ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/common/bsdf.c
Revision: 2.15
Committed: Fri Feb 18 00:40:25 2011 UTC (13 years, 3 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.14: +756 -19 lines
Log Message:
Major code reorg, moving mgflib to common and introducing BSDF material

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.15 static const char RCSid[] = "$Id: bsdf.c,v 2.14 2011/02/11 17:31:25 greg Exp $";
3 greg 2.1 #endif
4     /*
5 greg 2.15 * bsdf.c
6     *
7     * Definitions for bidirectional scattering distribution functions.
8     *
9     * Created by Greg Ward on 1/10/11.
10     *
11     */
12    
13     #include <stdio.h>
14     #include <stdlib.h>
15     #include <math.h>
16     #include "ezxml.h"
17     #include "hilbert.h"
18     #include "bsdf.h"
19     #include "bsdf_m.h"
20     #include "bsdf_t.h"
21    
22     /* English ASCII strings corresponding to ennumerated errors */
23     const char *SDerrorEnglish[] = {
24     "No error",
25     "Memory error",
26     "File input/output error",
27     "File format error",
28     "Illegal argument",
29     "Invalid data",
30     "Unsupported feature",
31     "Internal program error",
32     "Unknown error"
33     };
34    
35     /* Additional information on last error (ASCII English) */
36     char SDerrorDetail[256];
37    
38     /* Cache of loaded BSDFs */
39     struct SDCache_s *SDcacheList = NULL;
40    
41     /* Retain BSDFs in cache list */
42     int SDretainSet = SDretainNone;
43    
44     /* Report any error to the indicated stream (in English) */
45     SDError
46     SDreportEnglish(SDError ec, FILE *fp)
47     {
48     if (fp == NULL)
49     return ec;
50     if (!ec)
51     return SDEnone;
52     fputs(SDerrorEnglish[ec], fp);
53     if (SDerrorDetail[0]) {
54     fputs(": ", fp);
55     fputs(SDerrorDetail, fp);
56     }
57     fputc('\n', fp);
58     if (fp != stderr)
59     fflush(fp);
60     return ec;
61     }
62    
63     static double
64     to_meters( /* return factor to convert given unit to meters */
65     const char *unit
66     )
67     {
68     if (unit == NULL) return(1.); /* safe assumption? */
69     if (!strcasecmp(unit, "Meter")) return(1.);
70     if (!strcasecmp(unit, "Foot")) return(.3048);
71     if (!strcasecmp(unit, "Inch")) return(.0254);
72     if (!strcasecmp(unit, "Centimeter")) return(.01);
73     if (!strcasecmp(unit, "Millimeter")) return(.001);
74     sprintf(SDerrorDetail, "Unknown dimensional unit '%s'", unit);
75     return(-1.);
76     }
77    
78     /* Load geometric dimensions and description (if any) */
79     static SDError
80     SDloadGeometry(SDData *dp, ezxml_t wdb)
81     {
82     ezxml_t geom;
83     double cfact;
84     const char *fmt, *mgfstr;
85    
86     sprintf(SDerrorDetail, "Negative size in \"%s\"", dp->name);
87     dp->dim[0] = dp->dim[1] = dp->dim[2] = .0;
88     if ((geom = ezxml_child(wdb, "Width")) != NULL)
89     dp->dim[0] = atof(ezxml_txt(geom)) *
90     to_meters(ezxml_attr(geom, "unit"));
91     if ((geom = ezxml_child(wdb, "Height")) != NULL)
92     dp->dim[1] = atof(ezxml_txt(geom)) *
93     to_meters(ezxml_attr(geom, "unit"));
94     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
95     dp->dim[2] = atof(ezxml_txt(geom)) *
96     to_meters(ezxml_attr(geom, "unit"));
97     if ((dp->dim[0] < .0) | (dp->dim[1] < .0) | (dp->dim[2] < .0))
98     return SDEdata;
99     if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
100     (mgfstr = ezxml_txt(geom)) == NULL)
101     return SDEnone;
102     if ((fmt = ezxml_attr(geom, "format")) != NULL &&
103     strcasecmp(fmt, "MGF")) {
104     sprintf(SDerrorDetail,
105     "Unrecognized geometry format '%s' in \"%s\"",
106     fmt, dp->name);
107     return SDEsupport;
108     }
109     cfact = to_meters(ezxml_attr(geom, "unit"));
110     dp->mgf = (char *)malloc(strlen(mgfstr)+32);
111     if (dp->mgf == NULL) {
112     strcpy(SDerrorDetail, "Out of memory in SDloadGeometry");
113     return SDEmemory;
114     }
115     if (cfact < 0.99 || cfact > 1.01)
116     sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
117     else
118     strcpy(dp->mgf, mgfstr);
119     return SDEnone;
120     }
121    
122    
123     /* Load a BSDF struct from the given file (free first and keep name) */
124     SDError
125     SDloadFile(SDData *sd, const char *fname)
126     {
127     SDError lastErr;
128     ezxml_t fl;
129    
130     if ((sd == NULL) | (fname == NULL || !*fname))
131     return SDEargument;
132     /* free old data, keeping name */
133     SDfreeBSDF(sd);
134     /* parse XML file */
135     fl = ezxml_parse_file(fname);
136     if (fl == NULL) {
137     sprintf(SDerrorDetail, "Cannot open BSDF \"%s\"", fname);
138     return SDEfile;
139     }
140     if (ezxml_error(fl)[0]) {
141     sprintf(SDerrorDetail, "BSDF \"%s\" %s", fname, ezxml_error(fl));
142     ezxml_free(fl);
143     return SDEformat;
144     }
145     /* load geometry if present */
146     if ((lastErr = SDloadGeometry(sd, fl)))
147     return lastErr;
148     /* try loading variable resolution data */
149     lastErr = SDloadTre(sd, fl);
150     /* check our result */
151     switch (lastErr) {
152     case SDEformat:
153     case SDEdata:
154     case SDEsupport: /* possibly we just tried the wrong format */
155     lastErr = SDloadMtx(sd, fl);
156     break;
157     default: /* variable res. OK else serious error */
158     break;
159     }
160     /* done with XML file */
161     ezxml_free(fl);
162     /* return success or failure */
163     return lastErr;
164     }
165    
166     /* Allocate new spectral distribution function */
167     SDSpectralDF *
168     SDnewSpectralDF(int nc)
169     {
170     SDSpectralDF *df;
171    
172     if (nc <= 0) {
173     strcpy(SDerrorDetail, "Zero component spectral DF request");
174     return NULL;
175     }
176     df = (SDSpectralDF *)malloc(sizeof(SDSpectralDF) +
177     (nc-1)*sizeof(SDComponent));
178     if (df == NULL) {
179     sprintf(SDerrorDetail,
180     "Cannot allocate %d component spectral DF", nc);
181     return NULL;
182     }
183     df->minProjSA = .0;
184     df->maxHemi = .0;
185     df->ncomp = nc;
186     memset(df->comp, 0, nc*sizeof(SDComponent));
187     return df;
188     }
189    
190     /* Free cached cumulative distributions for BSDF component */
191     void
192     SDfreeCumulativeCache(SDSpectralDF *df)
193     {
194     int n;
195     SDCDst *cdp;
196    
197     if (df == NULL)
198     return;
199     for (n = df->ncomp; n-- > 0; )
200     while ((cdp = df->comp[n].cdList) != NULL) {
201     df->comp[n].cdList = cdp->next;
202     free(cdp);
203     }
204     }
205    
206     /* Free a spectral distribution function */
207     void
208     SDfreeSpectralDF(SDSpectralDF *df)
209     {
210     int n;
211    
212     if (df == NULL)
213     return;
214     SDfreeCumulativeCache(df);
215     for (n = df->ncomp; n-- > 0; )
216     (*df->comp[n].func->freeSC)(df->comp[n].dist);
217     free(df);
218     }
219    
220     /* Shorten file path to useable BSDF name, removing suffix */
221     void
222     SDclipName(char res[SDnameLn], const char *fname)
223     {
224     const char *cp, *dot = NULL;
225    
226     for (cp = fname; *cp; cp++)
227     if (*cp == '.')
