ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/ray.html
(Generate patch)

Comparing ray/doc/ray.html (file contents):
Revision 1.7 by greg, Tue Oct 17 21:52:43 2006 UTC vs.
Revision 1.32 by greg, Fri Nov 3 17:41:27 2023 UTC

# Line 1 | Line 1
1   <html>
2 + <!-- RCSid $Id$ -->
3   <head>
4   <title>
5 < The RADIANCE 3.8 Synthetic Imaging System
5 > The RADIANCE 5.4 Synthetic Imaging System
6   </title>
7   </head>
8   <body>
# Line 9 | Line 10 | The RADIANCE 3.8 Synthetic Imaging System
10   <p>
11  
12   <h1>
13 < The RADIANCE 3.8 Synthetic Imaging System
13 > The RADIANCE 5.4 Synthetic Imaging System
14   </h1>
15  
16   <p>
# Line 82 | Line 83 | The diagram in Figure 1 shows the flow between program
83   (ovals).  
84   The central program is <i>rpict</i>, which produces a picture from a scene
85   description.
86 < <i>Rview</i> is a  variation  of  rpict  that  computes  and displays images
86 > <i>Rvu</i> is a  variation  of  rpict  that  computes  and displays images
87   interactively, and rtrace computes single ray values.
88   Other programs (not shown) connect many of these elements together,
89   such as the executive programs
# Line 659 | Line 660 | a perfectly scattering medium (no absorption).
660   The scattering eccentricity parameter will likewise override the global
661   setting if it is present.
662   Scattering eccentricity indicates how much scattered light favors the
663 < forward direction, as fit by the Heyney-Greenstein function:
663 > forward direction, as fit by the Henyey-Greenstein function:
664  
665   <pre>
666          P(theta) = (1 - g*g) / (1 + g*g - 2*g*cos(theta))^1.5
# Line 797 | Line 798 | unless the line integrals consider enclosed geometry.
798  
799   <dd>
800          Trans2 is the anisotropic version of <a HREF="#Trans">trans</a>.  
801 <        The string arguments  are  the same as for plastic2, and the real arguments are the same as  for  trans  but  with  an  additional roughness value.
801 >        The string arguments  are  the same as for <a HREF="#Plastic2">plastic2</a>,
802 >        and the real arguments are the same as  for  trans  but  with  an  additional roughness value.
803  
804   <pre>
805          mod trans2 id
# Line 809 | Line 811 | unless the line integrals consider enclosed geometry.
811   <p>
812  
813   <dt>
814 +        <a NAME="Ashik2">
815 +        <b>Ashik2</b>
816 +        </a>
817 +
818 + <dd>
819 +        Ashik2 is the anisotropic reflectance model by Ashikhmin & Shirley.
820 +        The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>, but the real
821 +        arguments have additional flexibility to specify the specular color.
822 +        Also, rather than roughness, specular power is used, which has no
823 +        physical meaning other than larger numbers are equivalent to a smoother
824 +        surface.
825 +        Unlike other material types, total reflectance is the sum of
826 +        diffuse and specular colors, and should be adjusted accordingly.
827 + <pre>
828 +        mod ashik2 id
829 +        4+ ux uy uz funcfile transform
830 +        0
831 +        8 dred dgrn dblu sred sgrn sblu u-power v-power
832 + </pre>
833 +
834 + <p>
835 +
836 + <dt>
837          <a NAME="Dielectric">
838          <b>Dielectric</b>
839          </a>
# Line 1053 | Line 1078 | unless the line integrals consider enclosed geometry.
1078   <p>
1079  
1080   <dt>
1081 +        <a NAME="BSDF">
1082 +        <b>BSDF</b>
1083 +        </a>
1084 +
1085 + <dd>
1086 +        The BSDF material type loads an XML (eXtensible Markup Language)
1087 +        file describing a bidirectional scattering distribution function.
1088 +        Real arguments to this material may define additional
1089 +        diffuse components that augment the BSDF data.
1090 +        String arguments are used to define thickness for proxied
1091 +        surfaces and the &quot;up&quot; orientation for the material.
1092 +
1093 + <pre>
1094 +        mod BSDF id
1095 +        6+ thick BSDFfile ux uy uz funcfile transform
1096 +        0
1097 +        0|3|6|9
1098 +                rfdif gfdif bfdif
1099 +                rbdif gbdif bbdif
1100 +                rtdif gtdif btdif
1101 + </pre>
1102 +
1103 + <p>
1104 +        The first string argument is a &quot;thickness&quot; parameter that may be used
1105 +        to hide detail geometry being proxied by an aggregate BSDF material.
1106 +        If a view or shadow ray hits a BSDF proxy with non-zero thickness,
1107 +        it will pass directly through as if the surface were not there.
1108 +        Similar to the illum type, this permits direct viewing and
1109 +        shadow testing of complex geometry.
1110 +        The BSDF is used when a scattered (indirect) ray hits the surface,
1111 +        and any transmitted sample rays will be offset by the thickness amount
1112 +        to avoid the hidden geometry and gather samples from the other side.
1113 +        In this manner, BSDF surfaces can improve the results for indirect
1114 +        scattering from complex systems without sacrificing appearance or
1115 +        shadow accuracy.
1116 +        If the BSDF has transmission and back-side reflection data,
1117 +        a parallel BSDF surface may be
1118 +        placed slightly less than the given thickness away from the front surface
1119 +        to enclose the complex geometry on both sides.
1120 +        The sign of the thickness is important, as it indicates
1121 +        whether the proxied geometry is behind the BSDF
1122 +        surface (when thickness is positive) or in front (when
1123 +        thickness is negative).
1124 + <p>
1125 +        The second string argument is the name of the BSDF file,
1126 +        which is found in the usual auxiliary locations.  The
1127 +        following three string parameters name variables for an
1128 +        &quot;up&quot; vector, which together with the surface
1129 +        normal, define the local coordinate system that orients the
1130 +        BSDF.  These variables, along with the thickness, are defined
1131 +        in a function file given as the next string argument.  An
1132 +        optional transform is used to scale the thickness and
1133 +        reorient the up vector.
1134 + <p>
1135 +        If no real arguments are given, the BSDF is used by itself
1136 +        to determine reflection and transmission.  If there are at
1137 +        least 3 real arguments, the first triplet is an additional
1138 +        diffuse reflectance for the front side.  At least 6 real
1139 +        arguments adds diffuse reflectance to the rear side of the
1140 +        surface.  If there are 9 real arguments, the final triplet
1141 +        will be taken as an additional diffuse transmittance.  All
1142 +        diffuse components as well as the non-diffuse transmission
1143 +        are modified by patterns applied to this material.  The
1144 +        non-diffuse reflection from either side are unaffected.
1145 +        Textures perturb the effective surface normal in the usual
1146 +        way.
1147 + <p>
1148 +        The surface normal of this type is not altered to face the
1149 +        incoming ray, so the front and back BSDF reflections may
1150 +        differ.  (Transmission is identical front-to-back by physical
1151 +        law.) If back visibility is turned off during rendering and
1152 +        there is no transmission or back-side reflection, only then
1153 +        the surface will be invisible from behind.  Unlike other
1154 +        data-driven material types, the BSDF type is fully supported
1155 +        and all parts of the distribution are properly sampled.
1156 + <p>
1157 +
1158 + <dt>
1159 +        <a NAME="aBSDF">
1160 +        <b>aBSDF</b>
1161 +        </a>
1162 +
1163 + <dd>
1164 +        The aBSDF material is identical to the BSDF type with two
1165 +        important differences.  First, proxy geometry is not
1166 +        supported, so there is no thickness parameter.  Second, an
1167 +        aBSDF is assumed to have some specular through component
1168 +        (the &rsquo;a&rsquo; stands for &quot;aperture&quot;),
1169 +        which is treated specially during the direct calculation
1170 +        and when viewing the material.  Based on the BSDF data, the
1171 +        coefficient of specular transmission is determined and used
1172 +        for modifying unscattered shadow and view rays.
1173 +
1174 + <pre>
1175 +        mod aBSDF id
1176 +        5+ BSDFfile ux uy uz funcfile transform
1177 +        0
1178 +        0|3|6|9
1179 +             rfdif gfdif bfdif
1180 +             rbdif gbdif bbdif
1181 +             rtdif gtdif btdif
1182 + </pre>
1183 +
1184 + <p>
1185 +        If a material has no specular transmitted component, it is
1186 +        much better to use the BSDF type with a zero thickness
1187 +        than to use aBSDF.
1188 + <p>
1189 +
1190 + <dt>
1191          <a NAME="Antimatter">
1192          <b>Antimatter</b>
1193          </a>
# Line 1336 | Line 1471 | or:
1471   </h4>
1472  
1473   A mixture is a blend of one or more materials or textures and patterns.
1474 + Blended materials should not be light source types or virtual source types.
1475   The basic types are given below.
1476  
1477   <p>
# Line 1365 | Line 1501 | A mixfunc mixes  two  modifiers  procedurally.   It  i
1501          which serves as a form of opacity control when used with a material.)
1502          Vname is the coefficient defined in funcfile that determines  the  influence  of  foreground.  
1503          The background coefficient is always (1-vname).  
1368        Since the references are not resolved until run-time,  the  last  definitions  of  the modifier id's will be used.  
1369        This can result in modifier loops, which are detected by the renderer.
1504  
1505   <p>
1506  
# Line 1410 | Line 1544 | A mixfunc mixes  two  modifiers  procedurally.   It  i
1544          arguments, the red, green and blue values
1545          corresponding to the pixel at (u,v).
1546  
1413 </dl>
1547   <p>
1548  
1549   <dt>
# Line 1528 | Line 1661 | If no file is needed by a given primitive because all
1661   the  required  variables  are global,  
1662   a  period  (`.')  can be given in place of the file name.  
1663   It is also possible to give an expression instead
1664 < of a  straight  variable  name  in  a scene file,
1665 < although such expressions should be kept
1533 < simple if possible.
1534 < Also, functions (requiring parameters) must be given
1664 > of a  straight  variable  name  in  a scene file.
1665 > Functions (requiring parameters) must be given
1666   as names and not as expressions.
1667  
1668   <p>
# Line 1678 | Line 1809 | The details of this process  are  not  important, but
1809   directs the use of a scene description.
1810   <ul>
1811   <li>
1812 < <a NAME="rvu" HREF="../man_html/rvu.1.html"><b>Rview</b></a>  is  ray-tracing  program  for  viewing  a  scene interactively.  
1812 > <a NAME="rvu" HREF="../man_html/rvu.1.html"><b>Rvu</b></a>  is  ray-tracing  program  for  viewing  a  scene interactively.  
1813   When  the user specifies a new perspective, rvu quickly displays a rough image on the  terminal,  
1814   then progressively increases the resolution as the user looks on.
1815   He can select a particular section of the image to  improve, or  move  to  a different view and start over.  
# Line 1714 | Line 1845 | Pictures may be displayed directly under X11 using the
1845   or converted a standard image format using one of the following
1846   <b>translators</b>:
1847          <ul>
1848 <        <li> <b>Ra_avs</b>
1849 <                converts to and from AVS image format.
1719 <        <li> <a HREF="../man_html/ra_pict.1.html"><b>Ra_pict</b></a>
1720 <                converts to Macintosh 32-bit PICT2 format.
1848 >        <li> <a HREF="../man_html/ra_bmp.1.html"><b>Ra_bmp</b></a>
1849 >                converts to and from BMP image format.
1850          <li> <a HREF="../man_html/ra_ppm.1.html"><b>Ra_ppm</b></a>
1851                  converts to and from Poskanzer Portable Pixmap formats.
1723        <li> <a HREF="../man_html/ra_pr.1.html"><b>Ra_pr</b></a>
1724                converts to and from Sun 8-bit rasterfile format.
1725        <li> <a HREF="../man_html/ra_pr24.1.html"><b>Ra_pr24</b></a>
1726                converts to and from Sun 24-bit rasterfile format.
1852          <li> <a HREF="../man_html/ra_ps.1.html"><b>Ra_ps</b></a>
1853                  converts to PostScript color and greyscale formats.
1854          <li> <a HREF="../man_html/ra_rgbe.1.html"><b>Ra_rgbe</b></a>
# Line 1749 | Line 1874 | or converted a standard image format using one of the
1874   <pre>
1875   The Radiance Software License, Version 1.0
1876  
1877 < Copyright (c) 1990 - 2006 The Regents of the University of California,
1877 > Copyright (c) 1990 - 2021 The Regents of the University of California,
1878   through Lawrence Berkeley National Laboratory.   All rights reserved.
1879  
1880   Redistribution and use in source and binary forms, with or without
# Line 1783 | Line 1908 | are met:
1908        nor may &quot;Radiance&quot; appear in their name, without prior written
1909        permission of Lawrence Berkeley National Laboratory.
