ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/ray.html
Revision: 1.25
Committed: Mon Jun 25 20:49:10 2018 UTC (5 years, 10 months ago) by greg
Content type: text/html
Branch: MAIN
Changes since 1.24: +32 -1 lines
Log Message:
Added sBSDF material type for explicit control over peak extraction

File Contents

# Content
1 <html>
2 <!-- RCSid $Id: ray.html,v 1.24 2017/08/26 16:07:22 greg Exp $ -->
3 <head>
4 <title>
5 The RADIANCE 5.2 Synthetic Imaging System
6 </title>
7 </head>
8 <body>
9
10 <p>
11
12 <h1>
13 The RADIANCE 5.2 Synthetic Imaging System
14 </h1>
15
16 <p>
17
18 Building Technologies Program<br>
19 Lawrence Berkeley National Laboratory<br>
20 1 Cyclotron Rd., 90-3111<br>
21 Berkeley, CA 94720<br>
22 <a HREF="http://radsite.lbl.gov/radiance"</a>
23 http://radsite.lbl.gov/radiance<br>
24
25 <p>
26 <hr>
27
28 <h2>
29 <a NAME="Overview">Overview</a>
30 </h2>
31 <ol>
32 <li><a HREF="#Intro">Introduction</a><!P>
33 <li><a HREF="#Scene">Scene Description</a><!P>
34 <ol>
35 <li><a HREF="#Primitive"> Primitive Types</a>
36 <ol>
37 <li><a HREF="#Surfaces">Surfaces</a>
38 <li><a HREF="#Materials">Materials</a>
39 <li><a HREF="#Textures">Textures</a>
40 <li><a HREF="#Patterns">Patterns</a>
41 <li><a HREF="#Mixtures">Mixtures</a>
42 </ol><!P>
43 <li><a HREF="#Auxiliary">Auxiliary Files</a>
44 <ol>
45 <li><a HREF="#Function">Function Files</a>
46 <li><a HREF="#Data">Data Files</a>
47 <li><a HREF="#Font">Font Files</a>
48 </ol><!P>
49 <li><a HREF="#Generators">Generators</a>
50 </ol><!P>
51 <li><a HREF="#Image">Image Generation</a><!P>
52 <li><a HREF="#License">License</a><!P>
53 <li><a HREF="#Ack">Acknowledgements</a><!P>
54 <li><a HREF="#Ref">References</a><!P>
55 <li><a HREF="#Index">Types Index</a><!P>
56 </ol>
57
58 <p>
59 <hr>
60
61 <h2>
62 <a NAME="Intro">1. Introduction</a>
63 </h2>
64
65 RADIANCE was developed as a research tool for predicting
66 the distribution of visible radiation in illuminated spaces.
67 It takes as input a three-dimensional geometric model
68 of the physical environment, and produces a map of
69 spectral radiance values in a color image.
70 The technique of ray-tracing follows light backwards
71 from the image plane to the source(s).
72 Because it can produce realistic images from a
73 simple description, RADIANCE has a wide range of applications
74 in graphic arts, lighting design,
75 computer-aided engineering and architecture.
76
77 <p>
78 <img SRC="diagram1.gif">
79 <p>
80 Figure 1
81 <p>
82 The diagram in Figure 1 shows the flow between programs (boxes) and data
83 (ovals).
84 The central program is <i>rpict</i>, which produces a picture from a scene
85 description.
86 <i>Rview</i> is a variation of rpict that computes and displays images
87 interactively, and rtrace computes single ray values.
88 Other programs (not shown) connect many of these elements together,
89 such as the executive programs
90 <i>rad</i>
91 and
92 <i>ranimate</i>,
93 the interactive rendering program
94 <i>rholo</i>,
95 and the animation program
96 <i>ranimove</i>.
97 The program
98 <i>obj2mesh</i>
99 acts as both a converter and scene compiler, converting a Wavefront .OBJ
100 file into a compiled mesh octree for efficient rendering.
101
102 <p>
103 A scene description file lists the surfaces and materials
104 that make up a specific environment.
105 The current surface types are spheres, polygons, cones, and cylinders.
106 There is also a composite surface type, called mesh, and a pseudosurface
107 type, called instance, which facilitates very complex geometries.
108 Surfaces can be made from materials such as plastic, metal, and glass.
109 Light sources can be distant disks as well as local spheres, disks
110 and polygons.
111
112 <p>
113 From a three-dimensional scene description and a specified view,
114 <i>rpict</i> produces a two-dimensional image.
115 A picture file is a compressed binary representation of the
116 pixels in the image.
117 This picture can be scaled in size and brightness,
118 anti-aliased, and sent to a graphics output device.
119
120 <p>
121 A header in each picture file lists the program(s)
122 and parameters that produced it.
123 This is useful for identifying a picture without having to display it.
124 The information can be read by the program <i>getinfo</i>.
125
126 <p>
127 <hr>
128
129 <h2>
130 <a name="Scene">2. Scene Description</a>
131 </h2>
132
133 A scene description file represents a three-dimensional physical environment in Cartesian (rectilinear) world coordinates.
134 It is stored as ASCII text, with the following basic format:
135
136 <pre>
137 # comment
138
139 modifier type identifier
140 n S1 S2 &quot;S 3&quot; .. Sn
141 0
142 m R1 R2 R3 .. Rm
143
144 modifier alias identifier reference
145
146 ! command
147
148 ...
149 </pre>
150
151 A comment line begins with a pound sign, `#'.
152
153 <p>
154 The <a NAME="scene_desc">scene description primitives</a>
155 all have the same general format, and can be either surfaces or modifiers.
156 A primitive has a modifier, a type, and an identifier.
157 <p>
158 A <a NAME="modifier"><b>modifier</b></a> is either the
159 identifier of a previously defined primitive, or &quot;void&quot;.
160 <br>
161 [ The most recent definition of a modifier is the
162 one used, and later definitions do not cause relinking
163 of loaded primitives.
164 Thus, the same identifier may be used repeatedly,
165 and each new definition will apply to the primitives following it. ]
166 <p>
167 An <a NAME="identifier"><b>identifier</b></a> can be any string
168 (i.e., any sequence of non-white characters).
169 <p>
170 The arguments associated with a primitive can be strings or real numbers.
171 <ul>
172 <li> The first integer following the identifier is the number of <b>string arguments</b>,
173 and it is followed by the arguments themselves (separated by white space or enclosed in quotes).
174 <li> The next integer is the number of integer arguments, and is followed by the <b>integer arguments</b>.
175 (There are currently no primitives that use them, however.)
176 <li> The next integer is the real argument count, and it is followed by the <b>real arguments</b>.
177 </ul>
178
179 <p>
180 An <a NAME="alias"><b>alias</b></a> gets its type and arguments from
181 a previously defined primitive.
182 This is useful when the same material is
183 used with a different modifier, or as a convenient naming mechanism.
184 The reserved modifier name &quot;inherit&quot; may be used to specificy that
185 an alias will inherit its modifier from the original.
186 Surfaces cannot be aliased.
187
188 <p>
189 A line beginning with an exclamation point, `!',
190 is interpreted as a command.
191 It is executed by the shell, and its output is read as input to the program.
192 The command must not try to read from its standard input, or confusion
193 will result.
194 A command may be continued over multiple lines using a
195 backslash, `\', to escape the newline.
196
197 <p>
198 White space is generally ignored, except as a separator.
199 The exception is the newline character after a command or comment.
200 Commands, comments and primitives may appear in any
201 combination, so long as they are not intermingled.
202
203 <p>
204 <hr>
205
206 <h3>
207 <a NAME="Primitive">2.1. Primitive Types</a>
208 </h3>
209
210 Primitives can be <a HREF="#Surfaces">surfaces</a>,
211 <a HREF="#Materials">materials</a>,
212 <a HREF="#Textures">textures</a> or
213 <a HREF="#Patterns">patterns</a>.
214 Modifiers can be <a HREF="#Materials">materials</a>,
215 <a HREF="#Mixtures">mixtures</a>,
216 <a HREF="#Textures">textures</a> or <a HREF="#Patterns">patterns</a>.
217 Simple surfaces must have one material in their modifier list.
218
219 <p>
220 <hr>
221
222 <h4>
223 <a NAME="Surfaces">2.1.1. Surfaces</a>
224 </h4>
225 <dl>
226
227 A scene description will consist mostly of surfaces.
228 The basic types are given below.
229
230 <p>
231
232 <dt>
233 <a NAME="Source">
234 <b>Source </b>
235 </a>
236 <dd>
237 A source is not really a surface, but a solid angle.
238 It is used for specifying light sources that are very distant.
239 The direction to the center of the source and the number of degrees subtended by its disk are given as follows:
240
241 <pre>
242 mod source id
243 0
244 0
245 4 xdir ydir zdir angle
246 </pre>
247
248 <p>
249
250 <dt>
251 <a NAME="Sphere">
252 <b>Sphere</b>
253 </a>
254 <dd>
255 A sphere is given by its center and radius:
256
257 <pre>
258 mod sphere id
259 0
260 0
261 4 xcent ycent zcent radius
262 </pre>
263
264 <p>
265
266 <dt>
267 <a NAME="Bubble">
268 <b>Bubble</b>
269 </a>
270
271 <dd>
272 A bubble is simply a sphere whose surface normal points inward.
273
274 <p>
275
276 <dt>
277 <a NAME="Polygon">
278 <b>Polygon</b>
279 </a>
280 <dd>
281 A polygon is given by a list of three-dimensional vertices,
282 which are ordered counter-clockwise as viewed from the
283 front side (into the surface normal).
284 The last vertex is automatically connected to the first.
285 Holes are represented in polygons as interior vertices
286 connected to the outer perimeter by coincident edges (seams).
287
288 <pre>
289 mod polygon id
290 0
291 0
292 3n
293 x1 y1 z1
294 x2 y2 z2
295 ...
296 xn yn zn
297 </pre>
298
299 <p>
300
301 <dt>
302 <a NAME="Cone">
303 <b>Cone</b>
304 </a>
305 <dd>
306 A cone is a megaphone-shaped object.
307 It is truncated by two planes perpendicular to its axis,
308 and one of its ends may come to a point.
309 It is given as two axis endpoints, and the starting and ending radii:
310
311 <pre>
312 mod cone id
313 0
314 0
315 8
316 x0 y0 z0
317 x1 y1 z1
318 r0 r1
319 </pre>
320
321 <p>
322
323 <dt>
324 <a NAME="Cup">
325 <b>Cup</b>
326 </a>
327 <dd>
328 A cup is an inverted <a HREF="#Cone">cone</a> (i.e., has an
329 inward surface normal).
330
331 <p>
332
333 <dt>
334 <a NAME="Cylinder">
335 <b>Cylinder</b>
336 </a>
337 <dd>
338 A cylinder is like a <a HREF="#Cone">cone</a>, but its
339 starting and ending radii are equal.
340
341 <pre>
342 mod cylinder id
343 0
344 0
345 7
346 x0 y0 z0
347 x1 y1 z1
348 rad
349 </pre>
350
351 <p>
352
353 <dt>
354 <a NAME="Tube">
355 <b>Tube</b>
356 </a>
357 <dd>
358 A tube is an inverted <a HREF="#Cylinder">cylinder</a>.
359
360 <p>
361
362 <dt>
363 <a NAME="Ring">
364 <b>Ring</b>
365 </a>
366 <dd>
367 A ring is a circular disk given by its center,
368 surface normal, and inner and outer radii:
369
370 <pre>
371 mod ring id
372 0
373 0
374 8
375 xcent ycent zcent
376 xdir ydir zdir
377 r0 r1
378 </pre>
379
380 <p>
381
382 <dt>
383 <a NAME="Instance">
384 <b>Instance</b>
385 </a>
386 <dd>
387 An instance is a compound surface, given
388 by the contents of an octree file (created by oconv).
389
390 <pre>
391 mod instance id
392 1+ octree transform
393 0
394 0
395 </pre>
396
397 If the modifier is &quot;void&quot;, then surfaces will
398 use the modifiers given in the original description.
399 Otherwise, the modifier specified is used in their place.
400 The transform moves the octree to the desired location in the scene.
401 Multiple instances using the same octree take
402 little extra memory, hence very complex
403 descriptions can be rendered using this primitive.
404
405 <p>
406 There are a number of important limitations to be aware of
407 when using instances.
408 First, the scene description used to generate the octree must
409 stand on its own, without referring to modifiers in the
410 parent description.
411 This is necessary for oconv to create the octree.
412 Second, light sources in the octree will not be
413 incorporated correctly in the calculation,
414 and they are not recommended.
415 Finally, there is no advantage (other than
416 convenience) to using a single instance of an octree,
417 or an octree containing only a few surfaces.
418 An <a HREF="../man_html/xform.1.html">xform</a> command
419 on the subordinate description is prefered in such cases.
420 </dl>
421
422 <p>
423
424 <dt>
425 <a NAME="Mesh">
426 <b>Mesh</b>
427 </a>
428 <dd>
429 A mesh is a compound surface, made up of many triangles and
430 an octree data structure to accelerate ray intersection.
431 It is typically converted from a Wavefront .OBJ file using the
432 <i>obj2mesh</i> program.
433
434 <pre>
435 mod mesh id
436 1+ meshfile transform
437 0
438 0
439 </pre>
440
441 If the modifier is &quot;void&quot;, then surfaces will
442 use the modifiers given in the original mesh description.
443 Otherwise, the modifier specified is used in their place.
444 The transform moves the mesh to the desired location in the scene.
445 Multiple instances using the same meshfile take little extra memory,
446 and the compiled mesh itself takes much less space than individual
447 polygons would.
448 In the case of an unsmoothed mesh, using the mesh primitive reduces
449 memory requirements by a factor of 30 relative to individual triangles.
450 If a mesh has smoothed surfaces, we save a factor of 50 or more,
451 permitting very detailed geometries that would otherwise exhaust the
452 available memory.
453 In addition, the mesh primitive can have associated (u,v) coordinates
454 for pattern and texture mapping.
455 These are made available to function files via the Lu and Lv variables.
456
457 </dl>
458
459 <p>
460 <hr>
461
462 <h4>
463 <a NAME="Materials">2.1.2. Materials</a>
464 </h4>
465
466 A material defines the way light interacts with a surface. The basic types are given below.
467
468 <p>
469
470 <dl>
471
472 <dt>
473 <a NAME="Light">
474 <b>Light</b>
475 </a>
476 <dd>
477 Light is the basic material for self-luminous surfaces (i.e.,
478 light sources).
479 In addition to the <a HREF="#Source">source</a> surface type,
480 <a HREF="#Sphere">spheres</a>,
481 discs (<a HREF="#Ring">rings</a> with zero inner radius),
482 <a HREF="#Cylinder">cylinders</a> (provided they are long enough), and <a HREF="#Polygon">polygons</a> can act as light sources.
483 Polygons work best when they are rectangular.
484 Cones cannot be used at this time.
485 A pattern may be used to specify a light output distribution.
486 Light is defined simply as a RGB radiance value (watts/steradian/m2):
487
488 <pre>
489 mod light id
490 0
491 0
492 3 red green blue
493 </pre>
494
495 <p>
496
497 <dt>
498 <a NAME="Illum">
499 <b>Illum</b>
500 </a>
501
502 <dd>
503 Illum is used for secondary light sources with broad distributions.
504 A secondary light source is treated like any other light source, except when viewed directly.
505 It then acts like it is made of a different material (indicated by
506 the string argument), or becomes invisible (if no string argument is given,
507 or the argument is &quot;void&quot;).
508 Secondary sources are useful when modeling windows or brightly illuminated surfaces.
509
510 <pre>
511 mod illum id
512 1 material
513 0
514 3 red green blue
515 </pre>
516
517 <p>
518
519 <dt>
520 <a NAME="Glow">
521 <b>Glow</b>
522 </a>
523
524 <dd>
525 Glow is used for surfaces that are self-luminous, but limited in their effect.
526 In addition to the radiance value, a maximum radius for shadow testing is given:
527
528 <pre>
529 mod glow id
530 0
531 0
532 4 red green blue maxrad
533 </pre>
534
535 If maxrad is zero, then the surface will never be tested for shadow, although it may participate in an interreflection calculation.
536 If maxrad is negative, then the surface will never contribute to scene illumination.
537 Glow sources will never illuminate objects on the other side of an illum surface.
538 This provides a convenient way to illuminate local light fixture geometry without overlighting nearby objects.
539
540 <p>
541
542 <dt>
543 <a NAME="Spotlight">
544 <b>Spotlight</b>
545 </a>
546
547 <dd>
548 Spotlight is used for self-luminous surfaces having directed output.
549 As well as radiance, the full cone angle (in degrees) and orientation (output direction) vector are given.
550 The length of the orientation vector is the distance of the effective
551 focus behind the source center (i.e., the focal length).
552
553 <pre>
554 mod spotlight id
555 0
556 0
557 7 red green blue angle xdir ydir zdir
558 </pre>
559
560 <p>
561
562 <dt>
563 <a NAME="Mirror">
564 <b>Mirror</b>
565 </a>
566
567 <dd>
568 Mirror is used for planar surfaces that produce virtual source reflections.
569 This material should be used sparingly, as it may cause the light source calculation to blow up if it is applied to many small surfaces.
570 This material is only supported for flat surfaces such as <a HREF="#Polygon">polygons</a> and <a HREF="#Ring">rings</a>.
571 The arguments are simply the RGB reflectance values, which should be between 0 and 1.
572 An optional string argument may be used like the illum type to specify a different material to be used for shading non-source rays.
573 If this alternate material is given as &quot;void&quot;, then the mirror surface will be invisible.
574 This is only appropriate if the surface hides other (more detailed) geometry with the same overall reflectance.
575
576 <pre>
577 mod mirror id
578 1 material
579 0
580 3 red green blue
581 </pre>
582
583 <p>
584
585 <dt>
586 <a NAME="Prism1">
587 <b>Prism1</b>
588 </a>
589
590 <dd>
591 The prism1 material is for general light redirection from prismatic glazings, generating virtual light sources.
592 It can only be used to modify a planar surface
593 (i.e., a <a HREF="#Polygon">polygon</a> or <a HREF="#Ring">disk</a>)
594 and should not result in either light concentration or scattering.
595 The new direction of the ray can be on either side of the material,
596 and the definitions must have the correct bidirectional properties to work properly with virtual light sources.
597 The arguments give the coefficient for the redirected light and its direction.
598
599 <pre>
600 mod prism1 id
601 5+ coef dx dy dz funcfile transform
602 0
603 n A1 A2 .. An
604 </pre>
605
606 The new direction variables dx, dy and dz need not produce a normalized vector.
607 For convenience, the variables DxA, DyA and DzA are defined as the normalized direction to the target light source.
608 See <a HREF="#Function">section 2.2.1</a> on function files for further information.
609
610 <p>
611
612 <dt>
613 <a NAME="Prism2">
614 <b>Prism2</b>
615 </a>
616
617 <dd>
618 The material prism2 is identical to <a HREF="#Prism1">prism1</a> except that it provides for two ray redirections rather than one.
619
620 <pre>
621 mod prism2 id
622 9+ coef1 dx1 dy1 dz1 coef2 dx2 dy2 dz2 funcfile transform
623 0
624 n A1 A2 .. An
625 </pre>
626
627 <p>
628
629 <dt>
630 <a NAME="Mist">
631 <b>Mist</b>
632 </a>
633
634 <dd>
635 Mist is a virtual material used to delineate a volume
636 of participating atmosphere.
637 A list of important light sources may be given, along with an
638 extinction coefficient, scattering albedo and scattering eccentricity
639 parameter.
640 The light sources named by the string argument list
641 will be tested for scattering within the volume.
642 Sources are identified by name, and virtual light sources may be indicated
643 by giving the relaying object followed by '&gt;' followed by the source, i.e:
644
645 <pre>
646 3 source1 mirror1&gt;source10 mirror2&gt;mirror1&gt;source3
647 </pre>
648
649 Normally, only one source is given per mist material, and there is an
650 upper limit of 32 to the total number of active scattering sources.
651 The extinction coefficient, if given, is added the the global
652 coefficient set on the command line.
653 Extinction is in units of 1/distance (distance based on the world coordinates),
654 and indicates the proportional loss of radiance over one unit distance.
655 The scattering albedo, if present, will override the global setting within
656 the volume.
657 An albedo of 0 0 0 means a perfectly absorbing medium, and an albedo of
658 1 1 1 means
659 a perfectly scattering medium (no absorption).
660 The scattering eccentricity parameter will likewise override the global
661 setting if it is present.
662 Scattering eccentricity indicates how much scattered light favors the
663 forward direction, as fit by the Henyey-Greenstein function:
664
665 <pre>
666 P(theta) = (1 - g*g) / (1 + g*g - 2*g*cos(theta))^1.5
667 </pre>
668
669 A perfectly isotropic scattering medium has a g parameter of 0, and
670 a highly directional material has a g parameter close to 1.
671 Fits to the g parameter may be found along with typical extinction
672 coefficients and scattering albedos for various atmospheres and
673 cloud types in USGS meteorological tables.
674 (A pattern will be applied to the extinction values.)
675
676 <pre>
677 mod mist id
678 N src1 src2 .. srcN
679 0
680 0|3|6|7 [ rext gext bext [ ralb galb balb [ g ] ] ]
681 </pre>
682
683 There are two usual uses of the mist type.
684 One is to surround a beam from a spotlight or laser so that it is
685 visible during rendering.
686 For this application, it is important to use a <a HREF="#Cone">cone</a>
687 (or <a HREF="#Cylinder">cylinder</a>) that
688 is long enough and wide enough to contain the important visible portion.
689 Light source photometry and intervening objects will have the desired
690 effect, and crossing beams will result in additive scattering.
691 For this application, it is best to leave off the real arguments, and
692 use the global rendering parameters to control the atmosphere.
693 The second application is to model clouds or other localized media.
694 Complex boundary geometry may be used to give shape to a uniform medium,
695 so long as the boundary encloses a proper volume.
696 Alternatively, a pattern may be used to set the line integral value
697 through the cloud for a ray entering or exiting a point in a given
698 direction.
699 For this application, it is best if cloud volumes do not overlap each other,
700 and opaque objects contained within them may not be illuminated correctly
701 unless the line integrals consider enclosed geometry.
702
703 <dt>
704 <a NAME="Plastic">
705 <b>Plastic</b>
706 </a>
707
708 <dd>
709 Plastic is a material with uncolored highlights.
710 It is given by its RGB reflectance, its fraction of specularity, and its roughness value.
711 Roughness is specified as the rms slope of surface facets.
712 A value of 0 corresponds to a perfectly smooth surface, and a value of 1 would be a very rough surface.
713 Specularity fractions greater than 0.1 and roughness values greater than 0.2 are not very realistic.
714 (A pattern modifying plastic will affect the material color.)
715
716 <pre>
717 mod plastic id
718 0
719 0
720 5 red green blue spec rough
721 </pre>
722
723 <p>
724
725 <dt>
726 <a NAME="Metal">
727 <b>Metal</b>
728 </a>
729
730 <dd>
731 Metal is similar to <a HREF="#Plastic">plastic</a>, but specular highlights are modified by the material color.
732 Specularity of metals is usually .9 or greater.
733 As for plastic, roughness values above .2 are uncommon.
734
735 <p>
736
737 <dt>
738 <a NAME="Trans">
739 <b>Trans</b>
740 </a>
741
742 <dd>
743 Trans is a translucent material, similar to <a HREF="#Plastic">plastic</a>.
744 The transmissivity is the fraction of penetrating light that travels all the way through the material.
745 The transmitted specular component is the fraction of transmitted light that is not diffusely scattered.
746 Transmitted and diffusely reflected light is modified by the material color.
747 Translucent objects are infinitely thin.
748
749 <pre>
750 mod trans id
751 0
752 0
753 7 red green blue spec rough trans tspec
754 </pre>
755
756 <p>
757
758 <dt>
759 <a NAME="Plastic2">
760 <b>Plastic2</b>
761 </a>
762
763 <dd>
764 Plastic2 is similar to <a HREF="#Plastic">plastic</a>, but with anisotropic roughness.
765 This means that highlights in the surface will appear elliptical rather than round.
766 The orientation of the anisotropy is determined by the unnormalized direction vector ux uy uz.
767 These three expressions (separated by white space) are evaluated in the context of the function file funcfile.
768 If no function file is required (i.e., no special variables or functions are required), a period (`.') may be given in its place.
769 (See the discussion of <a HREF="#Function">Function Files</a> in the Auxiliary Files section).
770 The urough value defines the roughness along the u vector given projected onto the surface.
771 The vrough value defines the roughness perpendicular to this vector.
772 Note that the highlight will be narrower in the direction of the smaller roughness value.
773 Roughness values of zero are not allowed for efficiency reasons since the behavior would be the same as regular plastic in that case.
774
775 <pre>
776 mod plastic2 id
777 4+ ux uy uz funcfile transform
778 0
779 6 red green blue spec urough vrough
780 </pre>
781
782 <p>
783
784 <dt>
785 <a NAME="Metal2">
786 <b>Metal2</b>
787 </a>
788
789 <dd>
790 Metal2 is the same as <a HREF="#Plastic2">plastic2</a>, except that the highlights are modified by the material color.
791
792 <p>
793
794 <dt>
795 <a NAME="Trans2">
796 <b>Trans2</b>
797 </a>
798
799 <dd>
800 Trans2 is the anisotropic version of <a HREF="#Trans">trans</a>.
801 The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>,
802 and the real arguments are the same as for trans but with an additional roughness value.
803
804 <pre>
805 mod trans2 id
806 4+ ux uy uz funcfile transform
807 0
808 8 red green blue spec urough vrough trans tspec
809 </pre>
810
811 <p>
812
813 <dt>
814 <a NAME="Ashik2">
815 <b>Ashik2</b>
816 </a>
817
818 <dd>
819 Ashik2 is the anisotropic reflectance model by Ashikhmin & Shirley.
820 The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>, but the real
821 arguments have additional flexibility to specify the specular color.
822 Also, rather than roughness, specular power is used, which has no
823 physical meaning other than larger numbers are equivalent to a smoother
824 surface.
825 <pre>
826 mod ashik2 id
827 4+ ux uy uz funcfile transform
828 0
829 8 dred dgrn dblu sred sgrn sblu u-power v-power
830 </pre>
831
832 <p>
833
834 <dt>
835 <a NAME="Dielectric">
836 <b>Dielectric</b>
837 </a>
838
839 <dd>
840 A dielectric material is transparent, and it refracts light as well as reflecting it.
841 Its behavior is determined by the index of refraction and transmission coefficient in each wavelength band per unit length.
842 Common glass has a index of refraction (n) around 1.5, and a transmission coefficient of roughly 0.92 over an inch.
843 An additional number, the Hartmann constant, describes how the index of refraction changes as a function of wavelength.
844 It is usually zero. (A <a HREF="#Patterns">pattern</a> modifies only the refracted value.)
845
846 <pre>
847 mod dielectric id
848 0
849 0
850 5 rtn gtn btn n hc
851 </pre>
852
853 <p>
854
855 <dt>
856 <a NAME="Interface">
857 <b>Interface</b>
858 </a>
859
860 <dd>
861 An interface is a boundary between two dielectrics.
862 The first transmission coefficient and refractive index are for the inside; the second ones are for the outside.
863 Ordinary dielectrics are surrounded by a vacuum (1 1 1 1).
864
865 <pre>
866 mod interface id
867 0
868 0
869 8 rtn1 gtn1 btn1 n1 rtn2 gtn2 btn2 n2
870 </pre>
871
872 <p>
873
874 <dt>
875 <a NAME="Glass">
876 <b>Glass</b>
877 </a>
878
879 <dd>
880 Glass is similar to <a HREF="#Dielectric">dielectric</a>, but it is optimized for thin glass surfaces (n = 1.52).
881 One transmitted ray and one reflected ray is produced.
882 By using a single surface is in place of two, internal reflections are avoided.
883 The surface orientation is irrelevant, as it is for <a HREF="#Plastic">plastic</a>, <a HREF="#Metal">metal</a>, and <a HREF="#Trans">trans</a>.
