as well */
1491     for (i = 0; xfargs[i] != NULL; i++) {
1492     *xfbuf++ = ' ';
1493     strcpy(xfbuf, xfargs[i]);
1494     while (*xfbuf) ++xfbuf;
1495     }
1496 greg 2.1 return(1);
1497     }
1498 greg 2.15
1499     /*######### END DEPRECATED ROUTINES #######*/
1500     /*################################################################*/