228     dot = cp;
229     if ((dot == NULL) | (dot < fname+2))
230     dot = cp;
231     if (dot - fname >= SDnameLn)
232     fname = dot - SDnameLn + 1;
233     while (fname < dot)
234     *res++ = *fname++;
235     *res = '\0';
236     }
237    
238     /* Initialize an unused BSDF struct (simply clears to zeroes) */
239     void
240     SDclearBSDF(SDData *sd)
241     {
242     if (sd != NULL)
243     memset(sd, 0, sizeof(SDData));
244     }
245    
246     /* Free data associated with BSDF struct */
247     void
248     SDfreeBSDF(SDData *sd)
249     {
250     if (sd == NULL)
251     return;
252     if (sd->mgf != NULL) {
253     free(sd->mgf);
254     sd->mgf = NULL;
255     }
256     if (sd->rf != NULL) {
257     SDfreeSpectralDF(sd->rf);
258     sd->rf = NULL;
259     }
260     if (sd->rb != NULL) {
261     SDfreeSpectralDF(sd->rb);
262     sd->rb = NULL;
263     }
264     if (sd->tf != NULL) {
265     SDfreeSpectralDF(sd->tf);
266     sd->tf = NULL;
267     }
268     sd->rLambFront.cieY = .0;
269     sd->rLambFront.spec.clock = 0;
270     sd->rLambBack.cieY = .0;
271     sd->rLambBack.spec.clock = 0;
272     sd->tLamb.cieY = .0;
273     sd->tLamb.spec.clock = 0;
274     }
275    
276     /* Find writeable BSDF by name, or allocate new cache entry if absent */
277     SDData *
278     SDgetCache(const char *bname)
279     {
280     struct SDCache_s *sdl;
281     char sdnam[SDnameLn];
282    
283     if (bname == NULL)
284     return NULL;
285    
286     SDclipName(sdnam, bname);
287     for (sdl = SDcacheList; sdl != NULL; sdl = sdl->next)
288     if (!strcmp(sdl->bsdf.name, sdnam)) {
289     sdl->refcnt++;
290     return &sdl->bsdf;
291     }
292    
293     sdl = (struct SDCache_s *)calloc(1, sizeof(struct SDCache_s));
294     if (sdl == NULL)
295     return NULL;
296    
297     strcpy(sdl->bsdf.name, sdnam);
298     sdl->next = SDcacheList;
299     SDcacheList = sdl;
300    
301     sdl->refcnt++;
302     return &sdl->bsdf;
303     }
304    
305     /* Get loaded BSDF from cache (or load and cache it on first call) */
306     /* Report any problem to stderr and return NULL on failure */
307     const SDData *
308     SDcacheFile(const char *fname)
309     {
310     SDData *sd;
311     SDError ec;
312    
313     if (fname == NULL || !*fname)
314     return NULL;
315     SDerrorDetail[0] = '\0';
316     if ((sd = SDgetCache(fname)) == NULL) {
317     SDreportEnglish(SDEmemory, stderr);
318     return NULL;
319     }
320     if (!SDisLoaded(sd) && (ec = SDloadFile(sd, fname))) {
321     SDreportEnglish(ec, stderr);
322     SDfreeCache(sd);
323     return NULL;
324     }
325     return sd;
326     }
327    
328     /* Free a BSDF from our cache (clear all if NULL) */
329     void
330     SDfreeCache(const SDData *sd)
331     {
332     struct SDCache_s *sdl, *sdLast = NULL;
333    
334     if (sd == NULL) { /* free entire list */
335     while ((sdl = SDcacheList) != NULL) {
336     SDcacheList = sdl->next;
337     SDfreeBSDF(&sdl->bsdf);
338     free(sdl);
339     }
340     return;
341     }
342     for (sdl = SDcacheList; sdl != NULL; sdl = (sdLast=sdl)->next)
343     if (&sdl->bsdf == sd)
344     break;
345     if (sdl == NULL || --sdl->refcnt)
346     return; /* missing or still in use */
347     /* keep unreferenced data? */
348     if (SDisLoaded(sd) && SDretainSet) {
349     if (SDretainSet == SDretainAll)
350     return; /* keep everything */
351     /* else free cumulative data */
352     SDfreeCumulativeCache(sd->rf);
353     SDfreeCumulativeCache(sd->rb);
354     SDfreeCumulativeCache(sd->tf);
355     return;
356     }
357     /* remove from list and free */
358     if (sdLast == NULL)
359     SDcacheList = sdl->next;
360     else
361     sdLast->next = sdl->next;
362     SDfreeBSDF(&sdl->bsdf);
363     free(sdl);
364     }
365    
366     /* Sample an individual BSDF component */
367     SDError
368     SDsampComponent(SDValue *sv, FVECT outVec, const FVECT inVec,
369     double randX, SDComponent *sdc)
370     {
371     float coef[SDmaxCh];
372     SDError ec;
373     const SDCDst *cd;
374     double d;
375     int n;
376     /* check arguments */
377     if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sdc == NULL))
378     return SDEargument;
379     /* get cumulative distribution */
380     cd = (*sdc->func->getCDist)(inVec, sdc);
381     if (cd == NULL)
382     return SDEmemory;
383     if (cd->cTotal <= 1e-7) { /* anything to sample? */
384     sv->spec = c_dfcolor;
385     sv->cieY = .0;
386     memset(outVec, 0, 3*sizeof(double));
387     return SDEnone;
388     }
389     sv->cieY = cd->cTotal;
390     /* compute sample direction */
391     ec = (*sdc->func->sampCDist)(outVec, randX, cd);
392     if (ec)
393     return ec;
394     /* get BSDF color */
395     n = (*sdc->func->getBSDFs)(coef, outVec, inVec, sdc->dist);
396     if (n <= 0) {
397     strcpy(SDerrorDetail, "BSDF sample value error");
398     return SDEinternal;
399     }
400     sv->spec = sdc->cspec[0];
401     d = coef[0];
402     while (--n) {
403     c_cmix(&sv->spec, d, &sv->spec, coef[n], &sdc->cspec[n]);
404     d += coef[n];
405     }
406     /* make sure everything is set */
407     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
408     return SDEnone;
409     }
410    
411     #define MS_MAXDIM 15
412    
413     /* Convert 1-dimensional random variable to N-dimensional */
414     void
415     SDmultiSamp(double t[], int n, double randX)
416     {
417     unsigned nBits;
418     double scale;
419     bitmask_t ndx, coord[MS_MAXDIM];
420    
421     while (n > MS_MAXDIM) /* punt for higher dimensions */
422     t[--n] = drand48();
423     nBits = (8*sizeof(bitmask_t) - 1) / n;
424     ndx = randX * (double)((bitmask_t)1 << (nBits*n));
425     /* get coordinate on Hilbert curve */
426     hilbert_i2c(n, nBits, ndx, coord);
427     /* convert back to [0,1) range */
428     scale = 1. / (double)((bitmask_t)1 << nBits);
429     while (n--)
430     t[n] = scale * ((double)coord[n] + drand48());
431     }
432    
433     #undef MS_MAXDIM
434    
435     /* Generate diffuse hemispherical sample */
436     static void
437     SDdiffuseSamp(FVECT outVec, int outFront, double randX)
438     {
439     /* convert to position on hemisphere */
440     SDmultiSamp(outVec, 2, randX);
441     SDsquare2disk(outVec, outVec[0], outVec[1]);
442     outVec[2] = 1. - outVec[0]*outVec[0] - outVec[1]*outVec[1];
443     if (outVec[2] > .0) /* a bit of paranoia */
444     outVec[2] = sqrt(outVec[2]);
445     if (!outFront) /* going out back? */
446     outVec[2] = -outVec[2];
447     }
448    
449     /* Query projected solid angle coverage for non-diffuse BSDF direction */
450     SDError
451     SDsizeBSDF(double *projSA, const FVECT vec, int qflags, const SDData *sd)
452     {
453     SDSpectralDF *rdf;
454     SDError ec;
455     int i;
456     /* check arguments */
457     if ((projSA == NULL) | (vec == NULL) | (sd == NULL))
458     return SDEargument;
459     /* initialize extrema */
460     switch (qflags & SDqueryMin+SDqueryMax) {
461     case SDqueryMax:
462     projSA[0] = .0;
463     break;
464     case SDqueryMin+SDqueryMax:
465     projSA[1] = .0;
466     /* fall through */
467     case SDqueryMin:
468     projSA[0] = 10.;
469     break;
470     case 0:
471     return SDEargument;
472     }
473     if (vec[2] > .0) /* front surface query? */
474     rdf = sd->rf;
475     else
476     rdf = sd->rb;
477     ec = SDEdata; /* run through components */
478     for (i = (rdf==NULL) ? 0 : rdf->ncomp; i--; ) {
479     ec = (*rdf->comp[i].func->queryProjSA)(projSA, vec, qflags,
480     rdf->comp[i].dist);
481     if (ec)
482     return ec;
483     }
484     for (i = (sd->tf==NULL) ? 0 : sd->tf->ncomp; i--; ) {
485     ec = (*sd->tf->comp[i].func->queryProjSA)(projSA, vec, qflags,
486     sd->tf->comp[i].dist);
487     if (ec)
488     return ec;
489     }
490     return ec;
491     }
492    
493     /* Return BSDF for the given incident and scattered ray vectors */
494     SDError
495     SDevalBSDF(SDValue *sv, const FVECT outVec, const FVECT inVec, const SDData *sd)
496     {
497     int inFront, outFront;
498     SDSpectralDF *sdf;
499     float coef[SDmaxCh];
500     int nch, i;
501     /* check arguments */
502     if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL))
503     return SDEargument;
504     /* whose side are we on? */
505     inFront = (inVec[2] > .0);
506     outFront = (outVec[2] > .0);
507     /* start with diffuse portion */
508     if (inFront & outFront) {
509     *sv = sd->rLambFront;
510     sdf = sd->rf;
511     } else if (!(inFront | outFront)) {
512     *sv = sd->rLambBack;
513     sdf = sd->rb;
514     } else /* inFront ^ outFront */ {
515     *sv = sd->tLamb;
516     sdf = sd->tf;
517     }
518     sv->cieY *= 1./M_PI;
519     /* add non-diffuse components */
520     i = (sdf != NULL) ? sdf->ncomp : 0;
521     while (i-- > 0) {
522     nch = (*sdf->comp[i].func->getBSDFs)(coef, outVec, inVec,
523     sdf->comp[i].dist);
524     while (nch-- > 0) {
525     c_cmix(&sv->spec, sv->cieY, &sv->spec,
526     coef[nch], &sdf->comp[i].cspec[nch]);
527     sv->cieY += coef[nch];
528     }
529     }
530     /* make sure everything is set */
531     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
532     return SDEnone;
533     }
534    
535     /* Compute directional hemispherical scattering at this incident angle */
536     double
537     SDdirectHemi(const FVECT inVec, int sflags, const SDData *sd)
538     {
539     double hsum;
540     SDSpectralDF *rdf;
541     const SDCDst *cd;
542     int i;
543     /* check arguments */
544     if ((inVec == NULL) | (sd == NULL))
545     return .0;
546     /* gather diffuse components */
547     if (inVec[2] > .0) {
548     hsum = sd->rLambFront.cieY;
549     rdf = sd->rf;
550     } else /* !inFront */ {
551     hsum = sd->rLambBack.cieY;
552     rdf = sd->rb;
553     }
554     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
555     hsum = .0;
556     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
557     hsum += sd->tLamb.cieY;
558     /* gather non-diffuse components */
559     i = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
560     rdf != NULL) ? rdf->ncomp : 0;
561     while (i-- > 0) { /* non-diffuse reflection */
562     cd = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
563     if (cd != NULL)
564     hsum += cd->cTotal;
565     }
566     i = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
567     sd->tf != NULL) ? sd->tf->ncomp : 0;
568     while (i-- > 0) { /* non-diffuse transmission */
569     cd = (*sd->tf->comp[i].func->getCDist)(inVec, &sd->tf->comp[i]);
570     if (cd != NULL)
571     hsum += cd->cTotal;
572     }
573     return hsum;
574     }
575    
576     /* Sample BSDF direction based on the given random variable */
577     SDError
578     SDsampBSDF(SDValue *sv, FVECT outVec, const FVECT inVec,
579     double randX, int sflags, const SDData *sd)
580     {
581     SDError ec;
582     int inFront;
583     SDSpectralDF *rdf;
584     double rdiff;
585     float coef[SDmaxCh];
586     int i, j, n, nr;
587     SDComponent *sdc;
588     const SDCDst **cdarr = NULL;
589     /* check arguments */
590     if ((sv == NULL) | (outVec == NULL) | (inVec == NULL) | (sd == NULL) |
591     (randX < .0) | (randX >= 1.))
592     return SDEargument;
593     /* whose side are we on? */
594     inFront = (inVec[2] > .0);
595     /* remember diffuse portions */
596     if (inFront) {
597     *sv = sd->rLambFront;
598     rdf = sd->rf;
599     } else /* !inFront */ {
600     *sv = sd->rLambBack;
601     rdf = sd->rb;
602     }
603     if ((sflags & SDsampDf+SDsampR) != SDsampDf+SDsampR)
604     sv->cieY = .0;
605     rdiff = sv->cieY;
606     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT)
607     sv->cieY += sd->tLamb.cieY;
608     /* gather non-diffuse components */
609     i = nr = ((sflags & SDsampSp+SDsampR) == SDsampSp+SDsampR &&
610     rdf != NULL) ? rdf->ncomp : 0;
611     j = ((sflags & SDsampSp+SDsampT) == SDsampSp+SDsampT &&
612     sd->tf != NULL) ? sd->tf->ncomp : 0;
613     n = i + j;
614     if (n > 0 && (cdarr = (const SDCDst **)malloc(n*sizeof(SDCDst *))) == NULL)
615     return SDEmemory;
616     while (j-- > 0) { /* non-diffuse transmission */
617     cdarr[i+j] = (*sd->tf->comp[j].func->getCDist)(inVec, &sd->tf->comp[j]);
618     if (cdarr[i+j] == NULL) {
619     free(cdarr);
620     return SDEmemory;
621     }
622     sv->cieY += cdarr[i+j]->cTotal;
623     }
624     while (i-- > 0) { /* non-diffuse reflection */
625     cdarr[i] = (*rdf->comp[i].func->getCDist)(inVec, &rdf->comp[i]);
626     if (cdarr[i] == NULL) {
627     free(cdarr);
628     return SDEmemory;
629     }
630     sv->cieY += cdarr[i]->cTotal;
631     }
632     if (sv->cieY <= 1e-7) { /* anything to sample? */
633     sv->cieY = .0;
634     memset(outVec, 0, 3*sizeof(double));
635     return SDEnone;
636     }
637     /* scale random variable */
638     randX *= sv->cieY;
639     /* diffuse reflection? */
640     if (randX < rdiff) {
641     SDdiffuseSamp(outVec, inFront, randX/rdiff);
642     goto done;
643     }
644     randX -= rdiff;
645     /* diffuse transmission? */
646     if ((sflags & SDsampDf+SDsampT) == SDsampDf+SDsampT) {
647     if (randX < sd->tLamb.cieY) {
648     sv->spec = sd->tLamb.spec;
649     SDdiffuseSamp(outVec, !inFront, randX/sd->tLamb.cieY);
650     goto done;
651     }
652     randX -= sd->tLamb.cieY;
653     }
654     /* else one of cumulative dist. */
655     for (i = 0; i < n && randX < cdarr[i]->cTotal; i++)
656     randX -= cdarr[i]->cTotal;
657     if (i >= n)
658     return SDEinternal;
659     /* compute sample direction */
660     sdc = (i < nr) ? &rdf->comp[i] : &sd->tf->comp[i-nr];
661     ec = (*sdc->func->sampCDist)(outVec, randX/cdarr[i]->cTotal, cdarr[i]);
662     if (ec)
663     return ec;
664     /* compute color */
665     j = (*sdc->func->getBSDFs)(coef, outVec, inVec, sdc->dist);
666     if (j <= 0) {
667     sprintf(SDerrorDetail, "BSDF \"%s\" sampling value error",
668     sd->name);
669     return SDEinternal;
670     }
671     sv->spec = sdc->cspec[0];
672     rdiff = coef[0];
673     while (--j) {
674     c_cmix(&sv->spec, rdiff, &sv->spec, coef[j], &sdc->cspec[j]);
675     rdiff += coef[j];
676     }
677     done:
678     if (cdarr != NULL)
679     free(cdarr);
680     /* make sure everything is set */
681     c_ccvt(&sv->spec, C_CSXY+C_CSSPEC);
682     return SDEnone;
683     }
684    
685     /* Compute World->BSDF transform from surface normal and up (Y) vector */
686     SDError
687     SDcompXform(RREAL vMtx[3][3], const FVECT sNrm, const FVECT uVec)
688     {
689     if ((vMtx == NULL) | (sNrm == NULL) | (uVec == NULL))
690     return SDEargument;
691     VCOPY(vMtx[2], sNrm);
692     if (normalize(vMtx[2]) == .0)
693     return SDEargument;
694     fcross(vMtx[0], uVec, vMtx[2]);
695     if (normalize(vMtx[0]) == .0)
696     return SDEargument;
697     fcross(vMtx[1], vMtx[2], vMtx[0]);
698     return SDEnone;
699     }
700    
701     /* Compute inverse transform */
702     SDError
703     SDinvXform(RREAL iMtx[3][3], RREAL vMtx[3][3])
704     {
705     RREAL mTmp[3][3];
706     double d;
707    
708     if ((iMtx == NULL) | (vMtx == NULL))
709     return SDEargument;
710     /* compute determinant */
711     mTmp[0][0] = vMtx[2][2]*vMtx[1][1] - vMtx[2][1]*vMtx[1][2];
712     mTmp[0][1] = vMtx[2][1]*vMtx[0][2] - vMtx[2][2]*vMtx[0][1];
713     mTmp[0][2] = vMtx[1][2]*vMtx[0][1] - vMtx[1][1]*vMtx[0][2];
714     d = vMtx[0][0]*mTmp[0][0] + vMtx[1][0]*mTmp[0][1] + vMtx[2][0]*mTmp[0][2];
715     if (d == .0) {
716     strcpy(SDerrorDetail, "Zero determinant in matrix inversion");
717     return SDEargument;
718     }
719     d = 1./d; /* invert matrix */
720     mTmp[0][0] *= d; mTmp[0][1] *= d; mTmp[0][2] *= d;
721     mTmp[1][0] = d*(vMtx[2][0]*vMtx[1][2] - vMtx[2][2]*vMtx[1][0]);
722     mTmp[1][1] = d*(vMtx[2][2]*vMtx[0][0] - vMtx[2][0]*vMtx[0][2]);
723     mTmp[1][2] = d*(vMtx[1][0]*vMtx[0][2] - vMtx[1][2]*vMtx[0][0]);
724     mTmp[2][0] = d*(vMtx[2][1]*vMtx[1][0] - vMtx[2][0]*vMtx[1][1]);
725     mTmp[2][1] = d*(vMtx[2][0]*vMtx[0][1] - vMtx[2][1]*vMtx[0][0]);
726     mTmp[2][2] = d*(vMtx[1][1]*vMtx[0][0] - vMtx[1][0]*vMtx[0][1]);
727     memcpy(iMtx, mTmp, sizeof(mTmp));
728     return SDEnone;
729     }
730    
731     /* Transform and normalize direction (column) vector */
732     SDError
733     SDmapDir(FVECT resVec, RREAL vMtx[3][3], const FVECT inpVec)
734     {
735     FVECT vTmp;
736    
737     if ((resVec == NULL) | (inpVec == NULL))
738     return SDEargument;
739     if (vMtx == NULL) { /* assume they just want to normalize */
740     if (resVec != inpVec)
741     VCOPY(resVec, inpVec);
742     return (normalize(resVec) > .0) ? SDEnone : SDEargument;
743     }
744     vTmp[0] = DOT(vMtx[0], inpVec);
745     vTmp[1] = DOT(vMtx[1], inpVec);
746     vTmp[2] = DOT(vMtx[2], inpVec);
747     if (normalize(vTmp) == .0)
748     return SDEargument;
749     VCOPY(resVec, vTmp);
750     return SDEnone;
751     }
752    
753     /*################################################################*/
754     /*######### DEPRECATED ROUTINES AWAITING PERMANENT REMOVAL #######*/
755    
756     /*
757 greg 2.1 * Routines for handling BSDF data
758     */
759    
760     #include "standard.h"
761     #include "paths.h"
762     #include <ctype.h>
763    
764     #define MAXLATS 46 /* maximum number of latitudes */
765    
766     /* BSDF angle specification */
767     typedef struct {
768     char name[64]; /* basis name */
769     int nangles; /* total number of directions */
770     struct {
771     float tmin; /* starting theta */
772     short nphis; /* number of phis (0 term) */
773     } lat[MAXLATS+1]; /* latitudes */
774     } ANGLE_BASIS;
775    
776 greg 2.4 #define MAXABASES 7 /* limit on defined bases */
777 greg 2.1
778     static ANGLE_BASIS abase_list[MAXABASES] = {
779     {
780     "LBNL/Klems Full", 145,
781     { {-5., 1},
782     {5., 8},
783     {15., 16},
784     {25., 20},
785     {35., 24},
786     {45., 24},
787     {55., 24},
788     {65., 16},
789     {75., 12},
790     {90., 0} }
791     }, {
792     "LBNL/Klems Half", 73,
793     { {-6.5, 1},
794     {6.5, 8},
795     {19.5, 12},
796     {32.5, 16},
797     {46.5, 20},
798     {61.5, 12},
799     {76.5, 4},
800     {90., 0} }
801     }, {
802     "LBNL/Klems Quarter", 41,
803     { {-9., 1},
804     {9., 8},
805     {27., 12},
806     {46., 12},
807     {66., 8},
808     {90., 0} }
809     }
810     };
811    
812     static int nabases = 3; /* current number of defined bases */
813    
814 greg 2.9 #define FEQ(a,b) ((a)-(b) <= 1e-6 && (b)-(a) <= 1e-6)
815    
816     static int
817     fequal(double a, double b)
818     {
819     if (b != .0)
820     a = a/b - 1.;
821     return((a <= 1e-6) & (a >= -1e-6));
822     }
823 greg 2.3
824 greg 2.14 /* Returns the name of the given tag */
825 greg 2.3 #ifdef ezxml_name
826     #undef ezxml_name
827     static char *
828     ezxml_name(ezxml_t xml)
829     {
830     if (xml == NULL)
831     return(NULL);
832     return(xml->name);
833     }
834     #endif
835    
836 greg 2.14 /* Returns the given tag's character content or empty string if none */
837 greg 2.3 #ifdef ezxml_txt
838     #undef ezxml_txt
839     static char *
840     ezxml_txt(ezxml_t xml)
841     {
842     if (xml == NULL)
843     return("");
844     return(xml->txt);
845     }
846     #endif
847    
848 greg 2.1
849     static int
850     ab_getvec( /* get vector for this angle basis index */
851     FVECT v,
852     int ndx,
853     void *p
854     )
855     {
856     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
857     int li;
858 greg 2.2 double pol, azi, d;
859 greg 2.1
860     if ((ndx < 0) | (ndx >= ab->nangles))
861     return(0);
862     for (li = 0; ndx >= ab->lat[li].nphis; li++)
863     ndx -= ab->lat[li].nphis;
864 greg 2.2 pol = PI/180.*0.5*(ab->lat[li].tmin + ab->lat[li+1].tmin);
865 greg 2.1 azi = 2.*PI*ndx/ab->lat[li].nphis;
866 greg 2.2 v[2] = d = cos(pol);
867     d = sqrt(1. - d*d); /* sin(pol) */
868 greg 2.1 v[0] = cos(azi)*d;
869     v[1] = sin(azi)*d;
870     return(1);
871     }
872    
873    
874     static int
875     ab_getndx( /* get index corresponding to the given vector */
876     FVECT v,
877     void *p
878     )
879     {
880     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
881     int li, ndx;
882 greg 2.2 double pol, azi, d;
883 greg 2.1
884     if ((v[2] < -1.0) | (v[2] > 1.0))
885     return(-1);
886 greg 2.2 pol = 180.0/PI*acos(v[2]);
887 greg 2.1 azi = 180.0/PI*atan2(v[1], v[0]);
888     if (azi < 0.0) azi += 360.0;
889 greg 2.2 for (li = 1; ab->lat[li].tmin <= pol; li++)
890 greg 2.1 if (!ab->lat[li].nphis)
891     return(-1);
892     --li;
893     ndx = (int)((1./360.)*azi*ab->lat[li].nphis + 0.5);
894     if (ndx >= ab->lat[li].nphis) ndx = 0;
895     while (li--)
896     ndx += ab->lat[li].nphis;
897     return(ndx);
898     }
899    
900    
901     static double
902     ab_getohm( /* get solid angle for this angle basis index */
903     int ndx,
904     void *p
905     )
906     {
907     ANGLE_BASIS *ab = (ANGLE_BASIS *)p;
908     int li;
909     double theta, theta1;
910    
911     if ((ndx < 0) | (ndx >= ab->nangles))
912     return(0);
913     for (li = 0; ndx >= ab->lat[li].nphis; li++)
914     ndx -= ab->lat[li].nphis;
915     theta1 = PI/180. * ab->lat[li+1].tmin;
916     if (ab->lat[li].nphis == 1) { /* special case */
917     if (ab->lat[li].tmin > FTINY)
918     error(USER, "unsupported BSDF coordinate system");
919     return(2.*PI*(1. - cos(theta1)));
920     }
921     theta = PI/180. * ab->lat[li].tmin;
922     return(2.*PI*(cos(theta) - cos(theta1))/(double)ab->lat[li].nphis);
923     }
924    
925    
926     static int
927     ab_getvecR( /* get reverse vector for this angle basis index */
928     FVECT v,
929     int ndx,
930     void *p
931     )
932     {
933     if (!ab_getvec(v, ndx, p))
934     return(0);
935    
936     v[0] = -v[0];
937     v[1] = -v[1];
938     v[2] = -v[2];
939    
940     return(1);
941     }
942    
943    
944     static int
945     ab_getndxR( /* get index corresponding to the reverse vector */
946     FVECT v,
947     void *p
948     )
949     {
950     FVECT v2;
951    
952     v2[0] = -v[0];
953     v2[1] = -v[1];
954     v2[2] = -v[2];
955    
956     return ab_getndx(v2, p);
957     }
958    
959    
960     static void
961 greg 2.4 load_angle_basis( /* load custom BSDF angle basis */
962 greg 2.3 ezxml_t wab
963     )
964     {
965     char *abname = ezxml_txt(ezxml_child(wab, "AngleBasisName"));
966     ezxml_t wbb;
967     int i;
968    
969 greg 2.4 if (!abname || !*abname)
970 greg 2.3 return;
971     for (i = nabases; i--; )
972 greg 2.12 if (!strcasecmp(abname, abase_list[i].name))
973 greg 2.4 return; /* assume it's the same */
974 greg 2.3 if (nabases >= MAXABASES)
975     error(INTERNAL, "too many angle bases");
976     strcpy(abase_list[nabases].name, abname);
977     abase_list[nabases].nangles = 0;
978     for (i = 0, wbb = ezxml_child(wab, "AngleBasisBlock");
979     wbb != NULL; i++, wbb = wbb->next) {
980     if (i >= MAXLATS)
981     error(INTERNAL, "too many latitudes in custom basis");
982     abase_list[nabases].lat[i+1].tmin = atof(ezxml_txt(
983     ezxml_child(ezxml_child(wbb,
984     "ThetaBounds"), "UpperTheta")));
985     if (!i)
986     abase_list[nabases].lat[i].tmin =
987     -abase_list[nabases].lat[i+1].tmin;
988 greg 2.9 else if (!fequal(atof(ezxml_txt(ezxml_child(ezxml_child(wbb,
989 greg 2.3 "ThetaBounds"), "LowerTheta"))),
990     abase_list[nabases].lat[i].tmin))
991     error(WARNING, "theta values disagree in custom basis");
992     abase_list[nabases].nangles +=
993     abase_list[nabases].lat[i].nphis =
994     atoi(ezxml_txt(ezxml_child(wbb, "nPhis")));
995     }
996     abase_list[nabases++].lat[i].nphis = 0;
997     }
998    
999    
1000 greg 2.6 static void
1001     load_geometry( /* load geometric dimensions and description (if any) */
1002     struct BSDF_data *dp,
1003     ezxml_t wdb
1004     )
1005     {
1006     ezxml_t geom;
1007     double cfact;
1008     const char *fmt, *mgfstr;
1009    
1010     dp->dim[0] = dp->dim[1] = dp->dim[2] = 0;
1011     dp->mgf = NULL;
1012     if ((geom = ezxml_child(wdb, "Width")) != NULL)
1013     dp->dim[0] = atof(ezxml_txt(geom)) *
1014     to_meters(ezxml_attr(geom, "unit"));
1015     if ((geom = ezxml_child(wdb, "Height")) != NULL)
1016     dp->dim[1] = atof(ezxml_txt(geom)) *
1017     to_meters(ezxml_attr(geom, "unit"));
1018     if ((geom = ezxml_child(wdb, "Thickness")) != NULL)
1019     dp->dim[2] = atof(ezxml_txt(geom)) *
1020     to_meters(ezxml_attr(geom, "unit"));
1021     if ((geom = ezxml_child(wdb, "Geometry")) == NULL ||
1022     (mgfstr = ezxml_txt(geom)) == NULL)
1023     return;
1024     if ((fmt = ezxml_attr(geom, "format")) != NULL &&
1025     strcasecmp(fmt, "MGF")) {
1026     sprintf(errmsg, "unrecognized geometry format '%s'", fmt);
1027     error(WARNING, errmsg);
1028     return;
1029     }
1030     cfact = to_meters(ezxml_attr(geom, "unit"));
1031     dp->mgf = (char *)malloc(strlen(mgfstr)+32);
1032     if (dp->mgf == NULL)
1033     error(SYSTEM, "out of memory in load_geometry");
1034     if (cfact < 0.99 || cfact > 1.01)
1035     sprintf(dp->mgf, "xf -s %.5f\n%s\nxf\n", cfact, mgfstr);
1036     else
1037     strcpy(dp->mgf, mgfstr);
1038     }
1039    
1040    
1041 greg 2.3 static void
1042 greg 2.1 load_bsdf_data( /* load BSDF distribution for this wavelength */
1043     struct BSDF_data *dp,
1044     ezxml_t wdb
1045     )
1046     {
1047     char *cbasis = ezxml_txt(ezxml_child(wdb,"ColumnAngleBasis"));
1048     char *rbasis = ezxml_txt(ezxml_child(wdb,"RowAngleBasis"));
1049     char *sdata;
1050     int i;
1051    
1052 greg 2.4 if ((!cbasis || !*cbasis) | (!rbasis || !*rbasis)) {
1053 greg 2.1 error(WARNING, "missing column/row basis for BSDF");
1054     return;
1055     }
1056     for (i = nabases; i--; )
1057 greg 2.12 if (!strcasecmp(cbasis, abase_list[i].name)) {
1058 greg 2.1 dp->ninc = abase_list[i].nangles;
1059     dp->ib_priv = (void *)&abase_list[i];
1060     dp->ib_vec = ab_getvecR;
1061     dp->ib_ndx = ab_getndxR;
1062     dp->ib_ohm = ab_getohm;
1063     break;
1064     }
1065     if (i < 0) {
1066 greg 2.4 sprintf(errmsg, "undefined ColumnAngleBasis '%s'", cbasis);
1067 greg 2.1 error(WARNING, errmsg);
1068     return;
1069     }
1070     for (i = nabases; i--; )
1071 greg 2.12 if (!strcasecmp(rbasis, abase_list[i].name)) {
1072 greg 2.1 dp->nout = abase_list[i].nangles;
1073     dp->ob_priv = (void *)&abase_list[i];
1074     dp->ob_vec = ab_getvec;
1075     dp->ob_ndx = ab_getndx;
1076     dp->ob_ohm = ab_getohm;
1077     break;
1078     }
1079     if (i < 0) {
1080 greg 2.4 sprintf(errmsg, "undefined RowAngleBasis '%s'", cbasis);
1081 greg 2.1 error(WARNING, errmsg);
1082     return;
1083     }
1084     /* read BSDF data */
1085     sdata = ezxml_txt(ezxml_child(wdb,"ScatteringData"));
1086 greg 2.4 if (!sdata || !*sdata) {
1087 greg 2.1 error(WARNING, "missing BSDF ScatteringData");
1088     return;
1089     }
1090     dp->bsdf = (float *)malloc(sizeof(float)*dp->ninc*dp->nout);
1091     if (dp->bsdf == NULL)
1092     error(SYSTEM, "out of memory in load_bsdf_data");
1093     for (i = 0; i < dp->ninc*dp->nout; i++) {
1094     char *sdnext = fskip(sdata);
1095     if (sdnext == NULL) {
1096     error(WARNING, "bad/missing BSDF ScatteringData");
1097     free(dp->bsdf); dp->bsdf = NULL;
1098     return;
1099     }
1100     while (*sdnext && isspace(*sdnext))
1101     sdnext++;
1102     if (*sdnext == ',') sdnext++;
1103     dp->bsdf[i] = atof(sdata);
1104     sdata = sdnext;
1105     }
1106     while (isspace(*sdata))
1107     sdata++;
1108     if (*sdata) {
1109     sprintf(errmsg, "%d extra characters after BSDF ScatteringData",
1110 greg 2.5 (int)strlen(sdata));
1111 greg 2.1 error(WARNING, errmsg);
1112     }
1113     }
1114    
1115    
1116     static int
1117     check_bsdf_data( /* check that BSDF data is sane */
1118     struct BSDF_data *dp
1119     )
1120     {
1121 greg 2.2 double *omega_iarr, *omega_oarr;
1122 greg 2.7 double dom, contrib, hemi_total, full_total;
1123 greg 2.1 int nneg;
1124 greg 2.2 FVECT v;
1125 greg 2.1 int i, o;
1126    
1127     if (dp == NULL || dp->bsdf == NULL)
1128     return(0);
1129 greg 2.2 omega_iarr = (double *)calloc(dp->ninc, sizeof(double));
1130     omega_oarr = (double *)calloc(dp->nout, sizeof(double));
1131     if ((omega_iarr == NULL) | (omega_oarr == NULL))
1132 greg 2.1 error(SYSTEM, "out of memory in check_bsdf_data");
1133 greg 2.2 /* incoming projected solid angles */
1134     hemi_total = .0;
1135     for (i = dp->ninc; i--; ) {
1136     dom = getBSDF_incohm(dp,i);
1137     if (dom <= .0) {
1138     error(WARNING, "zero/negative incoming solid angle");
1139     continue;
1140     }
1141     if (!getBSDF_incvec(v,dp,i) || v[2] > FTINY) {
1142     error(WARNING, "illegal incoming BSDF direction");
1143     free(omega_iarr); free(omega_oarr);
1144     return(0);
1145     }
1146     hemi_total += omega_iarr[i] = dom * -v[2];
1147     }
1148     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1149     sprintf(errmsg, "incoming BSDF hemisphere off by %.1f%%",
1150     100.*(hemi_total/PI - 1.));
1151     error(WARNING, errmsg);
1152     }
1153     dom = PI / hemi_total; /* fix normalization */
1154     for (i = dp->ninc; i--; )
1155     omega_iarr[i] *= dom;
1156     /* outgoing projected solid angles */
1157 greg 2.1 hemi_total = .0;
1158     for (o = dp->nout; o--; ) {
1159     dom = getBSDF_outohm(dp,o);
1160     if (dom <= .0) {
1161 greg 2.2 error(WARNING, "zero/negative outgoing solid angle");
1162 greg 2.1 continue;
1163     }
1164     if (!getBSDF_outvec(v,dp,o) || v[2] < -FTINY) {
1165     error(WARNING, "illegal outgoing BSDF direction");
1166 greg 2.2 free(omega_iarr); free(omega_oarr);
1167 greg 2.1 return(0);
1168     }
1169 greg 2.2 hemi_total += omega_oarr[o] = dom * v[2];
1170 greg 2.1 }
1171     if ((hemi_total > 1.02*PI) | (hemi_total < 0.98*PI)) {
1172     sprintf(errmsg, "outgoing BSDF hemisphere off by %.1f%%",
1173     100.*(hemi_total/PI - 1.));
1174     error(WARNING, errmsg);
1175     }
1176 greg 2.2 dom = PI / hemi_total; /* fix normalization */
1177 greg 2.1 for (o = dp->nout; o--; )
1178 greg 2.2 omega_oarr[o] *= dom;
1179     nneg = 0; /* check outgoing totals */
1180     for (i = 0; i < dp->ninc; i++) {
1181 greg 2.1 hemi_total = .0;
1182     for (o = dp->nout; o--; ) {
1183     double f = BSDF_value(dp,i,o);
1184 greg 2.2 if (f >= .0)
1185     hemi_total += f*omega_oarr[o];
1186     else {
1187     nneg += (f < -FTINY);
1188     BSDF_value(dp,i,o) = .0f;
1189     }
1190 greg 2.1 }
1191 greg 2.8 if (hemi_total > 1.01) {
1192 greg 2.2 sprintf(errmsg,
1193     "incoming BSDF direction %d passes %.1f%% of light",
1194     i, 100.*hemi_total);
1195 greg 2.1 error(WARNING, errmsg);
1196     }
1197     }
1198 greg 2.2 if (nneg) {
1199     sprintf(errmsg, "%d negative BSDF values (ignored)", nneg);
1200 greg 2.1 error(WARNING, errmsg);
1201     }
1202 greg 2.7 full_total = .0; /* reverse roles and check again */
1203 greg 2.2 for (o = 0; o < dp->nout; o++) {
1204     hemi_total = .0;
1205     for (i = dp->ninc; i--; )
1206     hemi_total += BSDF_value(dp,i,o) * omega_iarr[i];
1207    
1208 greg 2.8 if (hemi_total > 1.01) {
1209 greg 2.2 sprintf(errmsg,
1210     "outgoing BSDF direction %d collects %.1f%% of light",
1211     o, 100.*hemi_total);
1212     error(WARNING, errmsg);
1213     }
1214 greg 2.7 full_total += hemi_total*omega_oarr[o];
1215     }
1216     full_total /= PI;
1217 greg 2.8 if (full_total > 1.00001) {
1218     sprintf(errmsg, "BSDF transfers %.4f%% of light",
1219 greg 2.7 100.*full_total);
1220     error(WARNING, errmsg);
1221 greg 2.2 }
1222     free(omega_iarr); free(omega_oarr);
1223 greg 2.1 return(1);
1224     }
1225    
1226 greg 2.6
1227 greg 2.1 struct BSDF_data *
1228     load_BSDF( /* load BSDF data from file */
1229     char *fname
1230     )
1231     {
1232     char *path;
1233     ezxml_t fl, wtl, wld, wdb;
1234     struct BSDF_data *dp;
1235    
1236     path = getpath(fname, getrlibpath(), R_OK);
1237     if (path == NULL) {
1238     sprintf(errmsg, "cannot find BSDF file \"%s\"", fname);
1239     error(WARNING, errmsg);
1240     return(NULL);
1241     }
1242     fl = ezxml_parse_file(path);
1243     if (fl == NULL) {
1244     sprintf(errmsg, "cannot open BSDF \"%s\"", path);
1245     error(WARNING, errmsg);
1246     return(NULL);
1247     }
1248     if (ezxml_error(fl)[0]) {
1249     sprintf(errmsg, "BSDF \"%s\" %s", path, ezxml_error(fl));
1250     error(WARNING, errmsg);
1251     ezxml_free(fl);
1252     return(NULL);
1253     }
1254     if (strcmp(ezxml_name(fl), "WindowElement")) {
1255     sprintf(errmsg,
1256     "BSDF \"%s\": top level node not 'WindowElement'",
1257     path);
1258     error(WARNING, errmsg);
1259     ezxml_free(fl);
1260     return(NULL);
1261     }
1262     wtl = ezxml_child(ezxml_child(fl, "Optical"), "Layer");
1263 greg 2.10 if (strcasecmp(ezxml_txt(ezxml_child(ezxml_child(wtl,
1264     "DataDefinition"), "IncidentDataStructure")),
1265     "Columns")) {
1266     sprintf(errmsg,
1267     "BSDF \"%s\": unsupported IncidentDataStructure",
1268     path);
1269     error(WARNING, errmsg);
1270     ezxml_free(fl);
1271     return(NULL);
1272     }
1273 greg 2.3 load_angle_basis(ezxml_child(ezxml_child(wtl,
1274     "DataDefinition"), "AngleBasis"));
1275 greg 2.1 dp = (struct BSDF_data *)calloc(1, sizeof(struct BSDF_data));
1276 greg 2.6 load_geometry(dp, ezxml_child(wtl, "Material"));
1277 greg 2.1 for (wld = ezxml_child(wtl, "WavelengthData");
1278     wld != NULL; wld = wld->next) {
1279 greg 2.13 if (strcasecmp(ezxml_txt(ezxml_child(wld,"Wavelength")),
1280     "Visible"))
1281 greg 2.1 continue;
1282 greg 2.13 for (wdb = ezxml_child(wld, "WavelengthDataBlock");
1283     wdb != NULL; wdb = wdb->next)
1284     if (!strcasecmp(ezxml_txt(ezxml_child(wdb,
1285     "WavelengthDataDirection")),
1286 greg 2.1 "Transmission Front"))
1287 greg 2.13 break;
1288     if (wdb != NULL) { /* load front BTDF */
1289     load_bsdf_data(dp, wdb);
1290     break; /* ignore the rest */
1291     }
1292 greg 2.1 }
1293     ezxml_free(fl); /* done with XML file */
1294     if (!check_bsdf_data(dp)) {
1295     sprintf(errmsg, "bad/missing BTDF data in \"%s\"", path);
1296     error(WARNING, errmsg);
1297     free_BSDF(dp);
1298     dp = NULL;
1299     }
1300     return(dp);
1301     }
1302    
1303    
1304     void
1305     free_BSDF( /* free BSDF data structure */
1306     struct BSDF_data *b
1307     )
1308     {
1309     if (b == NULL)
1310     return;
1311 greg 2.6 if (b->mgf != NULL)
1312     free(b->mgf);
1313 greg 2.1 if (b->bsdf != NULL)
1314     free(b->bsdf);
1315     free(b);
1316     }
1317    
1318    
1319     int
1320     r_BSDF_incvec( /* compute random input vector at given location */
1321     FVECT v,
1322     struct BSDF_data *b,
1323     int i,
1324     double rv,
1325     MAT4 xm
1326     )
1327     {
1328     FVECT pert;
1329     double rad;
1330     int j;
1331    
1332     if (!getBSDF_incvec(v, b, i))
1333     return(0);
1334     rad = sqrt(getBSDF_incohm(b, i) / PI);
1335     multisamp(pert, 3, rv);
1336     for (j = 0; j < 3; j++)
1337     v[j] += rad*(2.*pert[j] - 1.);
1338     if (xm != NULL)
1339     multv3(v, v, xm);
1340     return(normalize(v) != 0.0);
1341     }
1342    
1343    
1344     int
1345     r_BSDF_outvec( /* compute random output vector at given location */
1346     FVECT v,
1347     struct BSDF_data *b,
1348     int o,
1349     double rv,
1350     MAT4 xm
1351     )
1352     {
1353     FVECT pert;
1354     double rad;
1355     int j;
1356    
1357     if (!getBSDF_outvec(v, b, o))
1358     return(0);
1359     rad = sqrt(getBSDF_outohm(b, o) / PI);
1360     multisamp(pert, 3, rv);
1361     for (j = 0; j < 3; j++)
1362     v[j] += rad*(2.*pert[j] - 1.);
1363     if (xm != NULL)
1364     multv3(v, v, xm);
1365     return(normalize(v) != 0.0);
1366     }
1367    
1368    
1369     static int
1370     addrot( /* compute rotation (x,y,z) => (xp,yp,zp) */
1371     char *xfarg[],
1372     FVECT xp,
1373     FVECT yp,
1374     FVECT zp
1375     )
1376     {
1377     static char bufs[3][16];
1378     int bn = 0;
1379     char **xfp = xfarg;
1380     double theta;
1381    
1382     if (yp[2]*yp[2] + zp[2]*zp[2] < 2.*FTINY*FTINY) {
1383     /* Special case for X' along Z-axis */
1384     theta = -atan2(yp[0], yp[1]);
1385     *xfp++ = "-ry";
1386     *xfp++ = xp[2] < 0.0 ? "90" : "-90";
1387     *xfp++ = "-rz";
1388     sprintf(bufs[bn], "%f", theta*(180./PI));
1389     *xfp++ = bufs[bn++];
1390     return(xfp - xfarg);
1391     }
1392     theta = atan2(yp[2], zp[2]);
1393     if (!FEQ(theta,0.0)) {
1394     *xfp++ = "-rx";
1395     sprintf(bufs[bn], "%f", theta*(180./PI));
1396     *xfp++ = bufs[bn++];
1397     }
1398     theta = asin(-xp[2]);
1399     if (!FEQ(theta,0.0)) {
1400     *xfp++ = "-ry";
1401     sprintf(bufs[bn], " %f", theta*(180./PI));
1402     *xfp++ = bufs[bn++];
1403     }
1404     theta = atan2(xp[1], xp[0]);
1405     if (!FEQ(theta,0.0)) {
1406     *xfp++ = "-rz";
1407     sprintf(bufs[bn], "%f", theta*(180./PI));
1408     *xfp++ = bufs[bn++];
1409     }
1410     *xfp = NULL;
1411     return(xfp - xfarg);
1412     }
1413    
1414    
1415     int
1416     getBSDF_xfm( /* compute BSDF orient. -> world orient. transform */
1417     MAT4 xm,
1418     FVECT nrm,
1419 greg 2.6 UpDir ud,
1420     char *xfbuf
1421 greg 2.1 )
1422     {
1423     char *xfargs[7];
1424     XF myxf;
1425     FVECT updir, xdest, ydest;
1426 greg 2.6 int i;
1427 greg 2.1
1428     updir[0] = updir[1] = updir[2] = 0.;
1429     switch (ud) {
1430     case UDzneg:
1431     updir[2] = -1.;
1432     break;
1433     case UDyneg:
1434     updir[1] = -1.;
1435     break;
1436     case UDxneg:
1437     updir[0] = -1.;
1438     break;
1439     case UDxpos:
1440     updir[0] = 1.;
1441     break;
1442     case UDypos:
1443     updir[1] = 1.;
1444     break;
1445     case UDzpos:
1446     updir[2] = 1.;
1447     break;
1448     case UDunknown:
1449     return(0);
1450     }
1451     fcross(xdest, updir, nrm);
1452     if (normalize(xdest) == 0.0)
1453     return(0);
1454     fcross(ydest, nrm, xdest);
1455     xf(&myxf, addrot(xfargs, xdest, ydest, nrm), xfargs);
1456     copymat4(xm, myxf.xfm);
1457 greg 2.6 if (xfbuf == NULL)
1458     return(1);
1459     /* return xf arguments as well */
1460     for (i = 0; xfargs[i] != NULL; i++) {
1461     *xfbuf++ = ' ';
1462     strcpy(xfbuf, xfargs[i]);
1463     while (*xfbuf) ++xfbuf;
1464     }
1465 greg 2.1 return(1);
1466     }
1467 greg 2.15
1468     /*######### END DEPRECATED ROUTINES #######*/
1469     /*################################################################*/