1 |
greg |
1.1 |
#ifndef lint |
2 |
greg |
1.9 |
static const char RCSid[] = "$Id: cnt.c,v 1.8 2022/04/22 15:52:50 greg Exp $"; |
3 |
greg |
1.1 |
#endif |
4 |
|
|
/* |
5 |
|
|
* cnt.c - simple counting program. |
6 |
|
|
* |
7 |
|
|
* 2/1/88 |
8 |
greg |
1.3 |
* |
9 |
|
|
* Added -s (shuffle) option April 2022 |
10 |
greg |
1.1 |
*/ |
11 |
|
|
|
12 |
|
|
#include <stdio.h> |
13 |
greg |
1.3 |
#include <time.h> |
14 |
|
|
#include "random.h" |
15 |
greg |
1.1 |
|
16 |
greg |
1.4 |
#ifndef uint16 |
17 |
|
|
#define uint16 unsigned short /* 16-bit unsigned integer */ |
18 |
|
|
#endif |
19 |
|
|
#undef uby8 |
20 |
|
|
#define uby8 unsigned char /* 8-bit unsigned integer */ |
21 |
|
|
|
22 |
greg |
1.3 |
#define MAXDIM 50 |
23 |
greg |
1.1 |
|
24 |
greg |
1.4 |
#define NLEVELS 9 /* number of tree levels */ |
25 |
|
|
#define BRORDER 6 /* branches/level */ |
26 |
|
|
|
27 |
|
|
/* Tree branch structure for quick occupancy search */ |
28 |
|
|
/* with 9 levels & 6 branches per level, we can store 1.94 Gbits in 259 MBytes (4.5% overhead) */ |
29 |
|
|
const struct { |
30 |
|
|
long capacity; /* slots/branch this level */ |
31 |
|
|
long skip_bytes; /* bytes until next branch */ |
32 |
|
|
int cntr_siz; /* occupancy counter size */ |
33 |
|
|
} tree_br[NLEVELS] = { |
34 |
|
|
{248L, 32L, 1}, |
35 |
|
|
{248L*6, 32L*6+2, 2}, |
36 |
|
|
{248L*6*6, (32L*6+2)*6+2, 2}, |
37 |
|
|
{248L*6*6*6, ((32L*6+2)*6+2)*6+2, 2}, |
38 |
|
|
{248L*6*6*6*6, (((32L*6+2)*6+2)*6+2)*6+3, 3}, |
39 |
|
|
{248L*6*6*6*6*6, ((((32L*6+2)*6+2)*6+2)*6+3)*6+3, 3}, |
40 |
|
|
{248L*6*6*6*6*6*6, (((((32L*6+2)*6+2)*6+2)*6+3)*6+3)*6+3, 3}, |
41 |
|
|
{248L*6*6*6*6*6*6*6, ((((((32L*6+2)*6+2)*6+2)*6+3)*6+3)*6+3)*6+4, 4}, |
42 |
|
|
{248L*6*6*6*6*6*6*6*6, (((((((32L*6+2)*6+2)*6+2)*6+3)*6+3)*6+3)*6+4)*6+4, 4}, |
43 |
|
|
}; |
44 |
|
|
|
45 |
|
|
char buf[256]; /* buffer for ordered array output */ |
46 |
greg |
1.1 |
|
47 |
|
|
|
48 |
greg |
1.3 |
/* Encode integer in string and return pointer to end */ |
49 |
|
|
static char * |
50 |
greg |
1.4 |
tack(char *b, long i) |
51 |
greg |
1.1 |
{ |
52 |
greg |
1.3 |
char *cp; |
53 |
greg |
1.1 |
char *res; |
54 |
|
|
|
55 |
|
|
*b++ = '\t'; |
56 |
|
|
cp = b; |
57 |
|
|
if (i == 0) |
58 |
|
|
*cp++ = '0'; |
59 |
|
|
else |
60 |
|
|
do { |
61 |
greg |
1.4 |
*cp++ = i%10L + '0'; |
62 |
|
|
i /= 10L; |
63 |
greg |
1.1 |
} while (i); |
64 |
|
|
res = cp--; |
65 |
|
|
#define c i |
66 |
|
|
while (cp > b) { /* reverse string */ |
67 |
|
|
c = *cp; |
68 |
|
|
*cp-- = *b; |
69 |
|
|
*b++ = c; |
70 |
|
|
} |
71 |
|
|
#undef c |
72 |
|
|
return(res); |
73 |
|
|
} |
74 |
|
|
|
75 |
|
|
|
76 |
greg |
1.3 |
/* Loop over dimensions, spitting out buffer after each increment */ |
77 |
schorsch |
1.2 |
static void |
78 |
greg |
1.4 |
loop(long *n, char *b) |
79 |
greg |
1.1 |
{ |
80 |
greg |
1.4 |
long i; |
81 |
greg |
1.1 |
|
82 |
|
|
if (n[0] == 0) { |
83 |
|
|
*b = '\0'; |
84 |
|
|
puts(buf); |
85 |
|
|
return; |
86 |
|
|
} |
87 |
|
|
for (i = 0; i < n[0]; i++) |
88 |
|
|
loop(n+1, tack(b, i)); |
89 |
|
|
} |
90 |
greg |
1.3 |
|
91 |
|
|
|
92 |
greg |
1.4 |
/* Print out shuffled value */ |
93 |
|
|
static void |
94 |
|
|
print_shuf(long *n, long aval) |
95 |
|
|
{ |
96 |
|
|
int i; |
97 |
|
|
|
98 |
|
|
for (i = 0; n[i+1]; i++) { |
99 |
|
|
printf("\t%ld", aval % n[i]); |
100 |
|
|
aval /= n[i]; |
101 |
|
|
} |
102 |
|
|
printf("\t%ld\n", aval); |
103 |
|
|
} |
104 |
|
|
|
105 |
|
|
|
106 |
|
|
/* Allocate and prepare occupancy tree */ |
107 |
|
|
static uby8 * |
108 |
|
|
tree_alloc(long alen) |
109 |
|
|
{ |
110 |
|
|
uby8 *troot; |
111 |
|
|
double bytes_per_bit; |
112 |
|
|
int i; |
113 |
|
|
int ht = 0; |
114 |
|
|
/* how tall does our tree need to be? */ |
115 |
|
|
while (tree_br[ht].capacity*BRORDER < alen) |
116 |
|
|
if (++ht >= NLEVELS) { |
117 |
|
|
fputs("Array too large to shuffle\n", stderr); |
118 |
|
|
exit(1); |
119 |
|
|
} |
120 |
|
|
bytes_per_bit = 1.; /* figure out tree size (with overhead) */ |
121 |
|
|
for (i = ht; i >= 0; i--) |
122 |
|
|
bytes_per_bit += (double)tree_br[i].cntr_siz; |
123 |
|
|
bytes_per_bit += (double)tree_br[ht].skip_bytes; |
124 |
|
|
bytes_per_bit /= (double)tree_br[ht].capacity; |
125 |
|
|
troot = (uby8 *)calloc((long)(alen*bytes_per_bit)+2, 1); |
126 |
|
|
if (troot == NULL) { |
127 |
|
|
fputs("Not enough memory for shuffle\n", stderr); |
128 |
|
|
exit(1); |
129 |
|
|
} |
130 |
|
|
*troot = ht; /* first byte is tree height */ |
131 |
greg |
1.5 |
for (i = 256; i--; ) { /* assign 0-bit count table */ |
132 |
greg |
1.4 |
int b; |
133 |
greg |
1.5 |
buf[i] = 8; |
134 |
greg |
1.4 |
for (b = i; b; b >>= 1) |
135 |
greg |
1.5 |
buf[i] -= b&1; |
136 |
greg |
1.4 |
} |
137 |
|
|
return(troot); |
138 |
|
|
} |
139 |
|
|
|
140 |
|
|
|
141 |
|
|
/* Get number of slots available at this branch location */ |
142 |
|
|
static long |
143 |
|
|
get_avail(const uby8 *ctrp, int lvl) |
144 |
|
|
{ |
145 |
|
|
long cnt = 0; |
146 |
|
|
int n = tree_br[lvl].cntr_siz; |
147 |
|
|
|
148 |
|
|
while (--n > 0) { /* LSB first */ |
149 |
|
|
cnt |= ctrp[n]; |
150 |
|
|
cnt <<= 8; |
151 |
|
|
} |
152 |
|
|
cnt |= ctrp[0]; |
153 |
|
|
|
154 |
|
|
return(tree_br[lvl].capacity - cnt); |
155 |
|
|
} |
156 |
|
|
|
157 |
|
|
|
158 |
|
|
/* Increment branch occupancy counter */ |
159 |
|
|
static void |
160 |
|
|
incr_counter(uby8 *ctrp, int n) |
161 |
|
|
{ |
162 |
|
|
n = tree_br[n].cntr_siz; |
163 |
|
|
|
164 |
greg |
1.8 |
while (! ++(*ctrp++)) /* LSB first */ |
165 |
greg |
1.7 |
if (--n <= 0) { |
166 |
|
|
fputs("Shuffle occupancy overflow!\n", stderr); |
167 |
|
|
exit(1); /* means we sized something wrong */ |
168 |
|
|
} |
169 |
greg |
1.4 |
} |
170 |
|
|
|
171 |
|
|
|
172 |
|
|
/* Skip to and allocate a leaf from tree */ |
173 |
|
|
static long |
174 |
|
|
eat_nth_leaf(uby8 *brp, long ski) |
175 |
|
|
{ |
176 |
|
|
int lvl = *brp++; /* tree height in first byte */ |
177 |
|
|
long pos = 0; |
178 |
|
|
int b; |
179 |
|
|
|
180 |
|
|
while (lvl >= 0) { /* descend to leaves */ |
181 |
|
|
long navail; |
182 |
|
|
b = 0; /* select each branch */ |
183 |
|
|
while (ski >= (navail = get_avail(brp, lvl))) { |
184 |
|
|
if (++b >= BRORDER) { |
185 |
|
|
fputs("Shuffle tree error!\n", stderr); |
186 |
|
|
exit(1); |
187 |
|
|
} |
188 |
|
|
pos += tree_br[lvl].capacity; |
189 |
|
|
ski -= navail; |
190 |
|
|
brp += tree_br[lvl].skip_bytes; |
191 |
|
|
} |
192 |
|
|
incr_counter(brp, lvl); /* we intend to eat one */ |
193 |
|
|
brp += tree_br[lvl--].cntr_siz; /* drop a level */ |
194 |
|
|
} |
195 |
greg |
1.5 |
while (ski >= buf[*brp]) { /* browse the leaves */ |
196 |
greg |
1.4 |
pos += 8; |
197 |
greg |
1.5 |
ski -= buf[*brp++]; /* buf contains 0-bit counts */ |
198 |
greg |
1.4 |
} |
199 |
greg |
1.5 |
b = 0; /* find target bit in byte */ |
200 |
|
|
while ((ski -= !(*brp & 1<<b)) >= 0) { |
201 |
greg |
1.4 |
pos++; |
202 |
greg |
1.5 |
b++; |
203 |
greg |
1.4 |
} |
204 |
greg |
1.5 |
*brp |= 1<<b; /* eat it */ |
205 |
|
|
return(pos); /* & return leaf's slot# */ |
206 |
greg |
1.4 |
} |
207 |
|
|
|
208 |
|
|
|
209 |
|
|
/* Shuffle all possible output strings and spit out randomly (tree version) */ |
210 |
|
|
static void |
211 |
|
|
big_shuffle(long *n, long alen) |
212 |
|
|
{ |
213 |
|
|
uby8 *tree_root; |
214 |
|
|
/* size and allocate holder tree */ |
215 |
|
|
tree_root = tree_alloc(alen); |
216 |
|
|
|
217 |
|
|
while (alen > 0) /* allocate and print random array entries */ |
218 |
greg |
1.6 |
print_shuf(n, eat_nth_leaf(tree_root, irandom(alen--))); |
219 |
greg |
1.4 |
|
220 |
|
|
free(tree_root); /* all done */ |
221 |
|
|
} |
222 |
|
|
|
223 |
|
|
|
224 |
greg |
1.3 |
