{ RCSid $Id: spharm.cal,v 1.5 2005/02/10 17:07:45 greg Exp $ } { The first few Spherical Harmonics Feb 2005 G. Ward } { Factorial (n!) } fact(n) : if(n-1.5, n*fact(n-1), 1); { Associated Legendre Polynomials 0-8 } LegendreP2(n,m,x,s) : select(n+1, select(m+1, 1), select(m+1, x, s), select(m+1, .5*(3*x*x - 1), 3*x*s, 3*(1-x*x)), select(m+1, .5*x*(5*x*x-3), 1.5*(5*x*x-1)*s, 15*x*(1-x*x), 15*s*s*s), select(m+1, .125*(3 + x*x*(-30 + x*x*35)), 2.5*x*(-3 + x*x*7)*s, 7.5*(7*x*x-1)*(1-x*x), 105*x*s*s*s, 105*s*s*s*s), select(m+1, .125*x*(15 + x*x*(-70 + x*x*63)), 1.875*s*(1 + x*x*(-14 + x*x*21)), 52.5*x*(1-x*x)*(3*x*x-1), 52.5*s*s*s*(9*x*x-1), 945*x*s*s*s*s, 945*s*s*s*s*s), select(m+1, .0625*(-5 + x*x*(105 + x*x*(-315 + x*x*231))), 2.625*(5 + x*x*(-30 + x*x*33))*s, 13.125*s*s*(1 + x*x*(-18 + x*x*33)), 157.5*(11*x*x-3)*x*s*s*s, 472.5*s*s*s*s*(11*x*x-1), 10395*x*s*s*s*s*s, 10395*s*s*s*s*s*s), select(m+1, .0625*x*(-35 + x*x*(315 + x*x*(-693 + x*x*429))), .4375*s*(-5 + x*x*(135 + x*x*(-495 + x*x*429))), 7.875*x*s*s*(15 + x*x*(-110 + x*x*143)), 39.375*s*s*(1 + x*x*(-18 + x*x*33)), 157.5*(11*x*x-3)*x*s*s*s, 472.5*s*s*s*s*(11*x*x-1), 10395*x*s*s*s*s*s, 10395*s*s*s*s*s*s), select(m+1, .0078125*(35 + x*x*(-1260 + x*x*(6930 + x*x*(-12012 + x*x*6435)))), .5625*x*s*(-35 + x*x*(385 + x*x*(-1001 + x*x*715))), 19.6875*s*s*(-1 + x*x*(33 + x*x*(-143 + x*x*143))), 433.125*x*s*s*s*(3 + x*x*(-26 + x*x*39)), 1299.375*s*s*s*s*(1 + x*x*(-26 + x*x*65)), 67567.5*x*s*s*s*s*s*(5*x*x-1), 67567.5*s*s*s*s*s*s*(15*x*x-1), 2027025*x*s*s*s*s*s*s*s, 2027025*s*s*s*s*s*s*s*s) ); { Relation for Legendre with -M } odd(n) : .5*n - floor(.5*n) - .25; LegendreP(n,m,x) : if(m+.5, LegendreP2(n,m,x,sqrt(1-x*x)), fact(n+m)/fact(n-m) * LegendreP2(n,-m,x,sqrt(1-x*x)) ); { SH normalization factor } SHnormF(l,m) : sqrt(0.25/PI*(2*l+1)*fact(l-m)/fact(l+m)); { Spherical Harmonics theta function } SHthetaF(l,m,theta) : SHnormF(l,m)*LegendreP(l,m,cos(theta)); { Spherical Harmonic real portion } SphericalHarmonicYr(l,m,theta,phi) : SHthetaF(l,m,theta)*cos(m*phi); { Spherical Harmonic imag. portion } SphericalHarmonicYi(l,m,theta,phi) : SHthetaF(l,m,theta)*sin(m*phi); { Ordered, real SH basis functions } { Coeff. order based on Basri & Jacobs paper, "Lambertian Reflectance and Linear Subspaces," IEEE Trans. on Pattern Analysis & Machine Intel., vol. 25, no. 2, Feb. 2003, pp. 218-33, Eq. (7): i n m even/odd = = = ======== 1 0 0 x 2 1 0 x 3 1 1 e 4 1 1 o 5 2 0 x 6 2 1 e 7 2 1 o 8 2 2 e 9 2 2 o 10 3 0 x 11 3 1 e ... } SH_B4(l,m,o,theta,phi) : if(m-.5, sqrt(2) * if(o, SphericalHarmonicYi(l,m,theta,phi), SphericalHarmonicYr(l,m,theta,phi)), SHthetaF(l,0,theta) ); SH_B3(l,r,theta,phi) : SH_B4(l,floor((r+1.00001)/2),odd(r+1),theta,phi); SH_B2(l,i,theta,phi) : SH_B3(l,i-l*l-1,theta,phi); SphericalHarmonicB(i,theta,phi) : SH_B2(ceil(sqrt(i)-1.00001),i,theta,phi); { Application of SH coeff. f(i) } SH_F2(n,f,theta,phi) : if(n-.5, f(n)*SphericalHarmonicB(n,theta,phi) + SH_F2(n-1,f,theta,phi), 0); SphericalHarmonicF(f,theta,phi) : SH_F2(f(0),f,theta,phi);