{ He-Torrance Reflectance Model (Siggraph 1991) This is the simplified version that doesn't account for changes in reflection due to changes in wavelength. Also, specular and directional-diffuse hightlights are left uncolored because coloring them requires multiple evaluations of some very expensive functions. The primitive for this function should look something like: void BRTDfunc name 10 s s s 0 0 0 dd dd dd He.cal 0 13 amb_r amb_g amb_b amb_r amb_g amb_b 0 0 0 sigma0 tau n_real n_imag For metals, the specular color may be modified like so: void BRTDfunc name 10 s_r s_g s_b 0 0 0 dd dd dd He.cal 0 13 amb_r amb_g amb_b amb_r amb_g amb_b 0 0 0 sigma0 tau n_real n_imag This doesn't work for the directional diffuse component, unfortunately. A second set of functions dd_r, dd_g and dd_b may be used, but they cost three times as much to compute! } { Constants } lambda : .5; { wavelength (microns) } z0err : .0001; { accepted error in value of z0 } Dsumlim : .000001; { last term of D summation } Dsummax : 200; { maximum terms in D summation } { Parameters } sigma0 = arg(10); { surface height deviation (microns) } tau = arg(11); { correlation distance (microns) } n_real = arg(12); { real part of index of refraction } n_imag = arg(13); { imaginary part of index of refraction } { Derived parameters } n_k = n_imag/n_real; { Constant functions } Exp(x) : if(-x-400, 0, exp(x)); { rayinit.cal version too timid for D() } { Repeated formulas } cotexp(t) = tau/sigma0/2/tan(t); shadowf2(et,erfcet) = (1-.5*erfcet) / ((Exp(-sq(et))/sqrt(PI)/et - erfcet)/2 + 1); shadowf1(t) = or(FTINY-sigma0, .01-abs(t)); shadowf0(t) = abs(t) - (PI/2-.0001); shadowf(t) = if(shadowf0(t), 0, if(shadowf1(t), 1, shadowf2(cotexp(t), erfc(cotexp(t))))); K(t) = if(abs(t)-FTINY, tan(t) * erfc(cotexp(t)), 0); fuvA(ct) = sq(n_real)*(1-sq(n_k)) - (1-sq(ct)); fuvB(ct) = sqrt(sq(fuvA(ct)) + 4*sq(sq(n_real)*n_k)); fu2(ct) = (fuvA(ct) + fuvB(ct))/2; fv2(ct) = (-fuvA(ct) + fuvB(ct))/2; fperp2(ct) = (sq(ct-sqrt(fu2(ct))) + fv2(ct)) / (sq(ct+sqrt(fu2(ct))) + fv2(ct)); fpara2(ct) = (sq(sq(n_real)*(1-sq(n_k))*ct - sqrt(fu2(ct))) + sq(2*sq(n_real)*n_k*ct - Sqrt(fv2(ct)))) / (sq(sq(n_real)*(1-sq(n_k))*ct + sqrt(fu2(ct))) + sq(2*sq(n_real)*n_k*ct + Sqrt(fv2(ct)))); fresnel2(ct) = (fperp2(ct) + fpara2(ct))/2; { Formulas dependent only on reflected direction } theta_r = acos(RdotP); shadowf_r = shadowf(theta_r); K_r = K(theta_r); srx = Dy*NzP - Dz*NyP; sry = Dz*NxP - Dx*NzP; srz = Dx*NyP - Dy*NxP; srn2 = sq(srx) + sq(sry) + sq(srz); prx = sry*Dz - srz*Dy; pry = srz*Dx - srx*Dz; prz = srx*Dy - sry*Dx; s = fresnel2(RdotP)*Exp(-g(RdotP))*sq(shadowf_r); s_r = s*arg(1)*CrP; s_g = s*arg(2)*CgP; s_b = s*arg(3)*CbP; { Formulas dependent on incident direction } { z0 } z0d(Ki,z) = -(Ki+K_r)/(4*sigma0)*z*Exp(-sq(z/sigma0)/2) - sqrt(PI/2); z0lim(x) = if(x, max(x,z0err), min(x,-z0err)); z0off(Ki,z) = (sigma0/4*(Ki+K_r)*Exp(-sq(z/sigma0)/2)-sqrt(PI/2)*z)/ z0lim(z0d(Ki,z)); z0root(Ki, x0, x1, i) = if(i, if(z0err-abs(x1-x0), x1, z0root(Ki,x1,x1-z0off(Ki,x1),i-1)), 0); z0(ti) = z0root(K(ti), .1, -z0off(K(ti),.1), 100); { sigma } sigma(ti) = if( FTINY-sigma0, sigma0, sigma0/sqrt(1+sq(z0(ti)/sigma0)) ); { g } g(cti) = sq(2*PI/lambda*sigma(Acos(cti))*(cti+RdotP)); { |F|^2 } fresnel2dd(kix,kiy,kiz) = fresnel2(sqrt(sq(kix-Dx) + sq(kiy-Dy) + sq(kiz-Dz))/2); { G } { The bulk of G was found by Andrew Willmott to cancel. This is the original: G2( kix,kiy,kiz, six,siy,siz ) = sq( (sq(kix-Dx)+sq(kiy-Dy)+sq(kiz-Dz)) / (NxP*(kix-Dx)+NyP*(kiy-Dy)+NzP*(kiz-Dz)) ) / sq(sq(Dy*kiz-Dz*kiy)+sq(Dz*kix-Dx*kiz)+sq(Dx*kiy-Dy*kix)) * (sq(srx*kix+sry*kiy+srz*kiz) + sq(prx*kix+pry*kiy+prz*kiz)) * (sq(six*Dx+siy*Dy+siz*Dz) + sq((siy*kiz-siz*kiy)*Dx+(siz*kix-six*kiz)*Dy+(six*kiy-siy*kix)*Dz)) / srn2 / (sq(six)+sq(siy)+sq(siz)); G(kix,kiy,kiz) = G2(kix,kiy,kiz, kiy*NzP-kiz*NyP, kiz*NxP-kix*NzP, kix*NyP-kiy*NxP); -- Newer version below is much simpler: } G(kix,kiy,kiz) = sq( (sq(kix-Dx)+sq(kiy-Dy)+sq(kiz-Dz)) / (NxP*(kix-Dx)+NyP*(kiy-Dy)+NzP*(kiz-Dz)) ); { D } Dsum2(m,lt,c,t,e,g) = if(or(m-Dsummax,and(lt-t,Dsumlim-t)),t, t+Dsum2(m+1,t,c*g/(m+1),c*g/(m+1)*Exp(-g-e/(m+1))/(m+1),e,g)); Dsum(e,g) = Dsum2(1,0,g,g*Exp(-g-e),e,g); D(kix,kiy,kiz) = sq(PI)/4/sq(lambda)*sq(tau) * Dsum(sq(2*PI/lambda)/4*sq(tau)* (sq(kix-Dx)+sq(kiy-Dy)+sq(kiz-Dz) - sq(NxP*(kix-Dx)+NyP*(kiy-Dy)+NzP*(kiz-Dz))), g(kix*NxP+kiy*NyP+kiz*NzP)); { rho_dd } dd2(cti) = shadowf_r*shadowf(Acos(cti))/cti/RdotP; dd(kix,kiy,kiz) = dd2(kix*NxP+kiy*NyP+kiz*NzP)*G(kix,kiy,kiz)* fresnel2dd(kix,kiy,kiz)/PI*D(kix,kiy,kiz); { Color version 3x as slow! } dd_r(kix,kiy,kiz) = dd(kix,kiy,kiz)*arg(1)*CrP; dd_g(kix,kiy,kiz) = dd(kix,kiy,kiz)*arg(2)*CgP; dd_b(kix,kiy,kiz) = dd(kix,kiy,kiz)*arg(3)*CbP;