ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/ray.html
(Generate patch)

Comparing ray/doc/ray.html (file contents):
Revision 1.9 by greg, Fri Mar 12 18:43:30 2010 UTC vs.
Revision 1.23 by greg, Sun Jul 10 23:41:37 2016 UTC

# Line 1 | Line 1
1   <html>
2 + <!-- RCSid $Id$ -->
3   <head>
4   <title>
5 < The RADIANCE 4.0 Synthetic Imaging System
5 > The RADIANCE 5.1 Synthetic Imaging System
6   </title>
7   </head>
8   <body>
# Line 9 | Line 10 | The RADIANCE 4.0 Synthetic Imaging System
10   <p>
11  
12   <h1>
13 < The RADIANCE 4.0 Synthetic Imaging System
13 > The RADIANCE 5.1 Synthetic Imaging System
14   </h1>
15  
16   <p>
# Line 797 | Line 798 | unless the line integrals consider enclosed geometry.
798  
799   <dd>
800          Trans2 is the anisotropic version of <a HREF="#Trans">trans</a>.  
801 <        The string arguments  are  the same as for plastic2, and the real arguments are the same as  for  trans  but  with  an  additional roughness value.
801 >        The string arguments  are  the same as for <a HREF="#Plastic2">plastic2</a>,
802 >        and the real arguments are the same as  for  trans  but  with  an  additional roughness value.
803  
804   <pre>
805          mod trans2 id
# Line 809 | Line 811 | unless the line integrals consider enclosed geometry.
811   <p>
812  
813   <dt>
814 +        <a NAME="Ashik2">
815 +        <b>Ashik2</b>
816 +        </a>
817 +
818 + <dd>
819 +        Ashik2 is the anisotropic reflectance model by Ashikhmin & Shirley.
820 +        The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>, but the real
821 +        arguments have additional flexibility to specify the specular color.
822 +        Also, rather than roughness, specular power is used, which has no
823 +        physical meaning other than larger numbers are equivalent to a smoother
824 +        surface.
825 + <pre>
826 +        mod ashik2 id
827 +        4+ ux uy uz funcfile transform
828 +        0
829 +        8 dred dgrn dblu sred sgrn sblu u-power v-power
830 + </pre>
831 +
832 + <p>
833 +
834 + <dt>
835          <a NAME="Dielectric">
836          <b>Dielectric</b>
837          </a>
# Line 1053 | Line 1076 | unless the line integrals consider enclosed geometry.
1076   <p>
1077  
1078   <dt>
1079 +        <a NAME="BSDF">
1080 +        <b>BSDF</b>
1081 +        </a>
1082 +
1083 + <dd>
1084 +        The BSDF material type loads an XML (eXtensible Markup Language)
1085 +        file describing a bidirectional scattering distribution function.
1086 +        Real arguments to this material may define additional
1087 +        diffuse components that augment the BSDF data.
1088 +        String arguments are used to define thickness for proxied
1089 +        surfaces and the &quot;up&quot; orientation for the material.
1090 +
1091 + <pre>
1092 +        mod BSDF id
1093 +        6+ thick BSDFfile ux uy uz funcfile transform
1094 +        0
1095 +        0|3|6|9
1096 +                rfdif gfdif bfdif
1097 +                rbdif gbdif bbdif
1098 +                rtdif gtdif btdif
1099 + </pre>
1100 +
1101 + <p>
1102 +        The first string argument is a &quot;thickness&quot; parameter that may be used
1103 +        to hide detail geometry being proxied by an aggregate BSDF material.
1104 +        If a view or shadow ray hits a BSDF proxy with non-zero thickness,
1105 +        it will pass directly through as if the surface were not there.
1106 +        Similar to the illum type, this permits direct viewing and
1107 +        shadow testing of complex geometry.
1108 +        The BSDF is used when a scattered (indirect) ray hits the surface,
1109 +        and any transmitted sample rays will be offset by the thickness amount
1110 +        to avoid the hidden geometry and gather samples from the other side.
1111 +        In this manner, BSDF surfaces can improve the results for indirect
1112 +        scattering from complex systems without sacrificing appearance or
1113 +        shadow accuracy.
1114 +        If the BSDF has transmission and back-side reflection data,
1115 +        a parallel BSDF surface may be
1116 +        placed slightly less than the given thickness away from the front surface
1117 +        to enclose the complex geometry on both sides.
1118 +        The sign of the thickness is important, as it indicates
1119 +        whether the proxied geometry is behind the BSDF
1120 +        surface (when thickness is positive) or in front (when
1121 +        thickness is negative).
1122 + <p>
1123 +        The second string argument is the name of the BSDF file,
1124 +        which is found in the usual auxiliary locations.  The
1125 +        following three string parameters name variables for an
1126 +        &quot;up&quot; vector, which together with the surface
1127 +        normal, define the local coordinate system that orients the
1128 +        BSDF.  These variables, along with the thickness, are defined
1129 +        in a function file given as the next string argument.  An
1130 +        optional transform is used to scale the thickness and
1131 +        reorient the up vector.
1132 + <p>
1133 +        If no real arguments are given, the BSDF is used by itself
1134 +        to determine reflection and transmission.  If there are at
1135 +        least 3 real arguments, the first triplet is an additional
1136 +        diffuse reflectance for the front side.  At least 6 real
1137 +        arguments adds diffuse reflectance to the rear side of the
1138 +        surface.  If there are 9 real arguments, the final triplet
1139 +        will be taken as an additional diffuse transmittance.  All
1140 +        diffuse components as well as the non-diffuse transmission
1141 +        are modified by patterns applied to this material.  The
1142 +        non-diffuse reflection from either side are unaffected.
1143 +        Textures perturb the effective surface normal in the usual
1144 +        way.
1145 + <p>
1146 +        The surface normal of this type is not altered to face the
1147 +        incoming ray, so the front and back BSDF reflections may
1148 +        differ.  (Transmission is identical front-to-back by physical
1149 +        law.) If back visibility is turned off during rendering and
1150 +        there is no transmission or back-side reflection, only then
1151 +        the surface will be invisible from behind.  Unlike other
1152 +        data-driven material types, the BSDF type is fully supported
1153 +        and all parts of the distribution are properly sampled.
1154 + <p>
1155 +
1156 + <dt>
1157          <a NAME="Antimatter">
1158          <b>Antimatter</b>
1159          </a>
# Line 1336 | Line 1437 | or:
1437   </h4>
1438  
1439   A mixture is a blend of one or more materials or textures and patterns.
1440 + Blended materials should not be light source types or virtual source types.
1441   The basic types are given below.
1442  
1443   <p>
# Line 1408 | Line 1510 | A mixfunc mixes  two  modifiers  procedurally.   It  i
1510          arguments, the red, green and blue values
1511          corresponding to the pixel at (u,v).
1512  
1411 </dl>
1513   <p>
1514  
1515   <dt>
# Line 1710 | Line 1811 | Pictures may be displayed directly under X11 using the
1811   or converted a standard image format using one of the following
1812   <b>translators</b>:
1813          <ul>
1814 <        <li> <b>Ra_avs</b>
1815 <                converts to and from AVS image format.
1715 <        <li> <a HREF="../man_html/ra_pict.1.html"><b>Ra_pict</b></a>
1716 <                converts to Macintosh 32-bit PICT2 format.
1814 >        <li> <a HREF="../man_html/ra_bmp.1.html"><b>Ra_bmp</b>
1815 >                converts to and from BMP image format.
1816          <li> <a HREF="../man_html/ra_ppm.1.html"><b>Ra_ppm</b></a>
1817                  converts to and from Poskanzer Portable Pixmap formats.
1719        <li> <a HREF="../man_html/ra_pr.1.html"><b>Ra_pr</b></a>
1720                converts to and from Sun 8-bit rasterfile format.
1721        <li> <a HREF="../man_html/ra_pr24.1.html"><b>Ra_pr24</b></a>
1722                converts to and from Sun 24-bit rasterfile format.
1818          <li> <a HREF="../man_html/ra_ps.1.html"><b>Ra_ps</b></a>
1819                  converts to PostScript color and greyscale formats.
1820          <li> <a HREF="../man_html/ra_rgbe.1.html"><b>Ra_rgbe</b></a>
# Line 1745 | Line 1840 | or converted a standard image format using one of the
1840   <pre>
1841   The Radiance Software License, Version 1.0
1842  
1843 < Copyright (c) 1990 - 2010 The Regents of the University of California,
1843 > Copyright (c) 1990 - 2014 The Regents of the University of California,
1844   through Lawrence Berkeley National Laboratory.   All rights reserved.
1845  
1846   Redistribution and use in source and binary forms, with or without
# Line 1779 | Line 1874 | are met:
1874        nor may &quot;Radiance&quot; appear in their name, without prior written
1875        permission of Lawrence Berkeley National Laboratory.
1876  
1877 < THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
1877 > THIS SOFTWARE IS PROVIDED ``AS IS&quot; AND ANY EXPRESSED OR IMPLIED
1878   WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
1879   OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
1880   DISCLAIMED.   IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
# Line 1818 | Line 1913 | Ecole  Polytechnique  Federale de Lausanne (EPFL Unive
1913   </h2>
1914   <p>
1915   <ul>
1916 +    <li>McNeil, A., C.J. Jonsson, D. Appelfeld, G. Ward, E.S. Lee,
1917 +        &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">
1918 +        A validation of a ray-tracing tool used to generate
1919 +        bi-directional scattering distribution functions for
1920 +        complex fenestration systems</a>,&quot;
1921 +        <em>Solar Energy</em>, 98, 404-14,
1922 +        November 2013.
1923 +    <li>Ward, G., R. Mistrick, E.S. Lee, A. McNeil, J. Jonsson,
1924 +        &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">Simulating
1925 +        the Daylight Performance of Complex Fenestration Systems
1926 +        Using Bidirectional Scattering Distribution Functions within
1927 +        Radiance</a>,&quot;
1928 +        <em>Leukos</em>, 7(4)
1929 +        April 2011.
1930      <li>Cater, Kirsten, Alan Chalmers, Greg Ward,
1931          &quot;<a href="http://www.anyhere.com/gward/papers/egsr2003.pdf">Detail to Attention:
1932          Exploiting Visual Tasks for Selective Rendering</a>,&quot;
1933          <em>Eurographics Symposium
1934          on Rendering 2003</em>, June 2003.
1935      <li>Ward, Greg, Elena Eydelberg-Vileshin,
1936 <        ``<a HREF="http://www.anyhere.com/gward/papers/egwr02/index.html">Picture Perfect RGB
1937 <        Rendering Using Spectral Prefiltering and Sharp Color Primaries</a>,''
1936 >        &quot;<a HREF="http://www.anyhere.com/gward/papers/egwr02/index.html">Picture Perfect RGB
1937 >        Rendering Using Spectral Prefiltering and Sharp Color Primaries</a>,&quot;
1938          Thirteenth Eurographics Workshop on Rendering (2002),
1939          P. Debevec and S. Gibson (Editors), June 2002.
1940      <li>Ward, Gregory,
1941 <        ``<a HREF="http://www.anyhere.com/gward/papers/cic01.pdf">High Dynamic Range Imaging</a>,''
1941 >        &quot;<a HREF="http://www.anyhere.com/gward/papers/cic01.pdf">High Dynamic Range Imaging</a>,&quot;
1942          Proceedings of the Ninth Color Imaging Conference, November 2001.
1943      <li>Ward, Gregory and Maryann Simmons,
1944 <        ``<a HREF="http://www.anyhere.com/gward/papers/tog99.pdf">
1944 >        &quot;<a HREF="http://www.anyhere.com/gward/papers/tog99.pdf">
1945          The Holodeck Ray Cache: An Interactive Rendering System for Global Illumination in Nondiffuse
1946 <        Environments</a>,'' ACM Transactions on Graphics, 18(4):361-98, October 1999.
1947 <    <li>Larson, G.W., ``<a HREF="http://www.anyhere.com/gward/papers/ewp98.pdf">The Holodeck: A Parallel
1948 <        Ray-caching Rendering System</a>,'' Proceedings of the Second
1946 >        Environments</a>,&quot; ACM Transactions on Graphics, 18(4):361-98, October 1999.
1947 >    <li>Larson, G.W., &quot;<a HREF="http://www.anyhere.com/gward/papers/ewp98.pdf">The Holodeck: A Parallel
1948 >        Ray-caching Rendering System</a>,&quot; Proceedings of the Second
1949          Eurographics Workshop on Parallel Graphics and Visualisation,
1950          September 1998.
1951      <li>Larson, G.W. and R.A. Shakespeare,
# Line 1844 | Line 1953 | Ecole  Polytechnique  Federale de Lausanne (EPFL Unive
1953          the Art and Science of Lighting Visualization</em></a>,
1954          Morgan Kaufmann Publishers, 1998.
1955      <li>Larson, G.W., H. Rushmeier, C. Piatko,
1956 <        ``<a HREF="http://radsite.lbl.gov/radiance/papers/lbnl39882/tonemap.pdf">A Visibility
1956 >        &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/lbnl39882/tonemap.pdf">A Visibility
1957          Matching Tone Reproduction Operator for
1958 <        High Dynamic Range Scenes</a>,'' LBNL Technical Report 39882,
1958 >        High Dynamic Range Scenes</a>,&quot; LBNL Technical Report 39882,
1959          January 1997.
1960 <    <li>Ward, G., ``<a HREF="http://radsite.lbl.gov/radiance/papers/erw95.1/paper.html">Making
1961 <        Global Illumination User-Friendly</a>,'' Sixth
1960 >    <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw95.1/paper.html">Making
1961 >        Global Illumination User-Friendly</a>,&quot; Sixth
1962          Eurographics Workshop on Rendering, Springer-Verlag,
1963          Dublin, Ireland, June 1995.</li>
1964      <li>Rushmeier, H., G. Ward, C. Piatko, P. Sanders, B. Rust,
1965 <        ``<a HREF="http://radsite.lbl.gov/mgf/compare.html">
1965 >        &quot;<a HREF="http://radsite.lbl.gov/mgf/compare.html">
1966          Comparing Real and Synthetic Images: Some Ideas about
1967 <        Metrics</a>,'' Sixth Eurographics Workshop on Rendering,
1967 >        Metrics</a>,&quot; Sixth Eurographics Workshop on Rendering,
1968          Springer-Verlag, Dublin, Ireland, June 1995.</li>
1969 <    <li>Ward, G., ``<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.1/paper.html">The RADIANCE
1970 <        Lighting Simulation and Rendering System</a>,'' <em>Computer
1969 >    <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.1/paper.html">The RADIANCE
1970 >        Lighting Simulation and Rendering System</a>,&quot; <em>Computer
1971          Graphics</em>, July 1994.</li>
1972 <    <li>Rushmeier, H., G. Ward, ``<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.2/energy.html">Energy
1973 <        Preserving Non-Linear Filters</a>,'' <em>Computer
1972 >    <li>Rushmeier, H., G. Ward, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.2/energy.html">Energy
1973 >        Preserving Non-Linear Filters</a>,&quot; <em>Computer
1974          Graphics</em>, July 1994.</li>
1975 <    <li>Ward, G., ``A Contrast-Based Scalefactor for Luminance
1976 <        Display,'' <em>Graphics Gems IV</em>, Edited by Paul Heckbert,
1975 >    <li>Ward, G., &quot;A Contrast-Based Scalefactor for Luminance
1976 >        Display,&quot; <em>Graphics Gems IV</em>, Edited by Paul Heckbert,
1977          Academic Press 1994.</li>
1978 <    <li>Ward, G., ``<a HREF="http://radsite.lbl.gov/radiance/papers/sg92/paper.html">Measuring and
1979 <        Modeling Anisotropic Reflection</a>,'' <em>Computer
1978 >    <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg92/paper.html">Measuring and
1979 >        Modeling Anisotropic Reflection</a>,&quot; <em>Computer
1980          Graphics</em>, Vol. 26, No. 2, July 1992. </li>
1981 <    <li>Ward, G., P. Heckbert, ``<a HREF="http://radsite.lbl.gov/radiance/papers/erw92/paper.html">Irradiance
1982 <        Gradients</a>,'' Third Annual Eurographics Workshop on
1981 >    <li>Ward, G., P. Heckbert, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw92/paper.html">Irradiance
1982 >        Gradients</a>,&quot; Third Annual Eurographics Workshop on
1983          Rendering, Springer-Verlag, May 1992. </li>
1984 <    <li>Ward, G., ``<a HREF="http://radsite.lbl.gov/radiance/papers/erw91/erw91.html">Adaptive Shadow
1985 <        Testing for Ray Tracing</a>'' Photorealistic Rendering in
1984 >    <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw91/erw91.html">Adaptive Shadow
1985 >        Testing for Ray Tracing</a>&quot; Photorealistic Rendering in
1986          Computer Graphics, proceedings of 1991 Eurographics
1987          Rendering Workshop, edited by P. Brunet and F.W. Jansen,
1988          Springer-Verlag. </li>
1989 <    <li>Ward, G., ``Visualization,'' <em>Lighting Design and
1989 >    <li>Ward, G., &quot;Visualization,&quot; <em>Lighting Design and
1990          Application</em>, Vol. 20, No. 6, June 1990. </li>
1991 <    <li>Ward, G., F. Rubinstein, R. Clear, ``<a HREF="http://radsite.lbl.gov/radiance/papers/sg88/paper.html">A Ray Tracing Solution for
1992 <        Diffuse Interreflection</a>,'' <em>Computer Graphics</em>,
1991 >    <li>Ward, G., F. Rubinstein, R. Clear, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg88/paper.html">A Ray Tracing Solution for
1992 >        Diffuse Interreflection</a>,&quot; <em>Computer Graphics</em>,
1993          Vol. 22, No. 4, August 1988. </li>
1994 <    <li>Ward, G., F. Rubinstein, ``A New Technique for Computer
1995 <        Simulation of Illuminated Spaces,'' <em>Journal of the
1994 >    <li>Ward, G., F. Rubinstein, &quot;A New Technique for Computer
1995 >        Simulation of Illuminated Spaces,&quot; <em>Journal of the
1996          Illuminating Engineering Society</em>, Vol. 17, No. 1,
1997          Winter 1988. </li>
1998   </ul>
# Line 1921 | Line 2030 | SURFACES       MATERIALS       TEXTURES        PATTERNS        MIXTURES</h4>
2030                  <a HREF="#Plasdata">Plasdata</a>
2031                  <a HREF="#Metdata">Metdata</a>
2032                  <a HREF="#Transdata">Transdata</a>
2033 +                <a HREF="#BSDF">BSDF</a>
2034                  <a HREF="#Antimatter">Antimatter</a>
2035                                  
2036   </pre>

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines