ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/lib/He3.cal
Revision: 1.2
Committed: Tue Mar 18 17:30:16 2003 UTC (21 years, 2 months ago) by greg
Branch: MAIN
CVS Tags: HEAD
Changes since 1.1: +0 -0 lines
State: FILE REMOVED
Log Message:
Decided to move ray/lib directory into non-CVS distribution

File Contents

# Content
1 {
2 He-Torrance Reflectance Model (Siggraph 1991)
3
4 Complete spectral version (8/17/95)
5
6 The primitive for this function should look something like:
7
8 void BRTDfunc name
9 10
10 s`r s`g s`b
11 0 0 0
12 dd`r dd`g dd`b
13 He3.cal
14 0
15 17 amb`r amb`g amb`b
16 amb`r amb`g amb`b
17 0 0 0
18 sigma0 tau
19 n_real`r n_imag`r
20 n_real`g n_imag`g
21 n_real`b n_imag`b
22 }
23
24 { Constants }
25 lambda`r : .67; { red wavelength (microns) }
26 lambda`g : .55; { green wavelength (microns) }
27 lambda`b : .43; { blue wavelength (microns) }
28 z0err : .0001; { accepted error in value of z0 }
29 Dsumlim : .000001; { last term of D summation }
30 Dsummax : 200; { maximum terms in D summation }
31
32 { Parameters }
33 sigma0 = arg(10); { surface height deviation (microns) }
34 tau = arg(11); { correlation distance (microns) }
35 n_real`r = arg(12); { red real part of index of refraction }
36 n_imag`r = arg(13); { red imaginary part of index of refraction }
37 n_real`g = arg(14); { green real part of index of refraction }
38 n_imag`g = arg(15); { green imaginary part of index of refraction }
39 n_real`b = arg(16); { blue real part of index of refraction }
40 n_imag`b = arg(17); { blue imaginary part of index of refraction }
41 { Derived parameters }
42 n_k`r = n_imag`r/n_real`r;
43 n_k`g = n_imag`g/n_real`g;
44 n_k`b = n_imag`b/n_real`b;
45
46 { Repeated formulas }
47 cotexp(t) = tau/sigma0/2/tan(t);
48 shadowf2(et,erfcet) = (1-.5*erfcet) /
49 ((Exp(-sq(et))/sqrt(PI)/et - erfcet)/2 + 1);
50 shadowf1(t) = or(FTINY-sigma0, .01-abs(t));
51 shadowf0(t) = abs(t) - (PI/2-.0001);
52 shadowf(t) = if(shadowf0(t), 0, if(shadowf1(t), 1,
53 shadowf2(cotexp(t), erfc(cotexp(t)))));
54 K(t) = if(abs(t)-FTINY, tan(t) * erfc(cotexp(t)), 0);
55 fuvA`r(ct) = sq(n_real`r)*(1-sq(n_k`r)) - (1-sq(ct));
56 fuvB`r(ct) = sqrt(sq(fuvA`r(ct)) + 4*sq(sq(n_real`r)*n_k`r));
57 fu2`r(ct) = (fuvA`r(ct) + fuvB`r(ct))/2;
58 fv2`r(ct) = (-fuvA`r(ct) + fuvB`r(ct))/2;
59 fperp2`r(ct) = (sq(ct-sqrt(fu2`r(ct))) + fv2`r(ct)) /
60 (sq(ct+sqrt(fu2`r(ct))) + fv2`r(ct));
61 fpara2`r(ct) = (sq(sq(n_real`r)*(1-sq(n_k`r))*ct - sqrt(fu2`r(ct))) +
62 sq(2*sq(n_real`r)*n_k`r*ct - sqrt(fv2`r(ct)))) /
63 (sq(sq(n_real`r)*(1-sq(n_k`r))*ct + sqrt(fu2`r(ct))) +
64 sq(2*sq(n_real`r)*n_k`r*ct + sqrt(fv2`r(ct))));
65 fresnel2`r(ct) = (fperp2`r(ct) + fpara2`r(ct))/2;
66 fuvA`g(ct) = sq(n_real`g)*(1-sq(n_k`g)) - (1-sq(ct));
67 fuvB`g(ct) = sqrt(sq(fuvA`g(ct)) + 4*sq(sq(n_real`g)*n_k`g));
68 fu2`g(ct) = (fuvA`g(ct) + fuvB`g(ct))/2;
69 fv2`g(ct) = (-fuvA`g(ct) + fuvB`g(ct))/2;
70 fperp2`g(ct) = (sq(ct-sqrt(fu2`g(ct))) + fv2`g(ct)) /
71 (sq(ct+sqrt(fu2`g(ct))) + fv2`g(ct));
72 fpara2`g(ct) = (sq(sq(n_real`g)*(1-sq(n_k`g))*ct - sqrt(fu2`g(ct))) +
73 sq(2*sq(n_real`g)*n_k`g*ct - sqrt(fv2`g(ct)))) /
74 (sq(sq(n_real`g)*(1-sq(n_k`g))*ct + sqrt(fu2`g(ct))) +
75 sq(2*sq(n_real`g)*n_k`g*ct + sqrt(fv2`g(ct))));
76 fresnel2`g(ct) = (fperp2`g(ct) + fpara2`g(ct))/2;
77 fuvA`b(ct) = sq(n_real`b)*(1-sq(n_k`b)) - (1-sq(ct));
78 fuvB`b(ct) = sqrt(sq(fuvA`b(ct)) + 4*sq(sq(n_real`b)*n_k`b));
79 fu2`b(ct) = (fuvA`b(ct) + fuvB`b(ct))/2;
80 fv2`b(ct) = (-fuvA`b(ct) + fuvB`b(ct))/2;
81 fperp2`b(ct) = (sq(ct-sqrt(fu2`b(ct))) + fv2`b(ct)) /
82 (sq(ct+sqrt(fu2`b(ct))) + fv2`b(ct));
83 fpara2`b(ct) = (sq(sq(n_real`b)*(1-sq(n_k`b))*ct - sqrt(fu2`b(ct))) +
84 sq(2*sq(n_real`b)*n_k`b*ct - sqrt(fv2`b(ct)))) /
85 (sq(sq(n_real`b)*(1-sq(n_k`b))*ct + sqrt(fu2`b(ct))) +
86 sq(2*sq(n_real`b)*n_k`b*ct + sqrt(fv2`b(ct))));
87 fresnel2`b(ct) = (fperp2`b(ct) + fpara2`b(ct))/2;
88
89 { Formulas dependent only on reflected direction }
90 theta_r = acos(RdotP);
91 shadowf_r = shadowf(theta_r);
92 K_r = K(theta_r);
93 srx = Dy*NzP - Dz*NyP; sry = Dz*NxP - Dx*NzP; srz = Dx*NyP - Dy*NxP;
94 srn2 = sq(srx) + sq(sry) + sq(srz);
95 prx = sry*Dz - srz*Dy;
96 pry = srz*Dx - srx*Dz;
97 prz = srx*Dy - sry*Dx;
98 s`r = fresnel2`r(RdotP)*Exp(-g`r(RdotP))*sq(shadowf_r);
99 s`g = fresnel2`g(RdotP)*Exp(-g`g(RdotP))*sq(shadowf_r);
100 s`b = fresnel2`b(RdotP)*Exp(-g`b(RdotP))*sq(shadowf_r);
101
102 { Formulas dependent on incident direction }
103 { z0 }
104 z0d(Ki,z) = -(Ki+K_r)/(4*sigma0)*z*Exp(-sq(z/sigma0)/2) - sqrt(PI/2);
105 z0lim(x) = if(x, max(x,z0err), min(x,-z0err));
106 z0off(Ki,z) = (sigma0/4*(Ki+K_r)*Exp(-sq(z/sigma0)/2)-sqrt(PI/2)*z)/
107 z0lim(z0d(Ki,z));
108 z0root(Ki, x0, x1, i) = if(i,
109 if(z0err-abs(x1-x0),
110 x1,
111 z0root(Ki,x1,x1-z0off(Ki,x1),i-1)),
112 0);
113 z0(ti) = z0root(K(ti), .1, -z0off(K(ti),.1), 100);
114 { sigma }
115 sigma(ti) = if( FTINY-sigma0, sigma0,
116 sigma0/sqrt(1+sq(z0(ti)/sigma0)) );
117 { g }
118 g`r(cti) = sq(2*PI/lambda`r*sigma(Acos(cti))*(cti+RdotP));
119 g`g(cti) = sq(2*PI/lambda`g*sigma(Acos(cti))*(cti+RdotP));
120 g`b(cti) = sq(2*PI/lambda`b*sigma(Acos(cti))*(cti+RdotP));
121 { |F|^2 }
122 fresnel2dd`r(kix,kiy,kiz) = fresnel2`r(sqrt(sq(kix-Dx) + sq(kiy-Dy) +
123 sq(kiz-Dz))/2);
124 fresnel2dd`g(kix,kiy,kiz) = fresnel2`g(sqrt(sq(kix-Dx) + sq(kiy-Dy) +
125 sq(kiz-Dz))/2);
126 fresnel2dd`b(kix,kiy,kiz) = fresnel2`b(sqrt(sq(kix-Dx) + sq(kiy-Dy) +
127 sq(kiz-Dz))/2);
128 { G }
129 G(kix,kiy,kiz) = sq( (sq(kix-Dx)+sq(kiy-Dy)+sq(kiz-Dz)) /
130 (NxP*(kix-Dx)+NyP*(kiy-Dy)+NzP*(kiz-Dz)) );
131 { D }
132 Dsum2(m,lt,c,t,e,g) = if(or(m-Dsummax,and(lt-t,Dsumlim-t)),0,
133 t+Dsum2(m+1,t,c*g/(m+1),c*g/(m+1)*Exp(-g-e/(m+1))/(m+1),e,g));
134 Dsum(e,g) = Dsum2(1,0,g,g*Exp(-g-e),e,g);
135 D`r(kix,kiy,kiz) = sq(PI)/4/sq(lambda`r)*sq(tau) *
136 Dsum(sq(2*PI/lambda`r)/4*sq(tau)*
137 (sq(kix-Dx)+sq(kiy-Dy)+sq(kiz-Dz) -
138 sq(NxP*(kix-Dx)+NyP*(kiy-Dy)+NzP*(kiz-Dz))),
139 g`r(kix*NxP+kiy*NyP+kiz*NzP));
140 D`g(kix,kiy,kiz) = sq(PI)/4/sq(lambda`g)*sq(tau) *
141 Dsum(sq(2*PI/lambda`g)/4*sq(tau)*
142 (sq(kix-Dx)+sq(kiy-Dy)+sq(kiz-Dz) -
143 sq(NxP*(kix-Dx)+NyP*(kiy-Dy)+NzP*(kiz-Dz))),
144 g`g(kix*NxP+kiy*NyP+kiz*NzP));
145 D`b(kix,kiy,kiz) = sq(PI)/4/sq(lambda`b)*sq(tau) *
146 Dsum(sq(2*PI/lambda`b)/4*sq(tau)*
147 (sq(kix-Dx)+sq(kiy-Dy)+sq(kiz-Dz) -
148 sq(NxP*(kix-Dx)+NyP*(kiy-Dy)+NzP*(kiz-Dz))),
149 g`b(kix*NxP+kiy*NyP+kiz*NzP));
150 { rho_dd }
151 dd2(cti) = shadowf_r*shadowf(Acos(cti))/cti/RdotP;
152 dd`r(kix,kiy,kiz) = dd2(kix*NxP+kiy*NyP+kiz*NzP)*G(kix,kiy,kiz)*
153 fresnel2dd`r(kix,kiy,kiz)/PI*D`r(kix,kiy,kiz);
154 dd`g(kix,kiy,kiz) = dd2(kix*NxP+kiy*NyP+kiz*NzP)*G(kix,kiy,kiz)*
155 fresnel2dd`g(kix,kiy,kiz)/PI*D`g(kix,kiy,kiz);
156 dd`b(kix,kiy,kiz) = dd2(kix*NxP+kiy*NyP+kiz*NzP)*G(kix,kiy,kiz)*
157 fresnel2dd`b(kix,kiy,kiz)/PI*D`b(kix,kiy,kiz);