/* Shuffle all possible output strings and spit out randomly */ |
225 |
|
|
static void |
226 |
greg |
1.4 |
shuffle(long *n) |
227 |
|
|
{ |
228 |
|
|
long alen; |
229 |
|
|
uint16 *myshuf; |
230 |
|
|
int i; |
231 |
|
|
|
232 |
|
|
alen = 1; /* compute shuffle size */ |
233 |
|
|
for (i = 0; n[i]; i++) { |
234 |
|
|
if (alen*n[i] <= alen) { |
235 |
|
|
fputs("Array too large to count!\n", stderr); |
236 |
greg |
1.3 |
exit(1); |
237 |
greg |
1.4 |
} |
238 |
|
|
alen *= n[i]; |
239 |
|
|
} |
240 |
|
|
/* get unique starting point */ |
241 |
|
|
srandom((long)time(0)); |
242 |
greg |
1.3 |
|
243 |
greg |
1.4 |
if (alen > 1L<<16) { /* use large shuffle method? */ |
244 |
|
|
big_shuffle(n, alen); |
245 |
|
|
return; |
246 |
|
|
} |
247 |
|
|
myshuf = (uint16 *)malloc(alen*sizeof(uint16)); |
248 |
greg |
1.3 |
if (myshuf == NULL) { |
249 |
|
|
fputs("Insufficient memory for shuffle\n", stderr); |
250 |
|
|
exit(1); |
251 |
|
|
} |
252 |
|
|
for (i = alen; i--; ) /* initialize in any order */ |
253 |
|
|
myshuf[i] = i; |
254 |
|
|
/* perform Fisher-Yates shuffle */ |
255 |
|
|
for (i = 0; i < alen-1; i++) { |
256 |
greg |
1.6 |
int ix = irandom(alen-i) + i; |
257 |
greg |
1.3 |
int ndx = myshuf[i]; |
258 |
|
|
myshuf[i] = myshuf[ix]; |
259 |
|
|
myshuf[ix] = ndx; |
260 |
|
|
} |
261 |
|
|
/* put randomly indexed output */ |
262 |
greg |
1.4 |
for (i = alen; i--; ) |
263 |
|
|
print_shuf(n, (long)myshuf[i]); |
264 |
|
|
|
265 |
|
|
free(myshuf); /* all done */ |
266 |
greg |
1.3 |
} |
267 |
|
|
|
268 |
|
|
|
269 |
|
|
int |
270 |
greg |
1.4 |
main(int argc, char *argv[]) |
271 |
greg |
1.3 |
{ |
272 |
|
|
char *prog = argv[0]; |
273 |
|
|
int doshuffle = 0; |
274 |
greg |
1.4 |
long n[MAXDIM]; |
275 |
greg |
1.3 |
int a; |
276 |
|
|
|
277 |
|
|
argv++; argc--; |
278 |
|
|
if (argc <= 0) |
279 |
|
|
goto userr; |
280 |
|
|
if (argv[0][0] == '-' && argv[0][1] == 's') { |
281 |
|
|
doshuffle = 1; |
282 |
|
|
argv++; argc--; |
283 |
|
|
} |
284 |
|
|
for (a = 0; a < argc; a++) |
285 |
greg |
1.4 |
if ((n[a] = atol(argv[a])) <= 1) |
286 |
greg |
1.3 |
goto userr; |
287 |
|
|
n[a] = 0; |
288 |
|
|
if (!a) |
289 |
|
|
goto userr; |
290 |
greg |
1.9 |
#ifdef getc_unlocked |
291 |
|
|
flockfile(stdout); /* avoid overhead */ |
292 |
|
|
#endif |
293 |
greg |
1.3 |
if (doshuffle) |
294 |
|
|
shuffle(n); |
295 |
|
|
else |
296 |
|
|
loop(n, buf); |
297 |
|
|
|
298 |
|
|
return(0); |
299 |
|
|
userr: |
300 |
|
|
fputs("Usage: ", stderr); |
301 |
|
|
fputs(prog, stderr); |
302 |
|
|
fputs(" [-s] N0 [N1 ..]\n", stderr); |
303 |
|
|
return(1); |
304 |
|
|
} |