884 The only specification required is the transmissivity at normal incidence.
885 (Transmissivity is the amount of light not absorbed in one traversal
886 of the material.
887 Transmittance -- the value usually measured -- is the total light
888 transmitted through the pane including multiple reflections.)
889 To compute transmissivity (tn) from transmittance (Tn) use:
890
891 <pre>
892 tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn
893 </pre>
894
895 Standard 88% transmittance glass has a transmissivity of 0.96.
896 (A <a HREF="#Patterns">pattern</a> modifying glass will affect the transmissivity.)
897 If a fourth real argument is given, it is interpreted as the index of refraction to use instead of 1.52.
898
899 <pre>
900 mod glass id
901 0
902 0
903 3 rtn gtn btn
904 </pre>
905
906 <p>
907
908 <dt>
909 <a NAME="Plasfunc">
910 <b>Plasfunc</b>
911 </a>
912
913 <dd>
914 Plasfunc in used for the procedural definition of plastic-like materials
915 with arbitrary bidirectional reflectance distribution functions (BRDF's).
916 The arguments to this material include the color and specularity,
917 as well as the function defining the specular distribution and the auxiliary file where it may be found.
918
919 <pre>
920 mod plasfunc id
921 2+ refl funcfile transform
922 0
923 4+ red green blue spec A5 ..
924 </pre>
925
926 The function refl takes four arguments, the x, y and z
927 direction towards the incident light, and the solid angle
928 subtended by the source.
929 The solid angle is provided to facilitate averaging, and is usually
930 ignored.
931 The refl function should integrate to 1 over
932 the projected hemisphere to maintain energy balance.
933 At least four real arguments must be given, and these are made available along with any additional values to the reflectance function.
934 Currently, only the contribution from direct light sources is considered in the specular calculation.
935 As in most material types, the surface normal is always altered to face the incoming ray.
936
937 <p>
938
939 <dt>
940 <a NAME="Metfunc">
941 <b>Metfunc</b>
942 </a>
943
944 <dd>
945 Metfunc is identical to <a HREF="#Plasfunc">plasfunc</a> and takes the same arguments,
946 but the specular component is multiplied also by the material color.
947
948 <p>
949
950 <dt>
951 <a NAME="Transfunc">
952 <b>Transfunc</b>
953 </a>
954
955 <dd>
956 Transfunc is similar to <a HREF="#Plasfunc">plasfunc</a> but with an arbitrary bidirectional transmittance distribution
957 as well as a reflectance distribution.
958 Both reflectance and transmittance are specified with the same function.
959
960 <pre>
961 mod transfunc id
962 2+ brtd funcfile transform
963 0
964 6+ red green blue rspec trans tspec A7 ..
965 </pre>
966
967 Where trans is the total light transmitted and tspec is the non-Lambertian fraction of transmitted light.
968 The function brtd should integrate to 1 over each projected hemisphere.
969
970 <p>
971
972 <dt>
973 <a NAME="BRTDfunc">
974 <b>BRTDfunc</b>
975 </a>
976
977 <dd>
978 The material BRTDfunc gives the maximum flexibility over surface reflectance and transmittance,
979 providing for spectrally-dependent specular rays and reflectance and transmittance distribution functions.
980
981 <pre>
982 mod BRTDfunc id
983 10+ rrefl grefl brefl
984 rtrns gtrns btrns
985 rbrtd gbrtd bbrtd
986 funcfile transform
987 0
988 9+ rfdif gfdif bfdif
989 rbdif gbdif bbdif
990 rtdif gtdif btdif
991 A10 ..
992 </pre>
993
994 The variables rrefl, grefl and brefl specify the color coefficients for the ideal specular (mirror) reflection of the surface.
995 The variables rtrns, gtrns and btrns specify the color coefficients for the ideal specular transmission.
996 The functions rbrtd, gbrtd and bbrtd take the direction to the incident light (and its solid angle) and
997 compute the color coefficients for the directional diffuse part of reflection and transmission.
998 As a special case, three identical values of '0' may be given in place of these function names to indicate no directional diffuse component.
999
1000 <p>
1001 Unlike most other material types, the surface normal is not altered to face the incoming ray.
1002 Thus, functions and variables must pay attention to the orientation of the surface and make adjustments appropriately.
1003 However, the special variables for the perturbed dot product and surface normal, RdotP, NxP, NyP and NzP are reoriented
1004 as if the ray hit the front surface for convenience.
1005
1006 <p>
1007 A diffuse reflection component may be given for the front side with rfdif, gfdif and bfdif for the front side of the surface
1008 or rbdif, gbdif and bbdif for the back side.
1009 The diffuse transmittance (must be the same for both sides by physical law) is given by rtdif, gtdif and btdif.
1010 A pattern will modify these diffuse scattering values, and will be available through the special variables CrP, CgP and CbP.
1011
1012 <p>
1013 Care must be taken when using this material type to produce a physically valid reflection model.
1014 The reflectance functions should be bidirectional, and under no circumstances should the sum of reflected diffuse,
1015 transmitted diffuse, reflected specular, transmitted specular and the integrated directional diffuse component be greater than one.
1016
1017 <p>
1018
1019 <dt>
1020 <a NAME="Plasdata">
1021 <b>Plasdata</b>
1022 </a>
1023
1024 <dd>
1025 Plasdata is used for arbitrary BRDF's that are most conveniently given as interpolated data.
1026 The arguments to this material are the <a HREF="#Data">data file</a> and coordinate index functions,
1027 as well as a function to optionally modify the data values.
1028
1029 <pre>
1030 mod plasdata id
1031 3+n+
1032 func datafile
1033 funcfile x1 x2 .. xn transform
1034 0
1035 4+ red green blue spec A5 ..
1036 </pre>
1037
1038 The coordinate indices (x1, x2, etc.) are themselves functions of the x, y and z direction to the incident light, plus the solid angle
1039 subtended by the light source (usually ignored).
1040 The data function (func) takes five variables, the
1041 interpolated value from the n-dimensional data file, followed by the
1042 x, y and z direction to the incident light and the solid angle of the source.
1043 The light source direction and size may of course be ignored by the function.
1044
1045 <p>
1046
1047 <dt>
1048 <a NAME="Metdata">
1049 <b>Metdata</b>
1050 </a>
1051
1052 <dd>
1053 As metfunc is to plasfunc, metdata is to <a HREF="#Plasdata">plasdata</a>.
1054 Metdata takes the same arguments as plasdata, but the specular component is modified by the given material color.
1055
1056 <p>
1057
1058 <dt>
1059 <a NAME="Transdata">
1060 <b>Transdata</b>
1061 </a>
1062
1063 <dd>
1064 Transdata is like <a HREF="#Plasdata">plasdata</a> but the specification includes transmittance as well as reflectance.
1065 The parameters are as follows.
1066
1067 <pre>
1068 mod transdata id
1069 3+n+
1070 func datafile
1071 funcfile x1 x2 .. xn transform
1072 0
1073 6+ red green blue rspec trans tspec A7 ..
1074 </pre>
1075
1076 <p>
1077
1078 <dt>
1079 <a NAME="BSDF">
1080 <b>BSDF</b>
1081 </a>
1082
1083 <dd>
1084 The BSDF material type loads an XML (eXtensible Markup Language)
1085 file describing a bidirectional scattering distribution function.
1086 Real arguments to this material may define additional
1087 diffuse components that augment the BSDF data.
1088 String arguments are used to define thickness for proxied
1089 surfaces and the &quot;up&quot; orientation for the material.
1090
1091 <pre>
1092 mod BSDF id
1093 6+ thick BSDFfile ux uy uz funcfile transform
1094 0
1095 0|3|6|9
1096 rfdif gfdif bfdif
1097 rbdif gbdif bbdif
1098 rtdif gtdif btdif
1099 </pre>
1100
1101 <p>
1102 The first string argument is a &quot;thickness&quot; parameter that may be used
1103 to hide detail geometry being proxied by an aggregate BSDF material.
1104 If a view or shadow ray hits a BSDF proxy with non-zero thickness,
1105 it will pass directly through as if the surface were not there.
1106 Similar to the illum type, this permits direct viewing and
1107 shadow testing of complex geometry.
1108 The BSDF is used when a scattered (indirect) ray hits the surface,
1109 and any transmitted sample rays will be offset by the thickness amount
1110 to avoid the hidden geometry and gather samples from the other side.
1111 In this manner, BSDF surfaces can improve the results for indirect
1112 scattering from complex systems without sacrificing appearance or
1113 shadow accuracy.
1114 If the BSDF has transmission and back-side reflection data,
1115 a parallel BSDF surface may be
1116 placed slightly less than the given thickness away from the front surface
1117 to enclose the complex geometry on both sides.
1118 The sign of the thickness is important, as it indicates
1119 whether the proxied geometry is behind the BSDF
1120 surface (when thickness is positive) or in front (when
1121 thickness is negative).
1122 <p>
1123 The second string argument is the name of the BSDF file,
1124 which is found in the usual auxiliary locations. The
1125 following three string parameters name variables for an
1126 &quot;up&quot; vector, which together with the surface
1127 normal, define the local coordinate system that orients the
1128 BSDF. These variables, along with the thickness, are defined
1129 in a function file given as the next string argument. An
1130 optional transform is used to scale the thickness and
1131 reorient the up vector.
1132 <p>
1133 If no real arguments are given, the BSDF is used by itself
1134 to determine reflection and transmission. If there are at
1135 least 3 real arguments, the first triplet is an additional
1136 diffuse reflectance for the front side. At least 6 real
1137 arguments adds diffuse reflectance to the rear side of the
1138 surface. If there are 9 real arguments, the final triplet
1139 will be taken as an additional diffuse transmittance. All
1140 diffuse components as well as the non-diffuse transmission
1141 are modified by patterns applied to this material. The
1142 non-diffuse reflection from either side are unaffected.
1143 Textures perturb the effective surface normal in the usual
1144 way.
1145 <p>
1146 The surface normal of this type is not altered to face the
1147 incoming ray, so the front and back BSDF reflections may
1148 differ. (Transmission is identical front-to-back by physical
1149 law.) If back visibility is turned off during rendering and
1150 there is no transmission or back-side reflection, only then
1151 the surface will be invisible from behind. Unlike other
1152 data-driven material types, the BSDF type is fully supported
1153 and all parts of the distribution are properly sampled.
1154 <p>
1155
1156 <dt>
1157 <a NAME="sBSDF">
1158 <b>sBSDF</b>
1159 </a>
1160
1161 <dd>
1162 The sBSDF material is identical to the BSDF type with two
1163 important differences. First, proxy geometry is not
1164 supported, so there is no thickness parameter. Second, an
1165 sBSDF is assumed to have some specular through component,
1166 which is treated specially during the direct calculation
1167 and when viewing the material. Based on the BSDF data, the
1168 coefficient of specular transmission is determined and used
1169 for modifying unscattered shadow and view rays.
1170
1171 <pre>
1172 mod sBSDF id
1173 5+ BSDFfile ux uy uz funcfile transform
1174 0
1175 0|3|6|9
1176 rfdif gfdif bfdif
1177 rbdif gbdif bbdif
1178 rtdif gtdif btdif
1179 </pre>
1180
1181 <p>
1182 If a material has no specular transmitted component, it is
1183 much better to use the BSDF type with a zero thickness
1184 than to use sBSDF.
1185 <p>
1186
1187 <dt>
1188 <a NAME="Antimatter">
1189 <b>Antimatter</b>
1190 </a>
1191
1192 <dd>
1193 Antimatter is a material that can &quot;subtract&quot; volumes from other volumes.
1194 A ray passing into an antimatter object becomes blind to all the specified modifiers:
1195
1196 <pre>
1197 mod antimatter id
1198 N mod1 mod2 .. modN
1199 0
1200 0
1201 </pre>
1202
1203 The first modifier will also be used to shade the area leaving the antimatter volume and entering the regular volume.
1204 If mod1 is void, the antimatter volume is completely invisible.
1205 Antimatter does not work properly with the material type <a HREF="#Trans">&quot;trans&quot;</a>,
1206 and multiple antimatter surfaces should be disjoint.
1207 The viewpoint must be outside all volumes concerned for a correct rendering.
1208
1209 </dl>
1210
1211 <p>
1212 <hr>
1213
1214 <h4>
1215 <a NAME="Textures">2.1.3. Textures</a>
1216 </h4>
1217
1218 A texture is a perturbation of the surface normal, and is given by either a function or data.
1219
1220 <p>
1221
1222 <dl>
1223
1224 <dt>
1225 <a NAME="Texfunc">
1226 <b>Texfunc</b>
1227 </a>
1228
1229 <dd>
1230 A texfunc uses an auxiliary function file to specify a procedural texture:
1231
1232 <pre>
1233 mod texfunc id
1234 4+ xpert ypert zpert funcfile transform
1235 0
1236 n A1 A2 .. An
1237 </pre>
1238
1239 <p>
1240
1241 <dt>
1242 <a NAME="Texdata">
1243 <b>Texdata</b>
1244 </a>
1245
1246 <dd>
1247 A texdata texture uses three data files to get the surface normal perturbations.
1248 The variables xfunc, yfunc and zfunc take three arguments each from the interpolated values in xdfname, ydfname and zdfname.
1249
1250 <pre>
1251 mod texdata id
1252 8+ xfunc yfunc zfunc xdfname ydfname zdfname vfname x0 x1 .. xf
1253 0
1254 n A1 A2 .. An
1255 </pre>
1256
1257 </dl>
1258
1259 <p>
1260 <hr>
1261
1262 <h4>
1263 <a NAME="Patterns">2.1.4. Patterns</a>
1264 </h4>
1265
1266 Patterns are used to modify the reflectance of materials. The basic types are given below.
1267
1268 <p>
1269
1270 <dl>
1271
1272 <dt>
1273 <a NAME="Colorfunc">
1274 <b>Colorfunc</b>
1275 </a>
1276
1277 <dd>
1278 A colorfunc is a procedurally defined color pattern. It is specified as follows:
1279
1280 <pre>
1281 mod colorfunc id
1282 4+ red green blue funcfile transform
1283 0
1284 n A1 A2 .. An
1285 </pre>
1286
1287 <p>
1288
1289 <dt>
1290 <a NAME="Brightfunc">
1291 <b>Brightfunc</b>
1292 </a>
1293
1294 <dd>
1295 A brightfunc is the same as a colorfunc, except it is monochromatic.
1296
1297 <pre>
1298 mod brightfunc id
1299 2+ refl funcfile transform
1300 0
1301 n A1 A2 .. An
1302 </pre>
1303
1304 <p>
1305
1306 <dt>
1307 <a NAME="Colordata">
1308 <b>Colordata</b>
1309 </a>
1310
1311 <dd>
1312 Colordata uses an interpolated data map to modify a material's color.
1313 The map is n-dimensional, and is stored in three auxiliary files, one for each color.
1314 The coordinates used to look up and interpolate the data are defined in another auxiliary file.
1315 The interpolated data values are modified by functions of one or three variables.
1316 If the functions are of one variable, then they are passed the corresponding color component (red or green or blue).
1317 If the functions are of three variables, then they are passed the original red, green, and blue values as parameters.
1318
1319 <pre>
1320 mod colordata id
1321 7+n+
1322 rfunc gfunc bfunc rdatafile gdatafile bdatafile
1323 funcfile x1 x2 .. xn transform
1324 0
1325 m A1 A2 .. Am
1326 </pre>
1327
1328 <p>
1329
1330 <dt>
1331 <a NAME="Brightdata">
1332 <b>Brightdata</b>
1333 </a>
1334
1335 <dd>
1336 Brightdata is like colordata, except monochromatic.
1337
1338 <pre>
1339 mod brightdata id
1340 3+n+
1341 func datafile
1342 funcfile x1 x2 .. xn transform
1343 0
1344 m A1 A2 .. Am
1345 </pre>
1346
1347 <p>
1348
1349 <dt>
1350 <a NAME="Colorpict">
1351 <b>Colorpict</b>
1352 </a>
1353
1354 <dd>
1355 Colorpict is a special case of colordata, where the pattern is a two-dimensional image stored in the RADIANCE picture format.
1356 The dimensions of the image data are determined by the picture such that the smaller dimension is always 1,
1357 and the other is the ratio between the larger and the smaller.
1358 For example, a 500x338 picture would have coordinates (u,v) in the rectangle between (0,0) and (1.48,1).
1359
1360 <pre>
1361 mod colorpict id
1362 7+
1363 rfunc gfunc bfunc pictfile
1364 funcfile u v transform
1365 0
1366 m A1 A2 .. Am
1367 </pre>
1368
1369 <p>
1370
1371 <dt>
1372 <a NAME="Colortext">
1373 <b>Colortext</b>
1374 </a>
1375
1376 <dd>
1377 Colortext is dichromatic writing in a polygonal font.
1378 The font is defined in an auxiliary file, such as helvet.fnt.
1379 The text itself is also specified in a separate file, or can be part of the material arguments.
1380 The character size, orientation, aspect ratio and slant is determined by right and down motion vectors.
1381 The upper left origin for the text block as well as the foreground and background colors must also be given.
1382
1383 <pre>
1384 mod colortext id
1385 2 fontfile textfile
1386 0
1387 15+
1388 Ox Oy Oz
1389 Rx Ry Rz
1390 Dx Dy Dz
1391 rfore gfore bfore
1392 rback gback bback
1393 [spacing]
1394 </pre>
1395
1396 or:
1397
1398 <pre>
1399 mod colortext id
1400 2+N fontfile . This is a line with N words ...
1401 0
1402 15+
1403 Ox Oy Oz
1404 Rx Ry Rz
1405 Dx Dy Dz
1406 rfore gfore bfore
1407 rback gback bback
1408 [spacing]
1409 </pre>
1410
1411 <p>
1412
1413 <dt>
1414 <a NAME="Brighttext">
1415 <b>Brighttext</b>
1416 </a>
1417
1418 <dd>
1419 Brighttext is like colortext, but the writing is monochromatic.
1420
1421 <pre>
1422 mod brighttext id
1423 2 fontfile textfile
1424 0
1425 11+
1426 Ox Oy Oz
1427 Rx Ry Rz
1428 Dx Dy Dz
1429 foreground background
1430 [spacing]
1431 </pre>
1432
1433 or:
1434
1435 <pre>
1436 mod brighttext id
1437 2+N fontfile . This is a line with N words ...
1438 0
1439 11+
1440 Ox Oy Oz
1441 Rx Ry Rz
1442 Dx Dy Dz
1443 foreground background
1444 [spacing]
1445 </pre>
1446
1447 <p>
1448
1449 By default, a uniform spacing algorithm is used that guarantees every character will appear in a precisely determined position.
1450 Unfortunately, such a scheme results in rather unattractive and difficult to read text with most fonts.
1451 The optional spacing value defines the distance between characters for proportional spacing.
1452 A positive value selects a spacing algorithm that preserves right margins and indentation,
1453 but does not provide the ultimate in proportionally spaced text.
1454 A negative value insures that characters are properly spaced, but the placement of words then varies unpredictably.
1455 The choice depends on the relative importance of spacing versus formatting.
1456 When presenting a section of formatted text, a positive spacing value is usually preferred.
1457 A single line of text will often be accompanied by a negative spacing value.
1458 A section of text meant to depict a picture, perhaps using a special purpose font such as hexbit4x1.fnt, calls for uniform spacing.
1459 Reasonable magnitudes for proportional spacing are between 0.1 (for tightly spaced characters) and 0.3 (for wide spacing).
1460
1461 </dl>
1462
1463 <p>
1464 <hr>
1465
1466 <h4>
1467 <a NAME="Mixtures">2.1.5. Mixtures</a>
1468 </h4>
1469
1470 A mixture is a blend of one or more materials or textures and patterns.
1471 Blended materials should not be light source types or virtual source types.
1472 The basic types are given below.
1473
1474 <p>
1475
1476 <dl>
1477
1478 <dt>
1479 <a NAME="Mixfunc">
1480 <b>Mixfunc</b>
1481 </a>
1482
1483 <dd>
1484 A mixfunc mixes two modifiers procedurally. It is specified as follows:
1485
1486 <pre>
1487 mod mixfunc id
1488 4+ foreground background vname funcfile transform
1489 0
1490 n A1 A2 .. An
1491 </pre>
1492
1493 Foreground and background are modifier names that must be
1494 defined earlier in the scene description.
1495 If one of these is a material, then
1496 the modifier of the mixfunc must be &quot;void&quot;.
1497 (Either the foreground or background modifier may be &quot;void&quot;,
1498 which serves as a form of opacity control when used with a material.)
1499 Vname is the coefficient defined in funcfile that determines the influence of foreground.
1500 The background coefficient is always (1-vname).
1501
1502 <p>
1503
1504 <dt>
1505 <a NAME="Mixdata">
1506 <b>Mixdata</b>
1507 </a>
1508
1509 <dd>
1510 Mixdata combines two modifiers using an auxiliary data file:
1511
1512 <pre>
1513 mod mixdata id
1514 5+n+
1515 foreground background func datafile
1516 funcfile x1 x2 .. xn transform
1517 0
1518 m A1 A2 .. Am
1519 </pre>
1520
1521 <dt>
1522 <a NAME="Mixpict">
1523 <b>Mixpict</b>
1524 </a>
1525
1526 <dd>
1527 Mixpict combines two modifiers based on a picture:
1528
1529 <pre>
1530 mod mixpict id
1531 7+
1532 foreground background func pictfile
1533 funcfile u v transform
1534 0
1535 m A1 A2 .. Am
1536 </pre>
1537
1538 <p>
1539
1540 The mixing coefficient function &quot;func&quot; takes three
1541 arguments, the red, green and blue values
1542 corresponding to the pixel at (u,v).
1543
1544 <p>
1545
1546 <dt>
1547 <a NAME="Mixtext">
1548 <b>Mixtext</b>
1549 </a>
1550
1551 <dd>
1552 Mixtext uses one modifier for the text foreground, and one for the background:
1553
1554 <pre>
1555 mod mixtext id
1556 4 foreground background fontfile textfile
1557 0
1558 9+
1559 Ox Oy Oz
1560 Rx Ry Rz
1561 Dx Dy Dz
1562 [spacing]
1563 </pre>
1564
1565 or:
1566
1567 <pre>
1568 mod mixtext id
1569 4+N
1570 foreground background fontfile .
1571 This is a line with N words ...
1572 0
1573 9+
1574 Ox Oy Oz
1575 Rx Ry Rz
1576 Dx Dy Dz
1577 [spacing]
1578 </pre>
1579
1580 </dl>
1581
1582 <p>
1583 <hr>
1584
1585 <h3>
1586 <a NAME="Auxiliary">2.2. Auxiliary Files</a>
1587 </h3>
1588
1589 Auxiliary files used in <a HREF="#Textures">textures</a> and <a HREF="#Patterns">patterns</a>
1590 are accessed by the programs during image generation.
1591 These files may be located in the working directory, or in a library directory.
1592 The environment variable RAYPATH can be assigned an alternate set of search directories.
1593 Following is a brief description of some common file types.
1594
1595 <p>
1596
1597 <h4>
1598 <a NAME="Function">12.2.1. Function Files</a>
1599 </h4>
1600
1601 A function file contains the definitions of variables, functions and constants used by a primitive.
1602 The transformation that accompanies the file name contains the necessary rotations, translations and scalings
1603 to bring the coordinates of the function file into agreement with the world coordinates.
1604 The transformation specification is the same as for the <a HREF="#Generators">xform</a> command.
1605 An example function file is given below:
1606
1607 <pre>
1608 {
1609 This is a comment, enclosed in curly braces.
1610 {Comments can be nested.}
1611 }
1612 { standard expressions use +,-,*,/,^,(,) }
1613 vname = Ny * func(A1) ;
1614 { constants are defined with a colon }
1615 const : sqrt(PI/2) ;
1616 { user-defined functions add to library }
1617 func(x) = 5 + A1*sin(x/3) ;
1618 { functions may be passed and recursive }
1619 rfunc(f,x) = if(x,f(x),f(-x)*rfunc(f,x+1)) ;
1620 { constant functions may also be defined }
1621 cfunc(x) : 10*x / sqrt(x) ;
1622 </pre>
1623
1624 Many variables and functions are already defined by the program, and they are listed in the file rayinit.cal.
1625 The following variables are particularly important:
1626
1627 <pre>
1628 Dx, Dy, Dz - incident ray direction
1629 Nx, Ny, Nz - surface normal at intersection point
1630 Px, Py, Pz - intersection point
1631 T - distance from start
1632 Ts - single ray (shadow) distance
1633 Rdot - cosine between ray and normal
1634 arg(0) - number of real arguments
1635 arg(i) - i'th real argument
1636 </pre>
1637
1638 For mesh objects, the local surface coordinates are available:
1639
1640 <pre>
1641 Lu, Lv - local (u,v) coordinates
1642 </pre>
1643
1644 For BRDF types, the following variables are defined as well:
1645
1646 <pre>
1647 NxP, NyP, NzP - perturbed surface normal
1648 RdotP - perturbed dot product
1649 CrP, CgP, CbP - perturbed material color
1650 </pre>
1651
1652 A unique context is set up for each file so
1653 that the same variable may appear in different
1654 function files without conflict.
1655 The variables listed above and any others defined in
1656 rayinit.cal are available globally.
1657 If no file is needed by a given primitive because all
1658 the required variables are global,
1659 a period (`.') can be given in place of the file name.
1660 It is also possible to give an expression instead
1661 of a straight variable name in a scene file.
1662 Functions (requiring parameters) must be given
1663 as names and not as expressions.
1664
1665 <p>
1666 Constant expressions are used as an optimization in function files.
1667 They are replaced wherever they occur in an expression by their value.
1668 Constant expressions are evaluated only once, so they must not contain any variables or values that can change,
1669 such as the ray variables Px and Ny or the primitive argument function arg().
1670 All the math library functions such as sqrt() and cos() have the constant attribute,
1671 so they will be replaced by immediate values whenever they are given constant arguments.
1672 Thus, the subexpression cos(PI*sqrt(2)) is immediately replaced by its value, -.266255342,
1673 and does not cause any additional overhead in the calculation.
1674
1675 <p>
1676 It is generally a good idea to define constants and variables before they are referred to in a function file.
1677 Although evaluation does not take place until later, the interpreter does variable scoping and
1678 constant subexpression evaluation based on what it has compiled already.
1679 For example, a variable that is defined globally in rayinit.cal
1680 then referenced in the local context of a function file
1681 cannot subsequently be redefined in the same file
1682 because the compiler has already determined the scope of the referenced variable as global.
1683 To avoid such conflicts, one can state the scope of a variable explicitly by
1684 preceding the variable name with a context mark (a back-quote) for a local variable,
1685 or following the name with a context mark for a global variable.
1686
1687 <p>
1688
1689 <h4>
1690 <a NAME="Data">2.2.2. Data Files</a>
1691 </h4>
1692
1693 Data files contain n-dimensional arrays of real numbers used for interpolation.
1694 Typically, definitions in a function file determine how to index and use interpolated data values.
1695 The basic data file format is as follows:
1696
1697 <pre>
1698 N
1699 beg1 end1 m1
1700 0 0 m2 x2.1 x2.2 x2.3 x2.4 .. x2.m2
1701 ...
1702 begN endN mN
1703 DATA, later dimensions changing faster.
1704 </pre>
1705
1706 N is the number of dimensions.
1707 For each dimension, the beginning and ending coordinate values and the dimension size is given.
1708 Alternatively, individual coordinate values can be given when the points are not evenly spaced.
1709 These values must either be increasing or decreasing monotonically.
1710 The data is m1*m2*...*mN real numbers in ASCII form.
1711 Comments may appear anywhere in the file, beginning with a pound
1712 sign ('#') and continuing to the end of line.
1713
1714 <p>
1715
1716 <h4>
1717 <a NAME="Font">2.2.3. Font Files</a>
1718 </h4>
1719
1720 A font file lists the polygons which make up a character set.
1721 Comments may appear anywhere in the file, beginning with a pound
1722 sign ('#') and continuing to the end of line.
1723 All numbers are decimal integers:
1724
1725 <pre>
1726 code n
1727 x0 y0
1728 x1 y1
1729 ...
1730 xn yn
1731 ...
1732 </pre>
1733
1734 The ASCII codes can appear in any order. N is the number of vertices, and the last is automatically connected to the first.
1735 Separate polygonal sections are joined by coincident sides.
1736 The character coordinate system is a square with lower left corner at (0,0), lower right at (255,0) and upper right at (255,255).
1737
1738 <p>
1739
1740 <hr>
1741
1742 <h3>
1743 <a NAME="Generators">2.3. Generators</a>
1744 </h3>
1745
1746 A generator is any program that produces a scene description as its output.
1747 They usually appear as commands in a scene description file.
1748 An example of a simple generator is genbox.
1749
1750 <ul>
1751
1752 <li>
1753 <a NAME="Genbox" HREF="../man_html/genbox.1.html">
1754 <b>Genbox</b>
1755 </a>
1756 takes the arguments of width, height and depth to produce a parallelepiped description.
1757 <li>
1758 <a NAME="Genprism" HREF="../man_html/genprism.1.html">
1759 <b>Genprism</b>
1760 </a>
1761 takes a list of 2-dimensional coordinates and extrudes them along a vector to
1762 produce a 3-dimensional prism.
1763 <li>
1764 <a NAME="Genrev" HREF="../man_html/genrev.1.html">
1765 <b>Genrev</b>
1766 </a>
1767 is a more sophisticated generator that produces an object of rotation from parametric functions for radius and axis position.
1768 <li>
1769 <a NAME="Gensurf" HREF="../man_html/gensurf.1.html">
1770 <b>Gensurf</b>
1771 </a>
1772 tessellates a surface defined by the parametric functions x(s,t), y(s,t), and z(s,t).
1773 <li>
1774 <a NAME="Genworm" HREF="../man_html/genworm.1.html">
1775 <b>Genworm</b>
1776 </a>
1777 links cylinders and spheres along a curve.
1778 <li>
1779 <a NAME="Gensky" HREF="../man_html/gensky.1.html">
1780 <b>Gensky</b>
1781 </a>
1782 produces a sun and sky distribution corresponding to a given time and date.
1783 <li>
1784 <a NAME="Xform" HREF="../man_html/xform.1.html">
1785 <b>Xform</b>
1786 </a>
1787 is a program that transforms a scene description from one coordinate space to another.
1788 Xform does rotation, translation, scaling, and mirroring.
1789
1790 </ul>
1791
1792 <p>
1793 <hr>
1794
1795 <h2>
1796 <a NAME="Image">3. Image Generation</a>
1797 </h2>
1798
1799 Once the scene has been described in three-dimensions, it is possible to generate a two-dimensional image from a given perspective.
1800
1801 <p>
1802 The image generating programs use an <a NAME="octree"><b>octree</b></a> to efficiently trace rays through the scene.
1803 An octree subdivides space into nested octants which contain sets of surfaces.
1804 In RADIANCE, an octree is created from a scene description by <a NAME="oconv1" HREF="../man_html/oconv.1.html"><b>oconv</b></a>.
1805 The details of this process are not important, but the octree will serve as input to the ray-tracing programs and
1806 directs the use of a scene description.
1807 <ul>
1808 <li>
1809 <a NAME="rvu" HREF="../man_html/rvu.1.html"><b>Rview</b></a> is ray-tracing program for viewing a scene interactively.
1810 When the user specifies a new perspective, rvu quickly displays a rough image on the terminal,
1811 then progressively increases the resolution as the user looks on.
1812 He can select a particular section of the image to improve, or move to a different view and start over.
1813 This mode of interaction is useful for debugging scenes as well as determining the best view for a final image.
1814
1815 <li>
1816 <a NAME="rpict" HREF="../man_html/rpict.1.html"><b>Rpict</b></a> produces a high-resolution picture of a scene from a particular perspective.
1817 This program features adaptive sampling, crash recovery and progress reporting, all of which are important for time-consuming images.
1818 </ul>
1819 <p>
1820 A number of <a NAME="filters"><b>filters</b></a> are available for manipulating picture files:
1821 <ul>
1822 <li> <a HREF="../man_html/pfilt.1.html"><b>Pfilt</b></a>
1823 sets the exposure and performs antialiasing.
1824 <li> <a HREF="../man_html/pcompos.1.html"><b>Pcompos</b></a>
1825 composites (cuts and pastes) pictures.
1826 <li> <a HREF="../man_html/pcomb.1.html"><b>Pcomb</b></a>
1827 performs arbitrary math on one or more pictures.
1828 <li> <a HREF="../man_html/pcond.1.html"><b>Pcond</b></a>
1829 conditions a picture for a specific display device.
1830 <li> <a HREF="../man_html/protate.1.html"><b>Protate</b></a>
1831 rotates a picture 90 degrees clockwise.
1832 <li> <a HREF="../man_html/pflip.1.html"><b>Pflip</b></a>
1833 flips a picture horizontally, vertically, or both
1834 (180 degree rotation).
1835 <li> <a HREF="../man_html/pvalue.1.html"><b>Pvalue</b></a>
1836 converts a picture to and from simpler formats.
1837 </ul>
1838
1839 <p>
1840 Pictures may be displayed directly under X11 using the program
1841 <a HREF="../man_html/ximage.1.html">ximage</a>,
1842 or converted a standard image format using one of the following
1843 <b>translators</b>:
1844 <ul>
1845 <li> <a HREF="../man_html/ra_bmp.1.html"><b>Ra_bmp</b>
1846 converts to and from BMP image format.
1847 <li> <a HREF="../man_html/ra_ppm.1.html"><b>Ra_ppm</b></a>
1848 converts to and from Poskanzer Portable Pixmap formats.
1849 <li> <a HREF="../man_html/ra_ps.1.html"><b>Ra_ps</b></a>
1850 converts to PostScript color and greyscale formats.
1851 <li> <a HREF="../man_html/ra_rgbe.1.html"><b>Ra_rgbe</b></a>
1852 converts to and from Radiance uncompressed picture format.
1853 <li> <a HREF="../man_html/ra_t16.1.html"><b>Ra_t16</b></a>
1854 converts to and from Targa 16 and 24-bit image formats.
1855 <li> <a HREF="../man_html/ra_t8.1.html"><b>Ra_t8</b></a>
1856 converts to and from Targa 8-bit image format.
1857 <li> <a HREF="../man_html/ra_tiff.1.html"><b>Ra_tiff</b></a>
1858 converts to and from TIFF.
1859 <li> <a HREF="../man_html/ra_xyze.1.html"><b>Ra_xyze</b></a>
1860 converts to and from Radiance CIE picture format.
1861 </ul>
1862
1863 <p>
1864
1865 <hr>
1866
1867 <h2>
1868 <a NAME="License">4. License</a>
1869 </h2>
1870
1871 <pre>
1872 The Radiance Software License, Version 1.0
1873
1874 Copyright (c) 1990 - 2014 The Regents of the University of California,
1875 through Lawrence Berkeley National Laboratory. All rights reserved.
1876
1877 Redistribution and use in source and binary forms, with or without
1878 modification, are permitted provided that the following conditions
1879 are met:
1880
1881 1. Redistributions of source code must retain the above copyright
1882 notice, this list of conditions and the following disclaimer.
1883
1884 2. Redistributions in binary form must reproduce the above copyright
1885 notice, this list of conditions and the following disclaimer in
1886 the documentation and/or other materials provided with the
1887 distribution.
1888
1889 3. The end-user documentation included with the redistribution,
1890 if any, must include the following acknowledgment:
1891 &quot;This product includes Radiance software
1892 (<a HREF="http://radsite.lbl.gov/">http://radsite.lbl.gov/</a>)
1893 developed by the Lawrence Berkeley National Laboratory
1894 (<a HREF="http://www.lbl.gov/">http://www.lbl.gov/</a>).&quot;
1895 Alternately, this acknowledgment may appear in the software itself,
1896 if and wherever such third-party acknowledgments normally appear.
1897
1898 4. The names &quot;Radiance,&quot; &quot;Lawrence Berkeley National Laboratory&quot;
1899 and &quot;The Regents of the University of California&quot; must
1900 not be used to endorse or promote products derived from this
1901 software without prior written permission. For written
1902 permission, please contact [email protected].
1903
1904 5. Products derived from this software may not be called &quot;Radiance&quot;,
1905 nor may &quot;Radiance&quot; appear in their name, without prior written
1906 permission of Lawrence Berkeley National Laboratory.
1907
1908 THIS SOFTWARE IS PROVIDED ``AS IS&quot; AND ANY EXPRESSED OR IMPLIED
1909 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
1910 OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
1911 DISCLAIMED. IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
1912 ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
1913 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
1914 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
1915 USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
1916 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
1917 OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
1918 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
1919 SUCH DAMAGE.
1920 </pre>
1921
1922 <hr>
1923
1924 <h2>
1925 <a NAME="Ack">5. Acknowledgements</a>
1926 </h2>
1927
1928 This work was supported by the Assistant Secretary of Conservation and Renewable Energy,
1929 Office of Building Energy Research and Development,
1930 Buildings Equipment Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
1931
1932 <p>
1933 Additional work was sponsored by the Swiss federal government
1934 under the Swiss LUMEN Project and was carried out in the
1935 Laboratoire d'Energie Solaire (LESO Group) at the
1936 Ecole Polytechnique Federale de Lausanne (EPFL University) in Lausanne, Switzerland.
1937
1938 <p>
1939
1940 <hr>
1941
1942 <h2>
1943 <a NAME="Ref">6.</a> References
1944 </h2>
1945 <p>
1946 <ul>
1947 <li>McNeil, A., C.J. Jonsson, D. Appelfeld, G. Ward, E.S. Lee,
1948 &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">
1949 A validation of a ray-tracing tool used to generate
1950 bi-directional scattering distribution functions for
1951 complex fenestration systems</a>,&quot;
1952 <em>Solar Energy</em>, 98, 404-14,
1953 November 2013.
1954 <li>Ward, G., R. Mistrick, E.S. Lee, A. McNeil, J. Jonsson,
1955 &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">Simulating
1956 the Daylight Performance of Complex Fenestration Systems
1957 Using Bidirectional Scattering Distribution Functions within
1958 Radiance</a>,&quot;
1959 <em>Leukos</em>, 7(4)
1960 April 2011.
1961 <li>Cater, Kirsten, Alan Chalmers, Greg Ward,
1962 &quot;<a href="http://www.anyhere.com/gward/papers/egsr2003.pdf">Detail to Attention:
1963 Exploiting Visual Tasks for Selective Rendering</a>,&quot;
1964 <em>Eurographics Symposium
1965 on Rendering 2003</em>, June 2003.
1966 <li>Ward, Greg, Elena Eydelberg-Vileshin,
1967 &quot;<a HREF="http://www.anyhere.com/gward/papers/egwr02/index.html">Picture Perfect RGB
1968 Rendering Using Spectral Prefiltering and Sharp Color Primaries</a>,&quot;
1969 Thirteenth Eurographics Workshop on Rendering (2002),
1970 P. Debevec and S. Gibson (Editors), June 2002.
1971 <li>Ward, Gregory,
1972 &quot;<a HREF="http://www.anyhere.com/gward/papers/cic01.pdf">High Dynamic Range Imaging</a>,&quot;
1973 Proceedings of the Ninth Color Imaging Conference, November 2001.
1974 <li>Ward, Gregory and Maryann Simmons,
1975 &quot;<a HREF="http://www.anyhere.com/gward/papers/tog99.pdf">
1976 The Holodeck Ray Cache: An Interactive Rendering System for Global Illumination in Nondiffuse
1977 Environments</a>,&quot; ACM Transactions on Graphics, 18(4):361-98, October 1999.
1978 <li>Larson, G.W., &quot;<a HREF="http://www.anyhere.com/gward/papers/ewp98.pdf">The Holodeck: A Parallel
1979 Ray-caching Rendering System</a>,&quot; Proceedings of the Second
1980 Eurographics Workshop on Parallel Graphics and Visualisation,
1981 September 1998.
1982 <li>Larson, G.W. and R.A. Shakespeare,
1983 <a HREF="http://radsite.lbl.gov/radiance/book/index.html"><em>Rendering with Radiance:
1984 the Art and Science of Lighting Visualization</em></a>,
1985 Morgan Kaufmann Publishers, 1998.
1986 <li>Larson, G.W., H. Rushmeier, C. Piatko,
1987 &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/lbnl39882/tonemap.pdf">A Visibility
1988 Matching Tone Reproduction Operator for
1989 High Dynamic Range Scenes</a>,&quot; LBNL Technical Report 39882,
1990 January 1997.
1991 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw95.1/paper.html">Making
1992 Global Illumination User-Friendly</a>,&quot; Sixth
1993 Eurographics Workshop on Rendering, Springer-Verlag,
1994 Dublin, Ireland, June 1995.</li>
1995 <li>Rushmeier, H., G. Ward, C. Piatko, P. Sanders, B. Rust,
1996 &quot;<a HREF="http://radsite.lbl.gov/mgf/compare.html">
1997 Comparing Real and Synthetic Images: Some Ideas about
1998 Metrics</a>,&quot; Sixth Eurographics Workshop on Rendering,
1999 Springer-Verlag, Dublin, Ireland, June 1995.</li>
2000 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.1/paper.html">The RADIANCE
2001 Lighting Simulation and Rendering System</a>,&quot; <em>Computer
2002 Graphics</em>, July 1994.</li>
2003 <li>Rushmeier, H., G. Ward, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.2/energy.html">Energy
2004 Preserving Non-Linear Filters</a>,&quot; <em>Computer
2005 Graphics</em>, July 1994.</li>
2006 <li>Ward, G., &quot;A Contrast-Based Scalefactor for Luminance
2007 Display,&quot; <em>Graphics Gems IV</em>, Edited by Paul Heckbert,
2008 Academic Press 1994.</li>
2009 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg92/paper.html">Measuring and
2010 Modeling Anisotropic Reflection</a>,&quot; <em>Computer
2011 Graphics</em>, Vol. 26, No. 2, July 1992. </li>
2012 <li>Ward, G., P. Heckbert, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw92/paper.html">Irradiance
2013 Gradients</a>,&quot; Third Annual Eurographics Workshop on
2014 Rendering, Springer-Verlag, May 1992. </li>
2015 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw91/erw91.html">Adaptive Shadow
2016 Testing for Ray Tracing</a>&quot; Photorealistic Rendering in
2017 Computer Graphics, proceedings of 1991 Eurographics
2018 Rendering Workshop, edited by P. Brunet and F.W. Jansen,
2019 Springer-Verlag. </li>
2020 <li>Ward, G., &quot;Visualization,&quot; <em>Lighting Design and
2021 Application</em>, Vol. 20, No. 6, June 1990. </li>
2022 <li>Ward, G., F. Rubinstein, R. Clear, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg88/paper.html">A Ray Tracing Solution for
2023 Diffuse Interreflection</a>,&quot; <em>Computer Graphics</em>,
2024 Vol. 22, No. 4, August 1988. </li>
2025 <li>Ward, G., F. Rubinstein, &quot;A New Technique for Computer
2026 Simulation of Illuminated Spaces,&quot; <em>Journal of the
2027 Illuminating Engineering Society</em>, Vol. 17, No. 1,
2028 Winter 1988. </li>
2029 </ul>
2030 <p>
2031 See the <a HREF="index.html">RADIANCE Reference Materials</a> page
2032 for additional information.
2033 <hr>
2034
2035 <a NAME="Index"><h2>7. Types Index</h2></a>
2036
2037 <pre>
2038 <h4>
2039 SURFACES MATERIALS TEXTURES PATTERNS MIXTURES</h4>
2040 <a HREF="#Source">Source</a> <a HREF="#Light">Light</a> <a HREF="#Texfunc">Texfunc</a> <a HREF="#Colorfunc">Colorfunc</a> <a HREF="#Mixfunc">Mixfunc</a>
2041 <a HREF="#Sphere">Sphere</a> <a HREF="#Illum">Illum</a> <a HREF="#Texdata">Texdata</a> <a HREF="#Brightfunc">Brightfunc</a> <a HREF="#Mixdata">Mixdata</a>
2042 <a HREF="#Bubble">Bubble</a> <a HREF="#Glow">Glow</a> <a HREF="#Colordata">Colordata</a> <a HREF="#Mixtext">Mixtext</a>
2043 <a HREF="#Polygon">Polygon</a> <a HREF="#Spotlight">Spotlight</a> <a HREF="#Brightdata">Brightdata</a>
2044 <a HREF="#Cone">Cone</a> <a HREF="#Mirror">Mirror</a> <a HREF="#Colorpict">Colorpict</a>
2045 <a HREF="#Cup">Cup</a> <a HREF="#Prism1">Prism1</a> <a HREF="#Colortext">Colortext</a>
2046 <a HREF="#Cylinder">Cylinder</a> <a HREF="#Prism2">Prism2</a> <a HREF="#Brighttext">Brighttext</a>
2047 <a HREF="#Tube">Tube</a> <a HREF="#Plastic">Plastic</a>
2048 <a HREF="#Ring">Ring</a> <a HREF="#Metal">Metal</a>
2049 <a HREF="#Instance">Instance</a> <a HREF="#Trans">Trans</a>
2050 <a HREF="#Mesh">Mesh</a> <a HREF="#Plastic2">Plastic2</a>
2051 <a HREF="#Metal2">Metal2</a>
2052 <a HREF="#Trans2">Trans2</a>
2053 <a HREF="#Mist">Mist</a>
2054 <a HREF="#Dielectric">Dielectric</a>
2055 <a HREF="#Interface">Interface</a>
2056 <a HREF="#Glass">Glass</a>
2057 <a HREF="#Plasfunc">Plasfunc</a>
2058 <a HREF="#Metfunc">Metfunc</a>
2059 <a HREF="#Transfunc">Transfunc</a>
2060 <a HREF="#BRTDfunc">BRTDfunc</a>
2061 <a HREF="#Plasdata">Plasdata</a>
2062 <a HREF="#Metdata">Metdata</a>
2063 <a HREF="#Transdata">Transdata</a>
2064 <a HREF="#BSDF">BSDF</a>
2065 <a HREF="#Antimatter">Antimatter</a>
2066
2067 </pre>
2068
2069 <p>
2070
2071
2072 <hr>
2073 <center>Last Update: October 22, 1997</center>
2074 </body>
2075 </html>
2076