--- ray/doc/ray.html 2010/03/12 18:43:30 1.9 +++ ray/doc/ray.html 2018/06/26 14:42:18 1.26 @@ -1,7 +1,8 @@ + -The RADIANCE 4.0 Synthetic Imaging System +The RADIANCE 5.2 Synthetic Imaging System @@ -9,7 +10,7 @@ The RADIANCE 4.0 Synthetic Imaging System

-The RADIANCE 4.0 Synthetic Imaging System +The RADIANCE 5.2 Synthetic Imaging System

@@ -797,7 +798,8 @@ unless the line integrals consider enclosed geometry.

Trans2 is the anisotropic version of trans. - The string arguments are the same as for plastic2, and the real arguments are the same as for trans but with an additional roughness value. + The string arguments are the same as for plastic2, + and the real arguments are the same as for trans but with an additional roughness value.
         mod trans2 id
@@ -809,6 +811,27 @@ unless the line integrals consider enclosed geometry.
 

+ + Ashik2 + + +
+ Ashik2 is the anisotropic reflectance model by Ashikhmin & Shirley. + The string arguments are the same as for plastic2, but the real + arguments have additional flexibility to specify the specular color. + Also, rather than roughness, specular power is used, which has no + physical meaning other than larger numbers are equivalent to a smoother + surface. +
+	mod ashik2 id
+	4+ ux uy uz funcfile transform
+	0
+	8 dred dgrn dblu sred sgrn sblu u-power v-power
+
+ +

+ +

Dielectric @@ -1053,6 +1076,116 @@ unless the line integrals consider enclosed geometry.

+ + BSDF + + +
+ The BSDF material type loads an XML (eXtensible Markup Language) + file describing a bidirectional scattering distribution function. + Real arguments to this material may define additional + diffuse components that augment the BSDF data. + String arguments are used to define thickness for proxied + surfaces and the "up" orientation for the material. + +
+	mod BSDF id
+	6+ thick BSDFfile ux uy uz funcfile transform
+	0
+	0|3|6|9
+		rfdif gfdif bfdif
+		rbdif gbdif bbdif
+		rtdif gtdif btdif
+
+ +

+ The first string argument is a "thickness" parameter that may be used + to hide detail geometry being proxied by an aggregate BSDF material. + If a view or shadow ray hits a BSDF proxy with non-zero thickness, + it will pass directly through as if the surface were not there. + Similar to the illum type, this permits direct viewing and + shadow testing of complex geometry. + The BSDF is used when a scattered (indirect) ray hits the surface, + and any transmitted sample rays will be offset by the thickness amount + to avoid the hidden geometry and gather samples from the other side. + In this manner, BSDF surfaces can improve the results for indirect + scattering from complex systems without sacrificing appearance or + shadow accuracy. + If the BSDF has transmission and back-side reflection data, + a parallel BSDF surface may be + placed slightly less than the given thickness away from the front surface + to enclose the complex geometry on both sides. + The sign of the thickness is important, as it indicates + whether the proxied geometry is behind the BSDF + surface (when thickness is positive) or in front (when + thickness is negative). +

+ The second string argument is the name of the BSDF file, + which is found in the usual auxiliary locations. The + following three string parameters name variables for an + "up" vector, which together with the surface + normal, define the local coordinate system that orients the + BSDF. These variables, along with the thickness, are defined + in a function file given as the next string argument. An + optional transform is used to scale the thickness and + reorient the up vector. +

+ If no real arguments are given, the BSDF is used by itself + to determine reflection and transmission. If there are at + least 3 real arguments, the first triplet is an additional + diffuse reflectance for the front side. At least 6 real + arguments adds diffuse reflectance to the rear side of the + surface. If there are 9 real arguments, the final triplet + will be taken as an additional diffuse transmittance. All + diffuse components as well as the non-diffuse transmission + are modified by patterns applied to this material. The + non-diffuse reflection from either side are unaffected. + Textures perturb the effective surface normal in the usual + way. +

+ The surface normal of this type is not altered to face the + incoming ray, so the front and back BSDF reflections may + differ. (Transmission is identical front-to-back by physical + law.) If back visibility is turned off during rendering and + there is no transmission or back-side reflection, only then + the surface will be invisible from behind. Unlike other + data-driven material types, the BSDF type is fully supported + and all parts of the distribution are properly sampled. +

+ +

+ + aBSDF + + +
+ The aBSDF material is identical to the BSDF type with two + important differences. First, proxy geometry is not + supported, so there is no thickness parameter. Second, an + aBSDF is assumed to have some specular through component + (the ’a’ stands for "aperture"), + which is treated specially during the direct calculation + and when viewing the material. Based on the BSDF data, the + coefficient of specular transmission is determined and used + for modifying unscattered shadow and view rays. + +
+	mod aBSDF id
+	5+ BSDFfile ux uy uz funcfile transform
+	0
+	0|3|6|9
+	     rfdif gfdif bfdif
+	     rbdif gbdif bbdif
+	     rtdif gtdif btdif
+
+ +

+ If a material has no specular transmitted component, it is + much better to use the BSDF type with a zero thickness + than to use aBSDF. +

+ +

Antimatter @@ -1336,6 +1469,7 @@ or: A mixture is a blend of one or more materials or textures and patterns. +Blended materials should not be light source types or virtual source types. The basic types are given below.

@@ -1408,7 +1542,6 @@ A mixfunc mixes two modifiers procedurally. It i arguments, the red, green and blue values corresponding to the pixel at (u,v). -

@@ -1710,16 +1843,10 @@ Pictures may be displayed directly under X11 using the or converted a standard image format using one of the following translators: