ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/ray.html
Revision: 1.23
Committed: Sun Jul 10 23:41:37 2016 UTC (7 years, 10 months ago) by greg
Content type: text/html
Branch: MAIN
CVS Tags: rad5R1
Changes since 1.22: +24 -2 lines
Log Message:
Added missing definition of ashik2 material type

File Contents

# Content
1 <html>
2 <!-- RCSid $Id: ray.html,v 1.22 2015/12/01 16:58:16 greg Exp $ -->
3 <head>
4 <title>
5 The RADIANCE 5.1 Synthetic Imaging System
6 </title>
7 </head>
8 <body>
9
10 <p>
11
12 <h1>
13 The RADIANCE 5.1 Synthetic Imaging System
14 </h1>
15
16 <p>
17
18 Building Technologies Program<br>
19 Lawrence Berkeley National Laboratory<br>
20 1 Cyclotron Rd., 90-3111<br>
21 Berkeley, CA 94720<br>
22 <a HREF="http://radsite.lbl.gov/radiance"</a>
23 http://radsite.lbl.gov/radiance<br>
24
25 <p>
26 <hr>
27
28 <h2>
29 <a NAME="Overview">Overview</a>
30 </h2>
31 <ol>
32 <li><a HREF="#Intro">Introduction</a><!P>
33 <li><a HREF="#Scene">Scene Description</a><!P>
34 <ol>
35 <li><a HREF="#Primitive"> Primitive Types</a>
36 <ol>
37 <li><a HREF="#Surfaces">Surfaces</a>
38 <li><a HREF="#Materials">Materials</a>
39 <li><a HREF="#Textures">Textures</a>
40 <li><a HREF="#Patterns">Patterns</a>
41 <li><a HREF="#Mixtures">Mixtures</a>
42 </ol><!P>
43 <li><a HREF="#Auxiliary">Auxiliary Files</a>
44 <ol>
45 <li><a HREF="#Function">Function Files</a>
46 <li><a HREF="#Data">Data Files</a>
47 <li><a HREF="#Font">Font Files</a>
48 </ol><!P>
49 <li><a HREF="#Generators">Generators</a>
50 </ol><!P>
51 <li><a HREF="#Image">Image Generation</a><!P>
52 <li><a HREF="#License">License</a><!P>
53 <li><a HREF="#Ack">Acknowledgements</a><!P>
54 <li><a HREF="#Ref">References</a><!P>
55 <li><a HREF="#Index">Types Index</a><!P>
56 </ol>
57
58 <p>
59 <hr>
60
61 <h2>
62 <a NAME="Intro">1. Introduction</a>
63 </h2>
64
65 RADIANCE was developed as a research tool for predicting
66 the distribution of visible radiation in illuminated spaces.
67 It takes as input a three-dimensional geometric model
68 of the physical environment, and produces a map of
69 spectral radiance values in a color image.
70 The technique of ray-tracing follows light backwards
71 from the image plane to the source(s).
72 Because it can produce realistic images from a
73 simple description, RADIANCE has a wide range of applications
74 in graphic arts, lighting design,
75 computer-aided engineering and architecture.
76
77 <p>
78 <img SRC="diagram1.gif">
79 <p>
80 Figure 1
81 <p>
82 The diagram in Figure 1 shows the flow between programs (boxes) and data
83 (ovals).
84 The central program is <i>rpict</i>, which produces a picture from a scene
85 description.
86 <i>Rview</i> is a variation of rpict that computes and displays images
87 interactively, and rtrace computes single ray values.
88 Other programs (not shown) connect many of these elements together,
89 such as the executive programs
90 <i>rad</i>
91 and
92 <i>ranimate</i>,
93 the interactive rendering program
94 <i>rholo</i>,
95 and the animation program
96 <i>ranimove</i>.
97 The program
98 <i>obj2mesh</i>
99 acts as both a converter and scene compiler, converting a Wavefront .OBJ
100 file into a compiled mesh octree for efficient rendering.
101
102 <p>
103 A scene description file lists the surfaces and materials
104 that make up a specific environment.
105 The current surface types are spheres, polygons, cones, and cylinders.
106 There is also a composite surface type, called mesh, and a pseudosurface
107 type, called instance, which facilitates very complex geometries.
108 Surfaces can be made from materials such as plastic, metal, and glass.
109 Light sources can be distant disks as well as local spheres, disks
110 and polygons.
111
112 <p>
113 From a three-dimensional scene description and a specified view,
114 <i>rpict</i> produces a two-dimensional image.
115 A picture file is a compressed binary representation of the
116 pixels in the image.
117 This picture can be scaled in size and brightness,
118 anti-aliased, and sent to a graphics output device.
119
120 <p>
121 A header in each picture file lists the program(s)
122 and parameters that produced it.
123 This is useful for identifying a picture without having to display it.
124 The information can be read by the program <i>getinfo</i>.
125
126 <p>
127 <hr>
128
129 <h2>
130 <a name="Scene">2. Scene Description</a>
131 </h2>
132
133 A scene description file represents a three-dimensional physical environment in Cartesian (rectilinear) world coordinates.
134 It is stored as ASCII text, with the following basic format:
135
136 <pre>
137 # comment
138
139 modifier type identifier
140 n S1 S2 &quot;S 3&quot; .. Sn
141 0
142 m R1 R2 R3 .. Rm
143
144 modifier alias identifier reference
145
146 ! command
147
148 ...
149 </pre>
150
151 A comment line begins with a pound sign, `#'.
152
153 <p>
154 The <a NAME="scene_desc">scene description primitives</a>
155 all have the same general format, and can be either surfaces or modifiers.
156 A primitive has a modifier, a type, and an identifier.
157 <p>
158 A <a NAME="modifier"><b>modifier</b></a> is either the
159 identifier of a previously defined primitive, or &quot;void&quot;.
160 <br>
161 [ The most recent definition of a modifier is the
162 one used, and later definitions do not cause relinking
163 of loaded primitives.
164 Thus, the same identifier may be used repeatedly,
165 and each new definition will apply to the primitives following it. ]
166 <p>
167 An <a NAME="identifier"><b>identifier</b></a> can be any string
168 (i.e., any sequence of non-white characters).
169 <p>
170 The arguments associated with a primitive can be strings or real numbers.
171 <ul>
172 <li> The first integer following the identifier is the number of <b>string arguments</b>,
173 and it is followed by the arguments themselves (separated by white space or enclosed in quotes).
174 <li> The next integer is the number of integer arguments, and is followed by the <b>integer arguments</b>.
175 (There are currently no primitives that use them, however.)
176 <li> The next integer is the real argument count, and it is followed by the <b>real arguments</b>.
177 </ul>
178
179 <p>
180 An <a NAME="alias"><b>alias</b></a> gets its type and arguments from
181 a previously defined primitive.
182 This is useful when the same material is
183 used with a different modifier, or as a convenient naming mechanism.
184 The reserved modifier name &quot;inherit&quot; may be used to specificy that
185 an alias will inherit its modifier from the original.
186 Surfaces cannot be aliased.
187
188 <p>
189 A line beginning with an exclamation point, `!',
190 is interpreted as a command.
191 It is executed by the shell, and its output is read as input to the program.
192 The command must not try to read from its standard input, or confusion
193 will result.
194 A command may be continued over multiple lines using a
195 backslash, `\', to escape the newline.
196
197 <p>
198 White space is generally ignored, except as a separator.
199 The exception is the newline character after a command or comment.
200 Commands, comments and primitives may appear in any
201 combination, so long as they are not intermingled.
202
203 <p>
204 <hr>
205
206 <h3>
207 <a NAME="Primitive">2.1. Primitive Types</a>
208 </h3>
209
210 Primitives can be <a HREF="#Surfaces">surfaces</a>,
211 <a HREF="#Materials">materials</a>,
212 <a HREF="#Textures">textures</a> or
213 <a HREF="#Patterns">patterns</a>.
214 Modifiers can be <a HREF="#Materials">materials</a>,
215 <a HREF="#Mixtures">mixtures</a>,
216 <a HREF="#Textures">textures</a> or <a HREF="#Patterns">patterns</a>.
217 Simple surfaces must have one material in their modifier list.
218
219 <p>
220 <hr>
221
222 <h4>
223 <a NAME="Surfaces">2.1.1. Surfaces</a>
224 </h4>
225 <dl>
226
227 A scene description will consist mostly of surfaces.
228 The basic types are given below.
229
230 <p>
231
232 <dt>
233 <a NAME="Source">
234 <b>Source </b>
235 </a>
236 <dd>
237 A source is not really a surface, but a solid angle.
238 It is used for specifying light sources that are very distant.
239 The direction to the center of the source and the number of degrees subtended by its disk are given as follows:
240
241 <pre>
242 mod source id
243 0
244 0
245 4 xdir ydir zdir angle
246 </pre>
247
248 <p>
249
250 <dt>
251 <a NAME="Sphere">
252 <b>Sphere</b>
253 </a>
254 <dd>
255 A sphere is given by its center and radius:
256
257 <pre>
258 mod sphere id
259 0
260 0
261 4 xcent ycent zcent radius
262 </pre>
263
264 <p>
265
266 <dt>
267 <a NAME="Bubble">
268 <b>Bubble</b>
269 </a>
270
271 <dd>
272 A bubble is simply a sphere whose surface normal points inward.
273
274 <p>
275
276 <dt>
277 <a NAME="Polygon">
278 <b>Polygon</b>
279 </a>
280 <dd>
281 A polygon is given by a list of three-dimensional vertices,
282 which are ordered counter-clockwise as viewed from the
283 front side (into the surface normal).
284 The last vertex is automatically connected to the first.
285 Holes are represented in polygons as interior vertices
286 connected to the outer perimeter by coincident edges (seams).
287
288 <pre>
289 mod polygon id
290 0
291 0
292 3n
293 x1 y1 z1
294 x2 y2 z2
295 ...
296 xn yn zn
297 </pre>
298
299 <p>
300
301 <dt>
302 <a NAME="Cone">
303 <b>Cone</b>
304 </a>
305 <dd>
306 A cone is a megaphone-shaped object.
307 It is truncated by two planes perpendicular to its axis,
308 and one of its ends may come to a point.
309 It is given as two axis endpoints, and the starting and ending radii:
310
311 <pre>
312 mod cone id
313 0
314 0
315 8
316 x0 y0 z0
317 x1 y1 z1
318 r0 r1
319 </pre>
320
321 <p>
322
323 <dt>
324 <a NAME="Cup">
325 <b>Cup</b>
326 </a>
327 <dd>
328 A cup is an inverted <a HREF="#Cone">cone</a> (i.e., has an
329 inward surface normal).
330
331 <p>
332
333 <dt>
334 <a NAME="Cylinder">
335 <b>Cylinder</b>
336 </a>
337 <dd>
338 A cylinder is like a <a HREF="#Cone">cone</a>, but its
339 starting and ending radii are equal.
340
341 <pre>
342 mod cylinder id
343 0
344 0
345 7
346 x0 y0 z0
347 x1 y1 z1
348 rad
349 </pre>
350
351 <p>
352
353 <dt>
354 <a NAME="Tube">
355 <b>Tube</b>
356 </a>
357 <dd>
358 A tube is an inverted <a HREF="#Cylinder">cylinder</a>.
359
360 <p>
361
362 <dt>
363 <a NAME="Ring">
364 <b>Ring</b>
365 </a>
366 <dd>
367 A ring is a circular disk given by its center,
368 surface normal, and inner and outer radii:
369
370 <pre>
371 mod ring id
372 0
373 0
374 8
375 xcent ycent zcent
376 xdir ydir zdir
377 r0 r1
378 </pre>
379
380 <p>
381
382 <dt>
383 <a NAME="Instance">
384 <b>Instance</b>
385 </a>
386 <dd>
387 An instance is a compound surface, given
388 by the contents of an octree file (created by oconv).
389
390 <pre>
391 mod instance id
392 1+ octree transform
393 0
394 0
395 </pre>
396
397 If the modifier is &quot;void&quot;, then surfaces will
398 use the modifiers given in the original description.
399 Otherwise, the modifier specified is used in their place.
400 The transform moves the octree to the desired location in the scene.
401 Multiple instances using the same octree take
402 little extra memory, hence very complex
403 descriptions can be rendered using this primitive.
404
405 <p>
406 There are a number of important limitations to be aware of
407 when using instances.
408 First, the scene description used to generate the octree must
409 stand on its own, without referring to modifiers in the
410 parent description.
411 This is necessary for oconv to create the octree.
412 Second, light sources in the octree will not be
413 incorporated correctly in the calculation,
414 and they are not recommended.
415 Finally, there is no advantage (other than
416 convenience) to using a single instance of an octree,
417 or an octree containing only a few surfaces.
418 An <a HREF="../man_html/xform.1.html">xform</a> command
419 on the subordinate description is prefered in such cases.
420 </dl>
421
422 <p>
423
424 <dt>
425 <a NAME="Mesh">
426 <b>Mesh</b>
427 </a>
428 <dd>
429 A mesh is a compound surface, made up of many triangles and
430 an octree data structure to accelerate ray intersection.
431 It is typically converted from a Wavefront .OBJ file using the
432 <i>obj2mesh</i> program.
433
434 <pre>
435 mod mesh id
436 1+ meshfile transform
437 0
438 0
439 </pre>
440
441 If the modifier is &quot;void&quot;, then surfaces will
442 use the modifiers given in the original mesh description.
443 Otherwise, the modifier specified is used in their place.
444 The transform moves the mesh to the desired location in the scene.
445 Multiple instances using the same meshfile take little extra memory,
446 and the compiled mesh itself takes much less space than individual
447 polygons would.
448 In the case of an unsmoothed mesh, using the mesh primitive reduces
449 memory requirements by a factor of 30 relative to individual triangles.
450 If a mesh has smoothed surfaces, we save a factor of 50 or more,
451 permitting very detailed geometries that would otherwise exhaust the
452 available memory.
453 In addition, the mesh primitive can have associated (u,v) coordinates
454 for pattern and texture mapping.
455 These are made available to function files via the Lu and Lv variables.
456
457 </dl>
458
459 <p>
460 <hr>
461
462 <h4>
463 <a NAME="Materials">2.1.2. Materials</a>
464 </h4>
465
466 A material defines the way light interacts with a surface. The basic types are given below.
467
468 <p>
469
470 <dl>
471
472 <dt>
473 <a NAME="Light">
474 <b>Light</b>
475 </a>
476 <dd>
477 Light is the basic material for self-luminous surfaces (i.e.,
478 light sources).
479 In addition to the <a HREF="#Source">source</a> surface type,
480 <a HREF="#Sphere">spheres</a>,
481 discs (<a HREF="#Ring">rings</a> with zero inner radius),
482 <a HREF="#Cylinder">cylinders</a> (provided they are long enough), and <a HREF="#Polygon">polygons</a> can act as light sources.
483 Polygons work best when they are rectangular.
484 Cones cannot be used at this time.
485 A pattern may be used to specify a light output distribution.
486 Light is defined simply as a RGB radiance value (watts/steradian/m2):
487
488 <pre>
489 mod light id
490 0
491 0
492 3 red green blue
493 </pre>
494
495 <p>
496
497 <dt>
498 <a NAME="Illum">
499 <b>Illum</b>
500 </a>
501
502 <dd>
503 Illum is used for secondary light sources with broad distributions.
504 A secondary light source is treated like any other light source, except when viewed directly.
505 It then acts like it is made of a different material (indicated by
506 the string argument), or becomes invisible (if no string argument is given,
507 or the argument is &quot;void&quot;).
508 Secondary sources are useful when modeling windows or brightly illuminated surfaces.
509
510 <pre>
511 mod illum id
512 1 material
513 0
514 3 red green blue
515 </pre>
516
517 <p>
518
519 <dt>
520 <a NAME="Glow">
521 <b>Glow</b>
522 </a>
523
524 <dd>
525 Glow is used for surfaces that are self-luminous, but limited in their effect.
526 In addition to the radiance value, a maximum radius for shadow testing is given:
527
528 <pre>
529 mod glow id
530 0
531 0
532 4 red green blue maxrad
533 </pre>
534
535 If maxrad is zero, then the surface will never be tested for shadow, although it may participate in an interreflection calculation.
536 If maxrad is negative, then the surface will never contribute to scene illumination.
537 Glow sources will never illuminate objects on the other side of an illum surface.
538 This provides a convenient way to illuminate local light fixture geometry without overlighting nearby objects.
539
540 <p>
541
542 <dt>
543 <a NAME="Spotlight">
544 <b>Spotlight</b>
545 </a>
546
547 <dd>
548 Spotlight is used for self-luminous surfaces having directed output.
549 As well as radiance, the full cone angle (in degrees) and orientation (output direction) vector are given.
550 The length of the orientation vector is the distance of the effective
551 focus behind the source center (i.e., the focal length).
552
553 <pre>
554 mod spotlight id
555 0
556 0
557 7 red green blue angle xdir ydir zdir
558 </pre>
559
560 <p>
561
562 <dt>
563 <a NAME="Mirror">
564 <b>Mirror</b>
565 </a>
566
567 <dd>
568 Mirror is used for planar surfaces that produce virtual source reflections.
569 This material should be used sparingly, as it may cause the light source calculation to blow up if it is applied to many small surfaces.
570 This material is only supported for flat surfaces such as <a HREF="#Polygon">polygons</a> and <a HREF="#Ring">rings</a>.
571 The arguments are simply the RGB reflectance values, which should be between 0 and 1.
572 An optional string argument may be used like the illum type to specify a different material to be used for shading non-source rays.
573 If this alternate material is given as &quot;void&quot;, then the mirror surface will be invisible.
574 This is only appropriate if the surface hides other (more detailed) geometry with the same overall reflectance.
575
576 <pre>
577 mod mirror id
578 1 material
579 0
580 3 red green blue
581 </pre>
582
583 <p>
584
585 <dt>
586 <a NAME="Prism1">
587 <b>Prism1</b>
588 </a>
589
590 <dd>
591 The prism1 material is for general light redirection from prismatic glazings, generating virtual light sources.
592 It can only be used to modify a planar surface
593 (i.e., a <a HREF="#Polygon">polygon</a> or <a HREF="#Ring">disk</a>)
594 and should not result in either light concentration or scattering.
595 The new direction of the ray can be on either side of the material,
596 and the definitions must have the correct bidirectional properties to work properly with virtual light sources.
597 The arguments give the coefficient for the redirected light and its direction.
598
599 <pre>
600 mod prism1 id
601 5+ coef dx dy dz funcfile transform
602 0
603 n A1 A2 .. An
604 </pre>
605
606 The new direction variables dx, dy and dz need not produce a normalized vector.
607 For convenience, the variables DxA, DyA and DzA are defined as the normalized direction to the target light source.
608 See <a HREF="#Function">section 2.2.1</a> on function files for further information.
609
610 <p>
611
612 <dt>
613 <a NAME="Prism2">
614 <b>Prism2</b>
615 </a>
616
617 <dd>
618 The material prism2 is identical to <a HREF="#Prism1">prism1</a> except that it provides for two ray redirections rather than one.
619
620 <pre>
621 mod prism2 id
622 9+ coef1 dx1 dy1 dz1 coef2 dx2 dy2 dz2 funcfile transform
623 0
624 n A1 A2 .. An
625 </pre>
626
627 <p>
628
629 <dt>
630 <a NAME="Mist">
631 <b>Mist</b>
632 </a>
633
634 <dd>
635 Mist is a virtual material used to delineate a volume
636 of participating atmosphere.
637 A list of important light sources may be given, along with an
638 extinction coefficient, scattering albedo and scattering eccentricity
639 parameter.
640 The light sources named by the string argument list
641 will be tested for scattering within the volume.
642 Sources are identified by name, and virtual light sources may be indicated
643 by giving the relaying object followed by '&gt;' followed by the source, i.e:
644
645 <pre>
646 3 source1 mirror1&gt;source10 mirror2&gt;mirror1&gt;source3
647 </pre>
648
649 Normally, only one source is given per mist material, and there is an
650 upper limit of 32 to the total number of active scattering sources.
651 The extinction coefficient, if given, is added the the global
652 coefficient set on the command line.
653 Extinction is in units of 1/distance (distance based on the world coordinates),
654 and indicates the proportional loss of radiance over one unit distance.
655 The scattering albedo, if present, will override the global setting within
656 the volume.
657 An albedo of 0 0 0 means a perfectly absorbing medium, and an albedo of
658 1 1 1 means
659 a perfectly scattering medium (no absorption).
660 The scattering eccentricity parameter will likewise override the global
661 setting if it is present.
662 Scattering eccentricity indicates how much scattered light favors the
663 forward direction, as fit by the Henyey-Greenstein function:
664
665 <pre>
666 P(theta) = (1 - g*g) / (1 + g*g - 2*g*cos(theta))^1.5
667 </pre>
668
669 A perfectly isotropic scattering medium has a g parameter of 0, and
670 a highly directional material has a g parameter close to 1.
671 Fits to the g parameter may be found along with typical extinction
672 coefficients and scattering albedos for various atmospheres and
673 cloud types in USGS meteorological tables.
674 (A pattern will be applied to the extinction values.)
675
676 <pre>
677 mod mist id
678 N src1 src2 .. srcN
679 0
680 0|3|6|7 [ rext gext bext [ ralb galb balb [ g ] ] ]
681 </pre>
682
683 There are two usual uses of the mist type.
684 One is to surround a beam from a spotlight or laser so that it is
685 visible during rendering.
686 For this application, it is important to use a <a HREF="#Cone">cone</a>
687 (or <a HREF="#Cylinder">cylinder</a>) that
688 is long enough and wide enough to contain the important visible portion.
689 Light source photometry and intervening objects will have the desired
690 effect, and crossing beams will result in additive scattering.
691 For this application, it is best to leave off the real arguments, and
692 use the global rendering parameters to control the atmosphere.
693 The second application is to model clouds or other localized media.
694 Complex boundary geometry may be used to give shape to a uniform medium,
695 so long as the boundary encloses a proper volume.
696 Alternatively, a pattern may be used to set the line integral value
697 through the cloud for a ray entering or exiting a point in a given
698 direction.
699 For this application, it is best if cloud volumes do not overlap each other,
700 and opaque objects contained within them may not be illuminated correctly
701 unless the line integrals consider enclosed geometry.
702
703 <dt>
704 <a NAME="Plastic">
705 <b>Plastic</b>
706 </a>
707
708 <dd>
709 Plastic is a material with uncolored highlights.
710 It is given by its RGB reflectance, its fraction of specularity, and its roughness value.
711 Roughness is specified as the rms slope of surface facets.
712 A value of 0 corresponds to a perfectly smooth surface, and a value of 1 would be a very rough surface.
713 Specularity fractions greater than 0.1 and roughness values greater than 0.2 are not very realistic.
714 (A pattern modifying plastic will affect the material color.)
715
716 <pre>
717 mod plastic id
718 0
719 0
720 5 red green blue spec rough
721 </pre>
722
723 <p>
724
725 <dt>
726 <a NAME="Metal">
727 <b>Metal</b>
728 </a>
729
730 <dd>
731 Metal is similar to <a HREF="#Plastic">plastic</a>, but specular highlights are modified by the material color.
732 Specularity of metals is usually .9 or greater.
733 As for plastic, roughness values above .2 are uncommon.
734
735 <p>
736
737 <dt>
738 <a NAME="Trans">
739 <b>Trans</b>
740 </a>
741
742 <dd>
743 Trans is a translucent material, similar to <a HREF="#Plastic">plastic</a>.
744 The transmissivity is the fraction of penetrating light that travels all the way through the material.
745 The transmitted specular component is the fraction of transmitted light that is not diffusely scattered.
746 Transmitted and diffusely reflected light is modified by the material color.
747 Translucent objects are infinitely thin.
748
749 <pre>
750 mod trans id
751 0
752 0
753 7 red green blue spec rough trans tspec
754 </pre>
755
756 <p>
757
758 <dt>
759 <a NAME="Plastic2">
760 <b>Plastic2</b>
761 </a>
762
763 <dd>
764 Plastic2 is similar to <a HREF="#Plastic">plastic</a>, but with anisotropic roughness.
765 This means that highlights in the surface will appear elliptical rather than round.
766 The orientation of the anisotropy is determined by the unnormalized direction vector ux uy uz.
767 These three expressions (separated by white space) are evaluated in the context of the function file funcfile.
768 If no function file is required (i.e., no special variables or functions are required), a period (`.') may be given in its place.
769 (See the discussion of <a HREF="#Function">Function Files</a> in the Auxiliary Files section).
770 The urough value defines the roughness along the u vector given projected onto the surface.
771 The vrough value defines the roughness perpendicular to this vector.
772 Note that the highlight will be narrower in the direction of the smaller roughness value.
773 Roughness values of zero are not allowed for efficiency reasons since the behavior would be the same as regular plastic in that case.
774
775 <pre>
776 mod plastic2 id
777 4+ ux uy uz funcfile transform
778 0
779 6 red green blue spec urough vrough
780 </pre>
781
782 <p>
783
784 <dt>
785 <a NAME="Metal2">
786 <b>Metal2</b>
787 </a>
788
789 <dd>
790 Metal2 is the same as <a HREF="#Plastic2">plastic2</a>, except that the highlights are modified by the material color.
791
792 <p>
793
794 <dt>
795 <a NAME="Trans2">
796 <b>Trans2</b>
797 </a>
798
799 <dd>
800 Trans2 is the anisotropic version of <a HREF="#Trans">trans</a>.
801 The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>,
802 and the real arguments are the same as for trans but with an additional roughness value.
803
804 <pre>
805 mod trans2 id
806 4+ ux uy uz funcfile transform
807 0
808 8 red green blue spec urough vrough trans tspec
809 </pre>
810
811 <p>
812
813 <dt>
814 <a NAME="Ashik2">
815 <b>Ashik2</b>
816 </a>
817
818 <dd>
819 Ashik2 is the anisotropic reflectance model by Ashikhmin & Shirley.
820 The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>, but the real
821 arguments have additional flexibility to specify the specular color.
822 Also, rather than roughness, specular power is used, which has no
823 physical meaning other than larger numbers are equivalent to a smoother
824 surface.
825 <pre>
826 mod ashik2 id
827 4+ ux uy uz funcfile transform
828 0
829 8 dred dgrn dblu sred sgrn sblu u-power v-power
830 </pre>
831
832 <p>
833
834 <dt>
835 <a NAME="Dielectric">
836 <b>Dielectric</b>
837 </a>
838
839 <dd>
840 A dielectric material is transparent, and it refracts light as well as reflecting it.
841 Its behavior is determined by the index of refraction and transmission coefficient in each wavelength band per unit length.
842 Common glass has a index of refraction (n) around 1.5, and a transmission coefficient of roughly 0.92 over an inch.
843 An additional number, the Hartmann constant, describes how the index of refraction changes as a function of wavelength.
844 It is usually zero. (A <a HREF="#Patterns">pattern</a> modifies only the refracted value.)
845
846 <pre>
847 mod dielectric id
848 0
849 0
850 5 rtn gtn btn n hc
851 </pre>
852
853 <p>
854
855 <dt>
856 <a NAME="Interface">
857 <b>Interface</b>
858 </a>
859
860 <dd>
861 An interface is a boundary between two dielectrics.
862 The first transmission coefficient and refractive index are for the inside; the second ones are for the outside.
863 Ordinary dielectrics are surrounded by a vacuum (1 1 1 1).
864
865 <pre>
866 mod interface id
867 0
868 0
869 8 rtn1 gtn1 btn1 n1 rtn2 gtn2 btn2 n2
870 </pre>
871
872 <p>
873
874 <dt>
875 <a NAME="Glass">
876 <b>Glass</b>
877 </a>
878
879 <dd>
880 Glass is similar to <a HREF="#Dielectric">dielectric</a>, but it is optimized for thin glass surfaces (n = 1.52).
881 One transmitted ray and one reflected ray is produced.
882 By using a single surface is in place of two, internal reflections are avoided.
883 The surface orientation is irrelevant, as it is for <a HREF="#Plastic">plastic</a>, <a HREF="#Metal">metal</a>, and <a HREF="#Trans">trans</a>.
884 The only specification required is the transmissivity at normal incidence.
885 (Transmissivity is the amount of light not absorbed in one traversal
886 of the material.
887 Transmittance -- the value usually measured -- is the total light
888 transmitted through the pane including multiple reflections.)
889 To compute transmissivity (tn) from transmittance (Tn) use:
890
891 <pre>
892 tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn
893 </pre>
894
895 Standard 88% transmittance glass has a transmissivity of 0.96.
896 (A <a HREF="#Patterns">pattern</a> modifying glass will affect the transmissivity.)
897 If a fourth real argument is given, it is interpreted as the index of refraction to use instead of 1.52.
898
899 <pre>
900 mod glass id
901 0
902 0
903 3 rtn gtn btn
904 </pre>
905
906 <p>
907
908 <dt>
909 <a NAME="Plasfunc">
910 <b>Plasfunc</b>
911 </a>
912
913 <dd>
914 Plasfunc in used for the procedural definition of plastic-like materials
915 with arbitrary bidirectional reflectance distribution functions (BRDF's).
916 The arguments to this material include the color and specularity,
917 as well as the function defining the specular distribution and the auxiliary file where it may be found.
918
919 <pre>
920 mod plasfunc id
921 2+ refl funcfile transform
922 0
923 4+ red green blue spec A5 ..
924 </pre>
925
926 The function refl takes four arguments, the x, y and z
927 direction towards the incident light, and the solid angle
928 subtended by the source.
929 The solid angle is provided to facilitate averaging, and is usually
930 ignored.
931 The refl function should integrate to 1 over
932 the projected hemisphere to maintain energy balance.
933 At least four real arguments must be given, and these are made available along with any additional values to the reflectance function.
934 Currently, only the contribution from direct light sources is considered in the specular calculation.
935 As in most material types, the surface normal is always altered to face the incoming ray.
936
937 <p>
938
939 <dt>
940 <a NAME="Metfunc">
941 <b>Metfunc</b>
942 </a>
943
944 <dd>
945 Metfunc is identical to <a HREF="#Plasfunc">plasfunc</a> and takes the same arguments,
946 but the specular component is multiplied also by the material color.
947
948 <p>
949
950 <dt>
951 <a NAME="Transfunc">
952 <b>Transfunc</b>
953 </a>
954
955 <dd>
956 Transfunc is similar to <a HREF="#Plasfunc">plasfunc</a> but with an arbitrary bidirectional transmittance distribution
957 as well as a reflectance distribution.
958 Both reflectance and transmittance are specified with the same function.
959
960 <pre>
961 mod transfunc id
962 2+ brtd funcfile transform
963 0
964 6+ red green blue rspec trans tspec A7 ..
965 </pre>
966
967 Where trans is the total light transmitted and tspec is the non-Lambertian fraction of transmitted light.
968 The function brtd should integrate to 1 over each projected hemisphere.
969
970 <p>
971
972 <dt>
973 <a NAME="BRTDfunc">
974 <b>BRTDfunc</b>
975 </a>
976
977 <dd>
978 The material BRTDfunc gives the maximum flexibility over surface reflectance and transmittance,
979 providing for spectrally-dependent specular rays and reflectance and transmittance distribution functions.
980
981 <pre>
982 mod BRTDfunc id
983 10+ rrefl grefl brefl
984 rtrns gtrns btrns
985 rbrtd gbrtd bbrtd
986 funcfile transform
987 0
988 9+ rfdif gfdif bfdif
989 rbdif gbdif bbdif
990 rtdif gtdif btdif
991 A10 ..
992 </pre>
993
994 The variables rrefl, grefl and brefl specify the color coefficients for the ideal specular (mirror) reflection of the surface.
995 The variables rtrns, gtrns and btrns specify the color coefficients for the ideal specular transmission.
996 The functions rbrtd, gbrtd and bbrtd take the direction to the incident light (and its solid angle) and
997 compute the color coefficients for the directional diffuse part of reflection and transmission.
998 As a special case, three identical values of '0' may be given in place of these function names to indicate no directional diffuse component.
999
1000 <p>
1001 Unlike most other material types, the surface normal is not altered to face the incoming ray.
1002 Thus, functions and variables must pay attention to the orientation of the surface and make adjustments appropriately.
1003 However, the special variables for the perturbed dot product and surface normal, RdotP, NxP, NyP and NzP are reoriented
1004 as if the ray hit the front surface for convenience.
1005
1006 <p>
1007 A diffuse reflection component may be given for the front side with rfdif, gfdif and bfdif for the front side of the surface
1008 or rbdif, gbdif and bbdif for the back side.
1009 The diffuse transmittance (must be the same for both sides by physical law) is given by rtdif, gtdif and btdif.
1010 A pattern will modify these diffuse scattering values, and will be available through the special variables CrP, CgP and CbP.
1011
1012 <p>
1013 Care must be taken when using this material type to produce a physically valid reflection model.
1014 The reflectance functions should be bidirectional, and under no circumstances should the sum of reflected diffuse,
1015 transmitted diffuse, reflected specular, transmitted specular and the integrated directional diffuse component be greater than one.
1016
1017 <p>
1018
1019 <dt>
1020 <a NAME="Plasdata">
1021 <b>Plasdata</b>
1022 </a>
1023
1024 <dd>
1025 Plasdata is used for arbitrary BRDF's that are most conveniently given as interpolated data.
1026 The arguments to this material are the <a HREF="#Data">data file</a> and coordinate index functions,
1027 as well as a function to optionally modify the data values.
1028
1029 <pre>
1030 mod plasdata id
1031 3+n+
1032 func datafile
1033 funcfile x1 x2 .. xn transform
1034 0
1035 4+ red green blue spec A5 ..
1036 </pre>
1037
1038 The coordinate indices (x1, x2, etc.) are themselves functions of the x, y and z direction to the incident light, plus the solid angle
1039 subtended by the light source (usually ignored).
1040 The data function (func) takes five variables, the
1041 interpolated value from the n-dimensional data file, followed by the
1042 x, y and z direction to the incident light and the solid angle of the source.
1043 The light source direction and size may of course be ignored by the function.
1044
1045 <p>
1046
1047 <dt>
1048 <a NAME="Metdata">
1049 <b>Metdata</b>
1050 </a>
1051
1052 <dd>
1053 As metfunc is to plasfunc, metdata is to <a HREF="#Plasdata">plasdata</a>.
1054 Metdata takes the same arguments as plasdata, but the specular component is modified by the given material color.
1055
1056 <p>
1057
1058 <dt>
1059 <a NAME="Transdata">
1060 <b>Transdata</b>
1061 </a>
1062
1063 <dd>
1064 Transdata is like <a HREF="#Plasdata">plasdata</a> but the specification includes transmittance as well as reflectance.
1065 The parameters are as follows.
1066
1067 <pre>
1068 mod transdata id
1069 3+n+
1070 func datafile
1071 funcfile x1 x2 .. xn transform
1072 0
1073 6+ red green blue rspec trans tspec A7 ..
1074 </pre>
1075
1076 <p>
1077
1078 <dt>
1079 <a NAME="BSDF">
1080 <b>BSDF</b>
1081 </a>
1082
1083 <dd>
1084 The BSDF material type loads an XML (eXtensible Markup Language)
1085 file describing a bidirectional scattering distribution function.
1086 Real arguments to this material may define additional
1087 diffuse components that augment the BSDF data.
1088 String arguments are used to define thickness for proxied
1089 surfaces and the &quot;up&quot; orientation for the material.
1090
1091 <pre>
1092 mod BSDF id
1093 6+ thick BSDFfile ux uy uz funcfile transform
1094 0
1095 0|3|6|9
1096 rfdif gfdif bfdif
1097 rbdif gbdif bbdif
1098 rtdif gtdif btdif
1099 </pre>
1100
1101 <p>
1102 The first string argument is a &quot;thickness&quot; parameter that may be used
1103 to hide detail geometry being proxied by an aggregate BSDF material.
1104 If a view or shadow ray hits a BSDF proxy with non-zero thickness,
1105 it will pass directly through as if the surface were not there.
1106 Similar to the illum type, this permits direct viewing and
1107 shadow testing of complex geometry.
1108 The BSDF is used when a scattered (indirect) ray hits the surface,
1109 and any transmitted sample rays will be offset by the thickness amount
1110 to avoid the hidden geometry and gather samples from the other side.
1111 In this manner, BSDF surfaces can improve the results for indirect
1112 scattering from complex systems without sacrificing appearance or
1113 shadow accuracy.
1114 If the BSDF has transmission and back-side reflection data,
1115 a parallel BSDF surface may be
1116 placed slightly less than the given thickness away from the front surface
1117 to enclose the complex geometry on both sides.
1118 The sign of the thickness is important, as it indicates
1119 whether the proxied geometry is behind the BSDF
1120 surface (when thickness is positive) or in front (when
1121 thickness is negative).
1122 <p>
1123 The second string argument is the name of the BSDF file,
1124 which is found in the usual auxiliary locations. The
1125 following three string parameters name variables for an
1126 &quot;up&quot; vector, which together with the surface
1127 normal, define the local coordinate system that orients the
1128 BSDF. These variables, along with the thickness, are defined
1129 in a function file given as the next string argument. An
1130 optional transform is used to scale the thickness and
1131 reorient the up vector.
1132 <p>
1133 If no real arguments are given, the BSDF is used by itself
1134 to determine reflection and transmission. If there are at
1135 least 3 real arguments, the first triplet is an additional
1136 diffuse reflectance for the front side. At least 6 real
1137 arguments adds diffuse reflectance to the rear side of the
1138 surface. If there are 9 real arguments, the final triplet
1139 will be taken as an additional diffuse transmittance. All
1140 diffuse components as well as the non-diffuse transmission
1141 are modified by patterns applied to this material. The
1142 non-diffuse reflection from either side are unaffected.
1143 Textures perturb the effective surface normal in the usual
1144 way.
1145 <p>
1146 The surface normal of this type is not altered to face the
1147 incoming ray, so the front and back BSDF reflections may
1148 differ. (Transmission is identical front-to-back by physical
1149 law.) If back visibility is turned off during rendering and
1150 there is no transmission or back-side reflection, only then
1151 the surface will be invisible from behind. Unlike other
1152 data-driven material types, the BSDF type is fully supported
1153 and all parts of the distribution are properly sampled.
1154 <p>
1155
1156 <dt>
1157 <a NAME="Antimatter">
1158 <b>Antimatter</b>
1159 </a>
1160
1161 <dd>
1162 Antimatter is a material that can &quot;subtract&quot; volumes from other volumes.
1163 A ray passing into an antimatter object becomes blind to all the specified modifiers:
1164
1165 <pre>
1166 mod antimatter id
1167 N mod1 mod2 .. modN
1168 0
1169 0
1170 </pre>
1171
1172 The first modifier will also be used to shade the area leaving the antimatter volume and entering the regular volume.
1173 If mod1 is void, the antimatter volume is completely invisible.
1174 Antimatter does not work properly with the material type <a HREF="#Trans">&quot;trans&quot;</a>,
1175 and multiple antimatter surfaces should be disjoint.
1176 The viewpoint must be outside all volumes concerned for a correct rendering.
1177
1178 </dl>
1179
1180 <p>
1181 <hr>
1182
1183 <h4>
1184 <a NAME="Textures">2.1.3. Textures</a>
1185 </h4>
1186
1187 A texture is a perturbation of the surface normal, and is given by either a function or data.
1188
1189 <p>
1190
1191 <dl>
1192
1193 <dt>
1194 <a NAME="Texfunc">
1195 <b>Texfunc</b>
1196 </a>
1197
1198 <dd>
1199 A texfunc uses an auxiliary function file to specify a procedural texture:
1200
1201 <pre>
1202 mod texfunc id
1203 4+ xpert ypert zpert funcfile transform
1204 0
1205 n A1 A2 .. An
1206 </pre>
1207
1208 <p>
1209
1210 <dt>
1211 <a NAME="Texdata">
1212 <b>Texdata</b>
1213 </a>
1214
1215 <dd>
1216 A texdata texture uses three data files to get the surface normal perturbations.
1217 The variables xfunc, yfunc and zfunc take three arguments each from the interpolated values in xdfname, ydfname and zdfname.
1218
1219 <pre>
1220 mod texdata id
1221 8+ xfunc yfunc zfunc xdfname ydfname zdfname vfname x0 x1 .. xf
1222 0
1223 n A1 A2 .. An
1224 </pre>
1225
1226 </dl>
1227
1228 <p>
1229 <hr>
1230
1231 <h4>
1232 <a NAME="Patterns">2.1.4. Patterns</a>
1233 </h4>
1234
1235 Patterns are used to modify the reflectance of materials. The basic types are given below.
1236
1237 <p>
1238
1239 <dl>
1240
1241 <dt>
1242 <a NAME="Colorfunc">
1243 <b>Colorfunc</b>
1244 </a>
1245
1246 <dd>
1247 A colorfunc is a procedurally defined color pattern. It is specified as follows:
1248
1249 <pre>
1250 mod colorfunc id
1251 4+ red green blue funcfile transform
1252 0
1253 n A1 A2 .. An
1254 </pre>
1255
1256 <p>
1257
1258 <dt>
1259 <a NAME="Brightfunc">
1260 <b>Brightfunc</b>
1261 </a>
1262
1263 <dd>
1264 A brightfunc is the same as a colorfunc, except it is monochromatic.
1265
1266 <pre>
1267 mod brightfunc id
1268 2+ refl funcfile transform
1269 0
1270 n A1 A2 .. An
1271 </pre>
1272
1273 <p>
1274
1275 <dt>
1276 <a NAME="Colordata">
1277 <b>Colordata</b>
1278 </a>
1279
1280 <dd>
1281 Colordata uses an interpolated data map to modify a material's color.
1282 The map is n-dimensional, and is stored in three auxiliary files, one for each color.
1283 The coordinates used to look up and interpolate the data are defined in another auxiliary file.
1284 The interpolated data values are modified by functions of one or three variables.
1285 If the functions are of one variable, then they are passed the corresponding color component (red or green or blue).
1286 If the functions are of three variables, then they are passed the original red, green, and blue values as parameters.
1287
1288 <pre>
1289 mod colordata id
1290 7+n+
1291 rfunc gfunc bfunc rdatafile gdatafile bdatafile
1292 funcfile x1 x2 .. xn transform
1293 0
1294 m A1 A2 .. Am
1295 </pre>
1296
1297 <p>
1298
1299 <dt>
1300 <a NAME="Brightdata">
1301 <b>Brightdata</b>
1302 </a>
1303
1304 <dd>
1305 Brightdata is like colordata, except monochromatic.
1306
1307 <pre>
1308 mod brightdata id
1309 3+n+
1310 func datafile
1311 funcfile x1 x2 .. xn transform
1312 0
1313 m A1 A2 .. Am
1314 </pre>
1315
1316 <p>
1317
1318 <dt>
1319 <a NAME="Colorpict">
1320 <b>Colorpict</b>
1321 </a>
1322
1323 <dd>
1324 Colorpict is a special case of colordata, where the pattern is a two-dimensional image stored in the RADIANCE picture format.
1325 The dimensions of the image data are determined by the picture such that the smaller dimension is always 1,
1326 and the other is the ratio between the larger and the smaller.
1327 For example, a 500x338 picture would have coordinates (u,v) in the rectangle between (0,0) and (1.48,1).
1328
1329 <pre>
1330 mod colorpict id
1331 7+
1332 rfunc gfunc bfunc pictfile
1333 funcfile u v transform
1334 0
1335 m A1 A2 .. Am
1336 </pre>
1337
1338 <p>
1339
1340 <dt>
1341 <a NAME="Colortext">
1342 <b>Colortext</b>
1343 </a>
1344
1345 <dd>
1346 Colortext is dichromatic writing in a polygonal font.
1347 The font is defined in an auxiliary file, such as helvet.fnt.
1348 The text itself is also specified in a separate file, or can be part of the material arguments.
1349 The character size, orientation, aspect ratio and slant is determined by right and down motion vectors.
1350 The upper left origin for the text block as well as the foreground and background colors must also be given.
1351
1352 <pre>
1353 mod colortext id
1354 2 fontfile textfile
1355 0
1356 15+
1357 Ox Oy Oz
1358 Rx Ry Rz
1359 Dx Dy Dz
1360 rfore gfore bfore
1361 rback gback bback
1362 [spacing]
1363 </pre>
1364
1365 or:
1366
1367 <pre>
1368 mod colortext id
1369 2+N fontfile . This is a line with N words ...
1370 0
1371 15+
1372 Ox Oy Oz
1373 Rx Ry Rz
1374 Dx Dy Dz
1375 rfore gfore bfore
1376 rback gback bback
1377 [spacing]
1378 </pre>
1379
1380 <p>
1381
1382 <dt>
1383 <a NAME="Brighttext">
1384 <b>Brighttext</b>
1385 </a>
1386
1387 <dd>
1388 Brighttext is like colortext, but the writing is monochromatic.
1389
1390 <pre>
1391 mod brighttext id
1392 2 fontfile textfile
1393 0
1394 11+
1395 Ox Oy Oz
1396 Rx Ry Rz
1397 Dx Dy Dz
1398 foreground background
1399 [spacing]
1400 </pre>
1401
1402 or:
1403
1404 <pre>
1405 mod brighttext id
1406 2+N fontfile . This is a line with N words ...
1407 0
1408 11+
1409 Ox Oy Oz
1410 Rx Ry Rz
1411 Dx Dy Dz
1412 foreground background
1413 [spacing]
1414 </pre>
1415
1416 <p>
1417
1418 By default, a uniform spacing algorithm is used that guarantees every character will appear in a precisely determined position.
1419 Unfortunately, such a scheme results in rather unattractive and difficult to read text with most fonts.
1420 The optional spacing value defines the distance between characters for proportional spacing.
1421 A positive value selects a spacing algorithm that preserves right margins and indentation,
1422 but does not provide the ultimate in proportionally spaced text.
