ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/lib/He.cal
Revision: 1.2
Committed: Tue Mar 18 17:30:16 2003 UTC (21 years, 2 months ago) by greg
Branch: MAIN
CVS Tags: HEAD
Changes since 1.1: +0 -0 lines
State: FILE REMOVED
Log Message:
Decided to move ray/lib directory into non-CVS distribution

File Contents

# Content
1 {
2 He-Torrance Reflectance Model (Siggraph 1991)
3
4 This is the simplified version that doesn't account for
5 changes in reflection due to changes in wavelength. Also,
6 specular and directional-diffuse hightlights are left uncolored
7 because coloring them requires multiple evaluations of some
8 very expensive functions.
9
10 The primitive for this function should look something like:
11
12 void BRTDfunc name
13 10
14 s s s
15 0 0 0
16 dd dd dd
17 He.cal
18 0
19 13 amb_r amb_g amb_b
20 amb_r amb_g amb_b
21 0 0 0
22 sigma0 tau
23 n_real n_imag
24
25 For metals, the specular color may be modified like so:
26
27 void BRTDfunc name
28 10
29 s_r s_g s_b
30 0 0 0
31 dd dd dd
32 He.cal
33 0
34 13 amb_r amb_g amb_b
35 amb_r amb_g amb_b
36 0 0 0
37 sigma0 tau
38 n_real n_imag
39
40 This doesn't work for the directional diffuse component, unfortunately.
41 A second set of functions dd_r, dd_g and dd_b may be used, but they
42 cost three times as much to compute!
43 }
44
45 { Constants }
46 lambda : .5; { wavelength (microns) }
47 z0err : .0001; { accepted error in value of z0 }
48 Dsumlim : .000001; { last term of D summation }
49 Dsummax : 200; { maximum terms in D summation }
50
51 { Parameters }
52 sigma0 = arg(10); { surface height deviation (microns) }
53 tau = arg(11); { correlation distance (microns) }
54 n_real = arg(12); { real part of index of refraction }
55 n_imag = arg(13); { imaginary part of index of refraction }
56 { Derived parameters }
57 n_k = n_imag/n_real;
58 { Constant functions }
59 Exp(x) : if(-x-400, 0, exp(x)); { rayinit.cal version too timid for D() }
60
61 { Repeated formulas }
62 cotexp(t) = tau/sigma0/2/tan(t);
63 shadowf2(et,erfcet) = (1-.5*erfcet) /
64 ((Exp(-sq(et))/sqrt(PI)/et - erfcet)/2 + 1);
65 shadowf1(t) = or(FTINY-sigma0, .01-abs(t));
66 shadowf0(t) = abs(t) - (PI/2-.0001);
67 shadowf(t) = if(shadowf0(t), 0, if(shadowf1(t), 1,
68 shadowf2(cotexp(t), erfc(cotexp(t)))));
69 K(t) = if(abs(t)-FTINY, tan(t) * erfc(cotexp(t)), 0);
70 fuvA(ct) = sq(n_real)*(1-sq(n_k)) - (1-sq(ct));
71 fuvB(ct) = sqrt(sq(fuvA(ct)) + 4*sq(sq(n_real)*n_k));
72 fu2(ct) = (fuvA(ct) + fuvB(ct))/2;
73 fv2(ct) = (-fuvA(ct) + fuvB(ct))/2;
74 fperp2(ct) = (sq(ct-sqrt(fu2(ct))) + fv2(ct)) /
75 (sq(ct+sqrt(fu2(ct))) + fv2(ct));
76 fpara2(ct) = (sq(sq(n_real)*(1-sq(n_k))*ct - sqrt(fu2(ct))) +
77 sq(2*sq(n_real)*n_k*ct - Sqrt(fv2(ct)))) /
78 (sq(sq(n_real)*(1-sq(n_k))*ct + sqrt(fu2(ct))) +
79 sq(2*sq(n_real)*n_k*ct + Sqrt(fv2(ct))));
80 fresnel2(ct) = (fperp2(ct) + fpara2(ct))/2;
81
82 { Formulas dependent only on reflected direction }
83 theta_r = acos(RdotP);
84 shadowf_r = shadowf(theta_r);
85 K_r = K(theta_r);
86 srx = Dy*NzP - Dz*NyP; sry = Dz*NxP - Dx*NzP; srz = Dx*NyP - Dy*NxP;
87 srn2 = sq(srx) + sq(sry) + sq(srz);
88 prx = sry*Dz - srz*Dy;
89 pry = srz*Dx - srx*Dz;
90 prz = srx*Dy - sry*Dx;
91 s = fresnel2(RdotP)*Exp(-g(RdotP))*sq(shadowf_r);
92 s_r = s*arg(1)*CrP;
93 s_g = s*arg(2)*CgP;
94 s_b = s*arg(3)*CbP;
95
96 { Formulas dependent on incident direction }
97 { z0 }
98 z0d(Ki,z) = -(Ki+K_r)/(4*sigma0)*z*Exp(-sq(z/sigma0)/2) - sqrt(PI/2);
99 z0lim(x) = if(x, max(x,z0err), min(x,-z0err));
100 z0off(Ki,z) = (sigma0/4*(Ki+K_r)*Exp(-sq(z/sigma0)/2)-sqrt(PI/2)*z)/
101 z0lim(z0d(Ki,z));
102 z0root(Ki, x0, x1, i) = if(i,
103 if(z0err-abs(x1-x0),
104 x1,
105 z0root(Ki,x1,x1-z0off(Ki,x1),i-1)),
106 0);
107 z0(ti) = z0root(K(ti), .1, -z0off(K(ti),.1), 100);
108 { sigma }
109 sigma(ti) = if( FTINY-sigma0, sigma0,
110 sigma0/sqrt(1+sq(z0(ti)/sigma0)) );
111 { g }
112 g(cti) = sq(2*PI/lambda*sigma(Acos(cti))*(cti+RdotP));
113 { |F|^2 }
114 fresnel2dd(kix,kiy,kiz) = fresnel2(sqrt(sq(kix-Dx) + sq(kiy-Dy) +
115 sq(kiz-Dz))/2);
116 { G }
117 { The bulk of G was found by Andrew Willmott to cancel. This is the original:
118 G2( kix,kiy,kiz, six,siy,siz ) =
119 sq( (sq(kix-Dx)+sq(kiy-Dy)+sq(kiz-Dz)) /
120 (NxP*(kix-Dx)+NyP*(kiy-Dy)+NzP*(kiz-Dz)) ) /
121 sq(sq(Dy*kiz-Dz*kiy)+sq(Dz*kix-Dx*kiz)+sq(Dx*kiy-Dy*kix)) *
122 (sq(srx*kix+sry*kiy+srz*kiz) +
123 sq(prx*kix+pry*kiy+prz*kiz)) *
124 (sq(six*Dx+siy*Dy+siz*Dz) +
125 sq((siy*kiz-siz*kiy)*Dx+(siz*kix-six*kiz)*Dy+(six*kiy-siy*kix)*Dz)) /
126 srn2 / (sq(six)+sq(siy)+sq(siz));
127 G(kix,kiy,kiz) = G2(kix,kiy,kiz,
128 kiy*NzP-kiz*NyP, kiz*NxP-kix*NzP, kix*NyP-kiy*NxP);
129 -- Newer version below is much simpler: }
130 G(kix,kiy,kiz) = sq( (sq(kix-Dx)+sq(kiy-Dy)+sq(kiz-Dz)) /
131 (NxP*(kix-Dx)+NyP*(kiy-Dy)+NzP*(kiz-Dz)) );
132 { D }
133 Dsum2(m,lt,c,t,e,g) = if(or(m-Dsummax,and(lt-t,Dsumlim-t)),t,
134 t+Dsum2(m+1,t,c*g/(m+1),c*g/(m+1)*Exp(-g-e/(m+1))/(m+1),e,g));
135 Dsum(e,g) = Dsum2(1,0,g,g*Exp(-g-e),e,g);
136 D(kix,kiy,kiz) = sq(PI)/4/sq(lambda)*sq(tau) *
137 Dsum(sq(2*PI/lambda)/4*sq(tau)*
138 (sq(kix-Dx)+sq(kiy-Dy)+sq(kiz-Dz) -
139 sq(NxP*(kix-Dx)+NyP*(kiy-Dy)+NzP*(kiz-Dz))),
140 g(kix*NxP+kiy*NyP+kiz*NzP));
141 { rho_dd }
142 dd2(cti) = shadowf_r*shadowf(Acos(cti))/cti/RdotP;
143 dd(kix,kiy,kiz) = dd2(kix*NxP+kiy*NyP+kiz*NzP)*G(kix,kiy,kiz)*
144 fresnel2dd(kix,kiy,kiz)/PI*D(kix,kiy,kiz);
145 { Color version 3x as slow! }
146 dd_r(kix,kiy,kiz) = dd(kix,kiy,kiz)*arg(1)*CrP;
147 dd_g(kix,kiy,kiz) = dd(kix,kiy,kiz)*arg(2)*CgP;
148 dd_b(kix,kiy,kiz) = dd(kix,kiy,kiz)*arg(3)*CbP;