1910  
1911 < THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
1911 > THIS SOFTWARE IS PROVIDED ``AS IS&quot; AND ANY EXPRESSED OR IMPLIED
1912   WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
1913   OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
1914   DISCLAIMED.   IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
# Line 1822 | Line 1947 | Ecole  Polytechnique  Federale de Lausanne (EPFL Unive
1947   </h2>
1948   <p>
1949   <ul>
1950 +    <li>Ward, Gregory J., Bruno Bueno, David Geisler-Moroder,
1951 +      Lars O. Grobe, Jacob C. Jonsson, Eleanor
1952 +      S. Lee, Taoning Wang, Helen Rose Wilson,
1953 +      &quot;<a href="https://doi.org/10.1016/j.enbuild.2022.111890">Daylight
1954 +      Simulation Workflows Incorporating Measured Bidirectional
1955 +      Scattering Distribution Functions</a>&quot;
1956 +      <em>Energy &amp; Buildings</em>, Vol. 259, No. 11890, 2022.
1957 +    <li>Wang, Taoning, Gregory Ward, Eleanor Lee,
1958 +      &quot;<a href="https://authors.elsevier.com/a/1XQ0a1M7zGwT7v">Efficient
1959 +      modeling of optically-complex, non-coplanar exterior shading:
1960 +      Validation of matrix algebraic methods</a>&quot;
1961 +      <em>Energy & Buildings</em>, vol. 174, pp. 464-83, Sept. 2018.
1962 +    <li>Lee, Eleanor S., David Geisler-Moroder, Gregory Ward,
1963 +      &quot;<a href="https://eta.lbl.gov/sites/default/files/publications/solar_energy.pdf">Modeling
1964 +      the direct sun component in buildings using matrix
1965 +      algebraic approaches: Methods and
1966 +      validation</a>,&quot; <em>Solar Energy</em>,
1967 +      vol. 160, 15 January 2018, pp 380-395.
1968 +    <li>Narain, Rahul, Rachel A. Albert, Abdullah Bulbul,
1969 +       Gregory J. Ward, Marty Banks, James F. O'Brien,
1970 +       &quot;<a href="http://graphics.berkeley.edu/papers/Narain-OPI-2015-08/index.html">Optimal
1971 +       Presentation of Imagery with Focus
1972 +       Cues on Multi-Plane Displays</a>,&quot;
1973 +       <em>SIGGRAPH 2015</em>.
1974 +    <li>Ward, Greg, Murat Kurt, and Nicolas Bonneel,
1975 +        &quot;<a href="papers/WMAM14_Tensor_Tree_Representation.pdf">Reducing
1976 +        Anisotropic BSDF Measurement to Common Practice</a>,&quot;
1977 +        <em>Workshop on Material Appearance Modeling</em>, 2014.
1978 +    <li>Banks, Martin, Abdullah Bulbul, Rachel Albert, Rahul Narain,
1979 +        James F. O'Brien, Gregory Ward,
1980 +        &quot;<a href="http://graphics.berkeley.edu/papers/Banks-TPO-2014-05/index.html">The
1981 +        Perception of Surface Material from Disparity and Focus Cues</a>,&quot;
1982 +        <em>VSS 2014</em>.
1983 +    <li>McNeil, A., C.J. Jonsson, D. Appelfeld, G. Ward, E.S. Lee,
1984 +        &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">
1985 +        A validation of a ray-tracing tool used to generate
1986 +        bi-directional scattering distribution functions for
1987 +        complex fenestration systems</a>,&quot;
1988 +        <em>Solar Energy</em>, 98, 404-14,
1989 +        November 2013.
1990 +    <li>Ward, G., R. Mistrick, E.S. Lee, A. McNeil, J. Jonsson,
1991 +        &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">Simulating
1992 +        the Daylight Performance of Complex Fenestration Systems
1993 +        Using Bidirectional Scattering Distribution Functions within
1994 +        Radiance</a>,&quot;
1995 +        <em>Leukos</em>, 7(4)
1996 +        April 2011.
1997      <li>Cater, Kirsten, Alan Chalmers, Greg Ward,
1998 <        &quot;<a href="papers/egsr2003.pdf">Detail to Attention:
1998 >        &quot;<a href="http://www.anyhere.com/gward/papers/egsr2003.pdf">Detail to Attention:
1999          Exploiting Visual Tasks for Selective Rendering</a>,&quot;
2000          <em>Eurographics Symposium
2001          on Rendering 2003</em>, June 2003.
2002      <li>Ward, Greg, Elena Eydelberg-Vileshin,
2003 <        ``<a HREF="http://viz.cs.berkeley.edu/~gwlarson/papers/egwr02/index.html">Picture Perfect RGB
2004 <        Rendering Using Spectral Prefiltering and Sharp Color Primaries</a>,''
2003 >        &quot;<a HREF="http://www.anyhere.com/gward/papers/egwr02/index.html">Picture Perfect RGB
2004 >        Rendering Using Spectral Prefiltering and Sharp Color Primaries</a>,&quot;
2005          Thirteenth Eurographics Workshop on Rendering (2002),
2006          P. Debevec and S. Gibson (Editors), June 2002.
2007      <li>Ward, Gregory,
2008 <        ``<a HREF="http://viz.cs.berkeley.edu/~gwlarson/papers/cic01.pdf">High Dynamic Range Imaging</a>,''
2008 >        &quot;<a HREF="http://www.anyhere.com/gward/papers/cic01.pdf">High Dynamic Range Imaging</a>,&quot;
2009          Proceedings of the Ninth Color Imaging Conference, November 2001.
2010      <li>Ward, Gregory and Maryann Simmons,
2011 <        ``<a HREF="http://viz.cs.berkeley.edu/~gwlarson/papers/tog99.pdf">
2011 >        &quot;<a HREF="http://www.anyhere.com/gward/papers/tog99.pdf">
2012          The Holodeck Ray Cache: An Interactive Rendering System for Global Illumination in Nondiffuse
2013 <        Environments</a>,'' ACM Transactions on Graphics, 18(4):361-98, October 1999.
2014 <    <li>Larson, G.W., ``<a HREF="http://viz.cs.berkeley.edu/~gwlarson/papers/ewp98.pdf">The Holodeck: A Parallel
2015 <        Ray-caching Rendering System</a>,'' Proceedings of the Second
2013 >        Environments</a>,&quot; ACM Transactions on Graphics, 18(4):361-98, October 1999.
2014 >    <li>Larson, G.W., &quot;<a HREF="http://www.anyhere.com/gward/papers/ewp98.pdf">The Holodeck: A Parallel
2015 >        Ray-caching Rendering System</a>,&quot; Proceedings of the Second
2016          Eurographics Workshop on Parallel Graphics and Visualisation,
2017          September 1998.
2018      <li>Larson, G.W. and R.A. Shakespeare,
# Line 1848 | Line 2020 | Ecole  Polytechnique  Federale de Lausanne (EPFL Unive
2020          the Art and Science of Lighting Visualization</em></a>,
2021          Morgan Kaufmann Publishers, 1998.
2022      <li>Larson, G.W., H. Rushmeier, C. Piatko,
2023 <        ``<a HREF="http://radsite.lbl.gov/radiance/papers/lbnl39882/tonemap.pdf">A Visibility
2023 >        &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/lbnl39882/tonemap.pdf">A Visibility
2024          Matching Tone Reproduction Operator for
2025 <        High Dynamic Range Scenes</a>,'' LBNL Technical Report 39882,
2025 >        High Dynamic Range Scenes</a>,&quot; LBNL Technical Report 39882,
2026          January 1997.
2027 <    <li>Ward, G., ``<a HREF="http://radsite.lbl.gov/radiance/papers/erw95.1/paper.html">Making
2028 <        Global Illumination User-Friendly</a>,'' Sixth
2027 >    <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw95.1/paper.html">Making
2028 >        Global Illumination User-Friendly</a>,&quot; Sixth
2029          Eurographics Workshop on Rendering, Springer-Verlag,
2030          Dublin, Ireland, June 1995.</li>
2031      <li>Rushmeier, H., G. Ward, C. Piatko, P. Sanders, B. Rust,
2032 <        ``<a HREF="http://radsite.lbl.gov/mgf/compare.html">
2032 >        &quot;<a HREF="http://radsite.lbl.gov/mgf/compare.html">
2033          Comparing Real and Synthetic Images: Some Ideas about
2034 <        Metrics</a>,'' Sixth Eurographics Workshop on Rendering,
2034 >        Metrics</a>,&quot; Sixth Eurographics Workshop on Rendering,
2035          Springer-Verlag, Dublin, Ireland, June 1995.</li>
2036 <    <li>Ward, G., ``<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.1/paper.html">The RADIANCE
2037 <        Lighting Simulation and Rendering System</a>,'' <em>Computer
2036 >    <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.1/paper.html">The RADIANCE
2037 >        Lighting Simulation and Rendering System</a>,&quot; <em>Computer
2038          Graphics</em>, July 1994.</li>
2039 <    <li>Rushmeier, H., G. Ward, ``<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.2/energy.html">Energy
2040 <        Preserving Non-Linear Filters</a>,'' <em>Computer
2039 >    <li>Rushmeier, H., G. Ward, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.2/energy.html">Energy
2040 >        Preserving Non-Linear Filters</a>,&quot; <em>Computer
2041          Graphics</em>, July 1994.</li>
2042 <    <li>Ward, G., ``A Contrast-Based Scalefactor for Luminance
2043 <        Display,'' <em>Graphics Gems IV</em>, Edited by Paul Heckbert,
2042 >    <li>Ward, G., &quot;A Contrast-Based Scalefactor for Luminance
2043 >        Display,&quot; <em>Graphics Gems IV</em>, Edited by Paul Heckbert,
2044          Academic Press 1994.</li>
2045 <    <li>Ward, G., ``<a HREF="http://radsite.lbl.gov/radiance/papers/sg92/paper.html">Measuring and
2046 <        Modeling Anisotropic Reflection</a>,'' <em>Computer
2045 >    <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg92/paper.html">Measuring and
2046 >        Modeling Anisotropic Reflection</a>,&quot; <em>Computer
2047          Graphics</em>, Vol. 26, No. 2, July 1992. </li>
2048 <    <li>Ward, G., P. Heckbert, ``<a HREF="http://radsite.lbl.gov/radiance/papers/erw92/paper.html">Irradiance
2049 <        Gradients</a>,'' Third Annual Eurographics Workshop on
2048 >    <li>Ward, G., P. Heckbert, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw92/paper.html">Irradiance
2049 >        Gradients</a>,&quot; Third Annual Eurographics Workshop on
2050          Rendering, Springer-Verlag, May 1992. </li>
2051 <    <li>Ward, G., ``<a HREF="http://radsite.lbl.gov/radiance/papers/erw91/erw91.html">Adaptive Shadow
2052 <        Testing for Ray Tracing</a>'' Photorealistic Rendering in
2051 >    <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw91/erw91.html">Adaptive Shadow
2052 >        Testing for Ray Tracing</a>&quot; Photorealistic Rendering in
2053          Computer Graphics, proceedings of 1991 Eurographics
2054          Rendering Workshop, edited by P. Brunet and F.W. Jansen,
2055          Springer-Verlag. </li>
2056 <    <li>Ward, G., ``Visualization,'' <em>Lighting Design and
2056 >    <li>Ward, G., &quot;Visualization,&quot; <em>Lighting Design and
2057          Application</em>, Vol. 20, No. 6, June 1990. </li>
2058 <    <li>Ward, G., F. Rubinstein, R. Clear, ``<a HREF="http://radsite.lbl.gov/radiance/papers/sg88/paper.html">A Ray Tracing Solution for
2059 <        Diffuse Interreflection</a>,'' <em>Computer Graphics</em>,
2058 >    <li>Ward, G., F. Rubinstein, R. Clear, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg88/paper.html">A Ray Tracing Solution for
2059 >        Diffuse Interreflection</a>,&quot; <em>Computer Graphics</em>,
2060          Vol. 22, No. 4, August 1988. </li>
2061 <    <li>Ward, G., F. Rubinstein, ``A New Technique for Computer
2062 <        Simulation of Illuminated Spaces,'' <em>Journal of the
2061 >    <li>Ward, G., F. Rubinstein, &quot;A New Technique for Computer
2062 >        Simulation of Illuminated Spaces,&quot; <em>Journal of the
2063          Illuminating Engineering Society</em>, Vol. 17, No. 1,
2064          Winter 1988. </li>
2065   </ul>
# Line 1925 | Line 2097 | SURFACES       MATERIALS       TEXTURES        PATTERNS        MIXTURES</h4>
2097                  <a HREF="#Plasdata">Plasdata</a>
2098                  <a HREF="#Metdata">Metdata</a>
2099                  <a HREF="#Transdata">Transdata</a>
2100 +                <a HREF="#BSDF">BSDF</a>
2101                  <a HREF="#Antimatter">Antimatter</a>
2102                                  
2103   </pre>

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines