ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/lib/prism.cal
Revision: 1.2
Committed: Tue Mar 18 17:30:17 2003 UTC (21 years, 2 months ago) by greg
Branch: MAIN
CVS Tags: HEAD
Changes since 1.1: +0 -0 lines
State: FILE REMOVED
Log Message:
Decided to move ray/lib directory into non-CVS distribution

File Contents

# Content
1 {
2 Calculation of relay directions for prismatic glazing
3
4 31 July 1991 Greg Ward
5
6 Prism is oriented with flat side in xz plane
7 and normal in -y direction. The prism is
8 extruded along the x axis.
9
10 Reflections are not computed.
11
12 Parameters:
13 A1 - index of refraction
14 A2 - thickness of prism triangle
15 A3 - height of upper side (segment 1)
16 A4 - height of lower side (segment 2)
17
18 Computes:
19 coef1 - transmission coefficient for upper side
20 dx1, dy1,
21 dz1 - transmission direction for upper side
22 coef2 - transmission coefficient for lower side
23 dx2, dy2,
24 dz2 - transmission direction for lower side
25 }
26 { required formulae }
27 tan2sin(a) = sqrt(a*a/(1+a*a));
28 stb(sta,ca,sa) = ca*sta - sa*sqrt(A1*A1-sta*sta);
29 cos_p = Sqrt(1-Dx*Dx);
30 dtrans(c1,c2) = dtransb(c1, sqrt(1+(c1*c1-1)/A1/A1),
31 c2, sqrt(1+(c2*c2-1)/A1/A1));
32 dtransb(c1o,c1i,c2o,c2i) = 8*A1*A1 *
33 ( c1o*c1i*c2o*c2i/sq((A1*c1o+c1i)*(A1*c2o+c2i)) +
34 1/c1o/c1i/c2o/c2i/sq((A1/c1o+1/c1i)*(A1/c2o+1/c2i)) );
35
36 {************************************************
37 Definitions for Segment 1
38 }
39 { slope angle (always positive) }
40 sin_a1 = tan2sin(A2/A3/cos_p);
41 cos_a1 = Sqrt(1-sin_a1*sin_a1);
42 { computed coefficeint }
43 coef1 = A3/(A3+A4) * if(Dy,
44 if(1-abs(sin_tB1o),
45 dtrans(cos_tA1i, cos_tB1o),
46 0),
47 if (Dy*cos_a1 + Dz*sin_a1,
48 0,
49 if (1-abs(sin_tA1o),
50 dtrans(cos_tB1i, cos_tA1o),
51 0)));
52 { computed direction }
53 dx1 = Dx;
54 dy1 = if(Dy,
55 (cos_a1*cos_tB1o-sin_a1*sin_tB1o)*cos_p,
56 -cos_tA1o*cos_p);
57 dz1 = if(Dy,
58 (sin_a1*cos_tB1o+cos_a1*sin_tB1o)*cos_p,
59 -sin_tA1o*cos_p);
60 { incident angle (flat side) }
61 sin_tA1i = Dz/cos_p;
62 cos_tA1i = Sqrt(1-sin_tA1i*sin_tA1i);
63 { transmitted angle (steep side) }
64 sin_tB1o = stb(sin_tA1i, cos_a1, sin_a1);
65 cos_tB1o = Sqrt(1-sin_tB1o*sin_tB1o);
66 { incident angle (steep side) }
67 sin_tB1i = -Dz/cos_p*cos_a1 -
68 Sqrt(1-sq(Dz/cos_p))*sin_a1;
69 cos_tB1i = Sqrt(1-sin_tB1i*sin_tB1i);
70 { transmitted angle (flat side) }
71 sin_tA1o = stb(sin_tB1i, cos_a1, -sin_a1);
72 cos_tA1o = Sqrt(1-sin_tA1o*sin_tA1o);
73
74 {************************************************
75 Definitions for Segment 2
76 }
77 { slope angle (always negative) }
78 sin_a2 = -tan2sin(A2/A4/cos_p);
79 cos_a2 = Sqrt(1-sin_a2*sin_a2);
80 { computed coefficeint }
81 coef2 = A4/(A3+A4) * if(Dy,
82 if(1-abs(sin_tB2o),
83 dtrans(cos_tA2i, cos_tB2o),
84 0),
85 if (Dy*cos_a2 + Dz*sin_a2,
86 0,
87 if (1-abs(sin_tA2o),
88 dtrans(cos_tB2i, cos_tA2o),
89 0)));
90 { computed direction }
91 dx2 = Dx;
92 dy2 = if(Dy,
93 (cos_a2*cos_tB2o-sin_a2*sin_tB2o)*cos_p,
94 -cos_tA2o*cos_p);
95 dz2 = if(Dy,
96 (sin_a2*cos_tB2o+cos_a2*sin_tB2o)*cos_p,
97 -sin_tA2o*cos_p);
98 { incident angle (flat side) }
99 sin_tA2i = Dz/cos_p;
100 cos_tA2i = Sqrt(1-sin_tA2i*sin_tA2i);
101 { transmitted angle (steep side) }
102 sin_tB2o = stb(sin_tA2i, cos_a2, sin_a2);
103 cos_tB2o = Sqrt(1-sin_tB2o*sin_tB2o);
104 { incident angle (steep side) }
105 sin_tB2i = -Dz/cos_p*cos_a2 -
106 Sqrt(1-sq(Dz/cos_p))*sin_a2;
107 cos_tB2i = Sqrt(1-sin_tB2i*sin_tB2i);
108 { transmitted angle (flat side) }
109 sin_tA2o = stb(sin_tB2i, cos_a2, -sin_a2);
110 cos_tA2o = Sqrt(1-sin_tA2o*sin_tA2o);