1423 A negative value insures that characters are properly spaced, but the placement of words then varies unpredictably.
1424 The choice depends on the relative importance of spacing versus formatting.
1425 When presenting a section of formatted text, a positive spacing value is usually preferred.
1426 A single line of text will often be accompanied by a negative spacing value.
1427 A section of text meant to depict a picture, perhaps using a special purpose font such as hexbit4x1.fnt, calls for uniform spacing.
1428 Reasonable magnitudes for proportional spacing are between 0.1 (for tightly spaced characters) and 0.3 (for wide spacing).
1429
1430 </dl>
1431
1432 <p>
1433 <hr>
1434
1435 <h4>
1436 <a NAME="Mixtures">2.1.5. Mixtures</a>
1437 </h4>
1438
1439 A mixture is a blend of one or more materials or textures and patterns.
1440 Blended materials should not be light source types or virtual source types.
1441 The basic types are given below.
1442
1443 <p>
1444
1445 <dl>
1446
1447 <dt>
1448 <a NAME="Mixfunc">
1449 <b>Mixfunc</b>
1450 </a>
1451
1452 <dd>
1453 A mixfunc mixes two modifiers procedurally. It is specified as follows:
1454
1455 <pre>
1456 mod mixfunc id
1457 4+ foreground background vname funcfile transform
1458 0
1459 n A1 A2 .. An
1460 </pre>
1461
1462 Foreground and background are modifier names that must be
1463 defined earlier in the scene description.
1464 If one of these is a material, then
1465 the modifier of the mixfunc must be &quot;void&quot;.
1466 (Either the foreground or background modifier may be &quot;void&quot;,
1467 which serves as a form of opacity control when used with a material.)
1468 Vname is the coefficient defined in funcfile that determines the influence of foreground.
1469 The background coefficient is always (1-vname).
1470
1471 <p>
1472
1473 <dt>
1474 <a NAME="Mixdata">
1475 <b>Mixdata</b>
1476 </a>
1477
1478 <dd>
1479 Mixdata combines two modifiers using an auxiliary data file:
1480
1481 <pre>
1482 mod mixdata id
1483 5+n+
1484 foreground background func datafile
1485 funcfile x1 x2 .. xn transform
1486 0
1487 m A1 A2 .. Am
1488 </pre>
1489
1490 <dt>
1491 <a NAME="Mixpict">
1492 <b>Mixpict</b>
1493 </a>
1494
1495 <dd>
1496 Mixpict combines two modifiers based on a picture:
1497
1498 <pre>
1499 mod mixpict id
1500 7+
1501 foreground background func pictfile
1502 funcfile u v transform
1503 0
1504 m A1 A2 .. Am
1505 </pre>
1506
1507 <p>
1508
1509 The mixing coefficient function &quot;func&quot; takes three
1510 arguments, the red, green and blue values
1511 corresponding to the pixel at (u,v).
1512
1513 <p>
1514
1515 <dt>
1516 <a NAME="Mixtext">
1517 <b>Mixtext</b>
1518 </a>
1519
1520 <dd>
1521 Mixtext uses one modifier for the text foreground, and one for the background:
1522
1523 <pre>
1524 mod mixtext id
1525 4 foreground background fontfile textfile
1526 0
1527 9+
1528 Ox Oy Oz
1529 Rx Ry Rz
1530 Dx Dy Dz
1531 [spacing]
1532 </pre>
1533
1534 or:
1535
1536 <pre>
1537 mod mixtext id
1538 4+N
1539 foreground background fontfile .
1540 This is a line with N words ...
1541 0
1542 9+
1543 Ox Oy Oz
1544 Rx Ry Rz
1545 Dx Dy Dz
1546 [spacing]
1547 </pre>
1548
1549 </dl>
1550
1551 <p>
1552 <hr>
1553
1554 <h3>
1555 <a NAME="Auxiliary">2.2. Auxiliary Files</a>
1556 </h3>
1557
1558 Auxiliary files used in <a HREF="#Textures">textures</a> and <a HREF="#Patterns">patterns</a>
1559 are accessed by the programs during image generation.
1560 These files may be located in the working directory, or in a library directory.
1561 The environment variable RAYPATH can be assigned an alternate set of search directories.
1562 Following is a brief description of some common file types.
1563
1564 <p>
1565
1566 <h4>
1567 <a NAME="Function">12.2.1. Function Files</a>
1568 </h4>
1569
1570 A function file contains the definitions of variables, functions and constants used by a primitive.
1571 The transformation that accompanies the file name contains the necessary rotations, translations and scalings
1572 to bring the coordinates of the function file into agreement with the world coordinates.
1573 The transformation specification is the same as for the <a HREF="#Generators">xform</a> command.
1574 An example function file is given below:
1575
1576 <pre>
1577 {
1578 This is a comment, enclosed in curly braces.
1579 {Comments can be nested.}
1580 }
1581 { standard expressions use +,-,*,/,^,(,) }
1582 vname = Ny * func(A1) ;
1583 { constants are defined with a colon }
1584 const : sqrt(PI/2) ;
1585 { user-defined functions add to library }
1586 func(x) = 5 + A1*sin(x/3) ;
1587 { functions may be passed and recursive }
1588 rfunc(f,x) = if(x,f(x),f(-x)*rfunc(f,x+1)) ;
1589 { constant functions may also be defined }
1590 cfunc(x) : 10*x / sqrt(x) ;
1591 </pre>
1592
1593 Many variables and functions are already defined by the program, and they are listed in the file rayinit.cal.
1594 The following variables are particularly important:
1595
1596 <pre>
1597 Dx, Dy, Dz - incident ray direction
1598 Nx, Ny, Nz - surface normal at intersection point
1599 Px, Py, Pz - intersection point
1600 T - distance from start
1601 Ts - single ray (shadow) distance
1602 Rdot - cosine between ray and normal
1603 arg(0) - number of real arguments
1604 arg(i) - i'th real argument
1605 </pre>
1606
1607 For mesh objects, the local surface coordinates are available:
1608
1609 <pre>
1610 Lu, Lv - local (u,v) coordinates
1611 </pre>
1612
1613 For BRDF types, the following variables are defined as well:
1614
1615 <pre>
1616 NxP, NyP, NzP - perturbed surface normal
1617 RdotP - perturbed dot product
1618 CrP, CgP, CbP - perturbed material color
1619 </pre>
1620
1621 A unique context is set up for each file so
1622 that the same variable may appear in different
1623 function files without conflict.
1624 The variables listed above and any others defined in
1625 rayinit.cal are available globally.
1626 If no file is needed by a given primitive because all
1627 the required variables are global,
1628 a period (`.') can be given in place of the file name.
1629 It is also possible to give an expression instead
1630 of a straight variable name in a scene file.
1631 Functions (requiring parameters) must be given
1632 as names and not as expressions.
1633
1634 <p>
1635 Constant expressions are used as an optimization in function files.
1636 They are replaced wherever they occur in an expression by their value.
1637 Constant expressions are evaluated only once, so they must not contain any variables or values that can change,
1638 such as the ray variables Px and Ny or the primitive argument function arg().
1639 All the math library functions such as sqrt() and cos() have the constant attribute,
1640 so they will be replaced by immediate values whenever they are given constant arguments.
1641 Thus, the subexpression cos(PI*sqrt(2)) is immediately replaced by its value, -.266255342,
1642 and does not cause any additional overhead in the calculation.
1643
1644 <p>
1645 It is generally a good idea to define constants and variables before they are referred to in a function file.
1646 Although evaluation does not take place until later, the interpreter does variable scoping and
1647 constant subexpression evaluation based on what it has compiled already.
1648 For example, a variable that is defined globally in rayinit.cal
1649 then referenced in the local context of a function file
1650 cannot subsequently be redefined in the same file
1651 because the compiler has already determined the scope of the referenced variable as global.
1652 To avoid such conflicts, one can state the scope of a variable explicitly by
1653 preceding the variable name with a context mark (a back-quote) for a local variable,
1654 or following the name with a context mark for a global variable.
1655
1656 <p>
1657
1658 <h4>
1659 <a NAME="Data">2.2.2. Data Files</a>
1660 </h4>
1661
1662 Data files contain n-dimensional arrays of real numbers used for interpolation.
1663 Typically, definitions in a function file determine how to index and use interpolated data values.
1664 The basic data file format is as follows:
1665
1666 <pre>
1667 N
1668 beg1 end1 m1
1669 0 0 m2 x2.1 x2.2 x2.3 x2.4 .. x2.m2
1670 ...
1671 begN endN mN
1672 DATA, later dimensions changing faster.
1673 </pre>
1674
1675 N is the number of dimensions.
1676 For each dimension, the beginning and ending coordinate values and the dimension size is given.
1677 Alternatively, individual coordinate values can be given when the points are not evenly spaced.
1678 These values must either be increasing or decreasing monotonically.
1679 The data is m1*m2*...*mN real numbers in ASCII form.
1680 Comments may appear anywhere in the file, beginning with a pound
1681 sign ('#') and continuing to the end of line.
1682
1683 <p>
1684
1685 <h4>
1686 <a NAME="Font">2.2.3. Font Files</a>
1687 </h4>
1688
1689 A font file lists the polygons which make up a character set.
1690 Comments may appear anywhere in the file, beginning with a pound
1691 sign ('#') and continuing to the end of line.
1692 All numbers are decimal integers:
1693
1694 <pre>
1695 code n
1696 x0 y0
1697 x1 y1
1698 ...
1699 xn yn
1700 ...
1701 </pre>
1702
1703 The ASCII codes can appear in any order. N is the number of vertices, and the last is automatically connected to the first.
1704 Separate polygonal sections are joined by coincident sides.
1705 The character coordinate system is a square with lower left corner at (0,0), lower right at (255,0) and upper right at (255,255).
1706
1707 <p>
1708
1709 <hr>
1710
1711 <h3>
1712 <a NAME="Generators">2.3. Generators</a>
1713 </h3>
1714
1715 A generator is any program that produces a scene description as its output.
1716 They usually appear as commands in a scene description file.
1717 An example of a simple generator is genbox.
1718
1719 <ul>
1720
1721 <li>
1722 <a NAME="Genbox" HREF="../man_html/genbox.1.html">
1723 <b>Genbox</b>
1724 </a>
1725 takes the arguments of width, height and depth to produce a parallelepiped description.
1726 <li>
1727 <a NAME="Genprism" HREF="../man_html/genprism.1.html">
1728 <b>Genprism</b>
1729 </a>
1730 takes a list of 2-dimensional coordinates and extrudes them along a vector to
1731 produce a 3-dimensional prism.
1732 <li>
1733 <a NAME="Genrev" HREF="../man_html/genrev.1.html">
1734 <b>Genrev</b>
1735 </a>
1736 is a more sophisticated generator that produces an object of rotation from parametric functions for radius and axis position.
1737 <li>
1738 <a NAME="Gensurf" HREF="../man_html/gensurf.1.html">
1739 <b>Gensurf</b>
1740 </a>
1741 tessellates a surface defined by the parametric functions x(s,t), y(s,t), and z(s,t).
1742 <li>
1743 <a NAME="Genworm" HREF="../man_html/genworm.1.html">
1744 <b>Genworm</b>
1745 </a>
1746 links cylinders and spheres along a curve.
1747 <li>
1748 <a NAME="Gensky" HREF="../man_html/gensky.1.html">
1749 <b>Gensky</b>
1750 </a>
1751 produces a sun and sky distribution corresponding to a given time and date.
1752 <li>
1753 <a NAME="Xform" HREF="../man_html/xform.1.html">
1754 <b>Xform</b>
1755 </a>
1756 is a program that transforms a scene description from one coordinate space to another.
1757 Xform does rotation, translation, scaling, and mirroring.
1758
1759 </ul>
1760
1761 <p>
1762 <hr>
1763
1764 <h2>
1765 <a NAME="Image">3. Image Generation</a>
1766 </h2>
1767
1768 Once the scene has been described in three-dimensions, it is possible to generate a two-dimensional image from a given perspective.
1769
1770 <p>
1771 The image generating programs use an <a NAME="octree"><b>octree</b></a> to efficiently trace rays through the scene.
1772 An octree subdivides space into nested octants which contain sets of surfaces.
1773 In RADIANCE, an octree is created from a scene description by <a NAME="oconv1" HREF="../man_html/oconv.1.html"><b>oconv</b></a>.
1774 The details of this process are not important, but the octree will serve as input to the ray-tracing programs and
1775 directs the use of a scene description.
1776 <ul>
1777 <li>
1778 <a NAME="rvu" HREF="../man_html/rvu.1.html"><b>Rview</b></a> is ray-tracing program for viewing a scene interactively.
1779 When the user specifies a new perspective, rvu quickly displays a rough image on the terminal,
1780 then progressively increases the resolution as the user looks on.
1781 He can select a particular section of the image to improve, or move to a different view and start over.
1782 This mode of interaction is useful for debugging scenes as well as determining the best view for a final image.
1783
1784 <li>
1785 <a NAME="rpict" HREF="../man_html/rpict.1.html"><b>Rpict</b></a> produces a high-resolution picture of a scene from a particular perspective.
1786 This program features adaptive sampling, crash recovery and progress reporting, all of which are important for time-consuming images.
1787 </ul>
1788 <p>
1789 A number of <a NAME="filters"><b>filters</b></a> are available for manipulating picture files:
1790 <ul>
1791 <li> <a HREF="../man_html/pfilt.1.html"><b>Pfilt</b></a>
1792 sets the exposure and performs antialiasing.
1793 <li> <a HREF="../man_html/pcompos.1.html"><b>Pcompos</b></a>
1794 composites (cuts and pastes) pictures.
1795 <li> <a HREF="../man_html/pcomb.1.html"><b>Pcomb</b></a>
1796 performs arbitrary math on one or more pictures.
1797 <li> <a HREF="../man_html/pcond.1.html"><b>Pcond</b></a>
1798 conditions a picture for a specific display device.
1799 <li> <a HREF="../man_html/protate.1.html"><b>Protate</b></a>
1800 rotates a picture 90 degrees clockwise.
1801 <li> <a HREF="../man_html/pflip.1.html"><b>Pflip</b></a>
1802 flips a picture horizontally, vertically, or both
1803 (180 degree rotation).
1804 <li> <a HREF="../man_html/pvalue.1.html"><b>Pvalue</b></a>
1805 converts a picture to and from simpler formats.
1806 </ul>
1807
1808 <p>
1809 Pictures may be displayed directly under X11 using the program
1810 <a HREF="../man_html/ximage.1.html">ximage</a>,
1811 or converted a standard image format using one of the following
1812 <b>translators</b>:
1813 <ul>
1814 <li> <a HREF="../man_html/ra_bmp.1.html"><b>Ra_bmp</b>
1815 converts to and from BMP image format.
1816 <li> <a HREF="../man_html/ra_ppm.1.html"><b>Ra_ppm</b></a>
1817 converts to and from Poskanzer Portable Pixmap formats.
1818 <li> <a HREF="../man_html/ra_ps.1.html"><b>Ra_ps</b></a>
1819 converts to PostScript color and greyscale formats.
1820 <li> <a HREF="../man_html/ra_rgbe.1.html"><b>Ra_rgbe</b></a>
1821 converts to and from Radiance uncompressed picture format.
1822 <li> <a HREF="../man_html/ra_t16.1.html"><b>Ra_t16</b></a>
1823 converts to and from Targa 16 and 24-bit image formats.
1824 <li> <a HREF="../man_html/ra_t8.1.html"><b>Ra_t8</b></a>
1825 converts to and from Targa 8-bit image format.
1826 <li> <a HREF="../man_html/ra_tiff.1.html"><b>Ra_tiff</b></a>
1827 converts to and from TIFF.
1828 <li> <a HREF="../man_html/ra_xyze.1.html"><b>Ra_xyze</b></a>
1829 converts to and from Radiance CIE picture format.
1830 </ul>
1831
1832 <p>
1833
1834 <hr>
1835
1836 <h2>
1837 <a NAME="License">4. License</a>
1838 </h2>
1839
1840 <pre>
1841 The Radiance Software License, Version 1.0
1842
1843 Copyright (c) 1990 - 2014 The Regents of the University of California,
1844 through Lawrence Berkeley National Laboratory. All rights reserved.
1845
1846 Redistribution and use in source and binary forms, with or without
1847 modification, are permitted provided that the following conditions
1848 are met:
1849
1850 1. Redistributions of source code must retain the above copyright
1851 notice, this list of conditions and the following disclaimer.
1852
1853 2. Redistributions in binary form must reproduce the above copyright
1854 notice, this list of conditions and the following disclaimer in
1855 the documentation and/or other materials provided with the
1856 distribution.
1857
1858 3. The end-user documentation included with the redistribution,
1859 if any, must include the following acknowledgment:
1860 &quot;This product includes Radiance software
1861 (<a HREF="http://radsite.lbl.gov/">http://radsite.lbl.gov/</a>)
1862 developed by the Lawrence Berkeley National Laboratory
1863 (<a HREF="http://www.lbl.gov/">http://www.lbl.gov/</a>).&quot;
1864 Alternately, this acknowledgment may appear in the software itself,
1865 if and wherever such third-party acknowledgments normally appear.
1866
1867 4. The names &quot;Radiance,&quot; &quot;Lawrence Berkeley National Laboratory&quot;
1868 and &quot;The Regents of the University of California&quot; must
1869 not be used to endorse or promote products derived from this
1870 software without prior written permission. For written
1871 permission, please contact [email protected].
1872
1873 5. Products derived from this software may not be called &quot;Radiance&quot;,
1874 nor may &quot;Radiance&quot; appear in their name, without prior written
1875 permission of Lawrence Berkeley National Laboratory.
1876
1877 THIS SOFTWARE IS PROVIDED ``AS IS&quot; AND ANY EXPRESSED OR IMPLIED
1878 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
1879 OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
1880 DISCLAIMED. IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
1881 ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
1882 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
1883 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
1884 USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
1885 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
1886 OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
1887 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
1888 SUCH DAMAGE.
1889 </pre>
1890
1891 <hr>
1892
1893 <h2>
1894 <a NAME="Ack">5. Acknowledgements</a>
1895 </h2>
1896
1897 This work was supported by the Assistant Secretary of Conservation and Renewable Energy,
1898 Office of Building Energy Research and Development,
1899 Buildings Equipment Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
1900
1901 <p>
1902 Additional work was sponsored by the Swiss federal government
1903 under the Swiss LUMEN Project and was carried out in the
1904 Laboratoire d'Energie Solaire (LESO Group) at the
1905 Ecole Polytechnique Federale de Lausanne (EPFL University) in Lausanne, Switzerland.
1906
1907 <p>
1908
1909 <hr>
1910
1911 <h2>
1912 <a NAME="Ref">6.</a> References
1913 </h2>
1914 <p>
1915 <ul>
1916 <li>McNeil, A., C.J. Jonsson, D. Appelfeld, G. Ward, E.S. Lee,
1917 &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">
1918 A validation of a ray-tracing tool used to generate
1919 bi-directional scattering distribution functions for
1920 complex fenestration systems</a>,&quot;
1921 <em>Solar Energy</em>, 98, 404-14,
1922 November 2013.
1923 <li>Ward, G., R. Mistrick, E.S. Lee, A. McNeil, J. Jonsson,
1924 &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">Simulating
1925 the Daylight Performance of Complex Fenestration Systems
1926 Using Bidirectional Scattering Distribution Functions within
1927 Radiance</a>,&quot;
1928 <em>Leukos</em>, 7(4)
1929 April 2011.
1930 <li>Cater, Kirsten, Alan Chalmers, Greg Ward,
1931 &quot;<a href="http://www.anyhere.com/gward/papers/egsr2003.pdf">Detail to Attention:
1932 Exploiting Visual Tasks for Selective Rendering</a>,&quot;
1933 <em>Eurographics Symposium
1934 on Rendering 2003</em>, June 2003.
1935 <li>Ward, Greg, Elena Eydelberg-Vileshin,
1936 &quot;<a HREF="http://www.anyhere.com/gward/papers/egwr02/index.html">Picture Perfect RGB
1937 Rendering Using Spectral Prefiltering and Sharp Color Primaries</a>,&quot;
1938 Thirteenth Eurographics Workshop on Rendering (2002),
1939 P. Debevec and S. Gibson (Editors), June 2002.
1940 <li>Ward, Gregory,
1941 &quot;<a HREF="http://www.anyhere.com/gward/papers/cic01.pdf">High Dynamic Range Imaging</a>,&quot;
1942 Proceedings of the Ninth Color Imaging Conference, November 2001.
1943 <li>Ward, Gregory and Maryann Simmons,
1944 &quot;<a HREF="http://www.anyhere.com/gward/papers/tog99.pdf">
1945 The Holodeck Ray Cache: An Interactive Rendering System for Global Illumination in Nondiffuse
1946 Environments</a>,&quot; ACM Transactions on Graphics, 18(4):361-98, October 1999.
1947 <li>Larson, G.W., &quot;<a HREF="http://www.anyhere.com/gward/papers/ewp98.pdf">The Holodeck: A Parallel
1948 Ray-caching Rendering System</a>,&quot; Proceedings of the Second
1949 Eurographics Workshop on Parallel Graphics and Visualisation,
1950 September 1998.
1951 <li>Larson, G.W. and R.A. Shakespeare,
1952 <a HREF="http://radsite.lbl.gov/radiance/book/index.html"><em>Rendering with Radiance:
1953 the Art and Science of Lighting Visualization</em></a>,
1954 Morgan Kaufmann Publishers, 1998.
1955 <li>Larson, G.W., H. Rushmeier, C. Piatko,
1956 &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/lbnl39882/tonemap.pdf">A Visibility
1957 Matching Tone Reproduction Operator for
1958 High Dynamic Range Scenes</a>,&quot; LBNL Technical Report 39882,
1959 January 1997.
1960 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw95.1/paper.html">Making
1961 Global Illumination User-Friendly</a>,&quot; Sixth
1962 Eurographics Workshop on Rendering, Springer-Verlag,
1963 Dublin, Ireland, June 1995.</li>
1964 <li>Rushmeier, H., G. Ward, C. Piatko, P. Sanders, B. Rust,
1965 &quot;<a HREF="http://radsite.lbl.gov/mgf/compare.html">
1966 Comparing Real and Synthetic Images: Some Ideas about
1967 Metrics</a>,&quot; Sixth Eurographics Workshop on Rendering,
1968 Springer-Verlag, Dublin, Ireland, June 1995.</li>
1969 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.1/paper.html">The RADIANCE
1970 Lighting Simulation and Rendering System</a>,&quot; <em>Computer
1971 Graphics</em>, July 1994.</li>
1972 <li>Rushmeier, H., G. Ward, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.2/energy.html">Energy
1973 Preserving Non-Linear Filters</a>,&quot; <em>Computer
1974 Graphics</em>, July 1994.</li>
1975 <li>Ward, G., &quot;A Contrast-Based Scalefactor for Luminance
1976 Display,&quot; <em>Graphics Gems IV</em>, Edited by Paul Heckbert,
1977 Academic Press 1994.</li>
1978 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg92/paper.html">Measuring and
1979 Modeling Anisotropic Reflection</a>,&quot; <em>Computer
1980 Graphics</em>, Vol. 26, No. 2, July 1992. </li>
1981 <li>Ward, G., P. Heckbert, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw92/paper.html">Irradiance
1982 Gradients</a>,&quot; Third Annual Eurographics Workshop on
1983 Rendering, Springer-Verlag, May 1992. </li>
1984 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw91/erw91.html">Adaptive Shadow
1985 Testing for Ray Tracing</a>&quot; Photorealistic Rendering in
1986 Computer Graphics, proceedings of 1991 Eurographics
1987 Rendering Workshop, edited by P. Brunet and F.W. Jansen,
1988 Springer-Verlag. </li>
1989 <li>Ward, G., &quot;Visualization,&quot; <em>Lighting Design and
1990 Application</em>, Vol. 20, No. 6, June 1990. </li>
1991 <li>Ward, G., F. Rubinstein, R. Clear, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg88/paper.html">A Ray Tracing Solution for
1992 Diffuse Interreflection</a>,&quot; <em>Computer Graphics</em>,
1993 Vol. 22, No. 4, August 1988. </li>
1994 <li>Ward, G., F. Rubinstein, &quot;A New Technique for Computer
1995 Simulation of Illuminated Spaces,&quot; <em>Journal of the
1996 Illuminating Engineering Society</em>, Vol. 17, No. 1,
1997 Winter 1988. </li>
1998 </ul>
1999 <p>
2000 See the <a HREF="index.html">RADIANCE Reference Materials</a> page
2001 for additional information.
2002 <hr>
2003
2004 <a NAME="Index"><h2>7. Types Index</h2></a>
2005
2006 <pre>
2007 <h4>
2008 SURFACES MATERIALS TEXTURES PATTERNS MIXTURES</h4>
2009 <a HREF="#Source">Source</a> <a HREF="#Light">Light</a> <a HREF="#Texfunc">Texfunc</a> <a HREF="#Colorfunc">Colorfunc</a> <a HREF="#Mixfunc">Mixfunc</a>
2010 <a HREF="#Sphere">Sphere</a> <a HREF="#Illum">Illum</a> <a HREF="#Texdata">Texdata</a> <a HREF="#Brightfunc">Brightfunc</a> <a HREF="#Mixdata">Mixdata</a>
2011 <a HREF="#Bubble">Bubble</a> <a HREF="#Glow">Glow</a> <a HREF="#Colordata">Colordata</a> <a HREF="#Mixtext">Mixtext</a>
2012 <a HREF="#Polygon">Polygon</a> <a HREF="#Spotlight">Spotlight</a> <a HREF="#Brightdata">Brightdata</a>
2013 <a HREF="#Cone">Cone</a> <a HREF="#Mirror">Mirror</a> <a HREF="#Colorpict">Colorpict</a>
2014 <a HREF="#Cup">Cup</a> <a HREF="#Prism1">Prism1</a> <a HREF="#Colortext">Colortext</a>
2015 <a HREF="#Cylinder">Cylinder</a> <a HREF="#Prism2">Prism2</a> <a HREF="#Brighttext">Brighttext</a>
2016 <a HREF="#Tube">Tube</a> <a HREF="#Plastic">Plastic</a>
2017 <a HREF="#Ring">Ring</a> <a HREF="#Metal">Metal</a>
2018 <a HREF="#Instance">Instance</a> <a HREF="#Trans">Trans</a>
2019 <a HREF="#Mesh">Mesh</a> <a HREF="#Plastic2">Plastic2</a>
2020 <a HREF="#Metal2">Metal2</a>
2021 <a HREF="#Trans2">Trans2</a>
2022 <a HREF="#Mist">Mist</a>
2023 <a HREF="#Dielectric">Dielectric</a>
2024 <a HREF="#Interface">Interface</a>
2025 <a HREF="#Glass">Glass</a>
2026 <a HREF="#Plasfunc">Plasfunc</a>
2027 <a HREF="#Metfunc">Metfunc</a>
2028 <a HREF="#Transfunc">Transfunc</a>
2029 <a HREF="#BRTDfunc">BRTDfunc</a>
2030 <a HREF="#Plasdata">Plasdata</a>
2031 <a HREF="#Metdata">Metdata</a>
2032 <a HREF="#Transdata">Transdata</a>
2033 <a HREF="#BSDF">BSDF</a>
2034 <a HREF="#Antimatter">Antimatter</a>
2035
2036 </pre>
2037
2038 <p>
2039
2040
2041 <hr>
2042 <center>Last Update: October 22, 1997</center>
2043 </body>
2044 </html>
2045