| 2 |
|
<!-- RCSid $Id$ --> |
| 3 |
|
<head> |
| 4 |
|
<title> |
| 5 |
< |
The RADIANCE 5.0 Synthetic Imaging System |
| 5 |
> |
The RADIANCE 5.4 Synthetic Imaging System |
| 6 |
|
</title> |
| 7 |
|
</head> |
| 8 |
|
<body> |
| 10 |
|
<p> |
| 11 |
|
|
| 12 |
|
<h1> |
| 13 |
< |
The RADIANCE 5.0 Synthetic Imaging System |
| 13 |
> |
The RADIANCE 5.4 Synthetic Imaging System |
| 14 |
|
</h1> |
| 15 |
|
|
| 16 |
|
<p> |
| 798 |
|
|
| 799 |
|
<dd> |
| 800 |
|
Trans2 is the anisotropic version of <a HREF="#Trans">trans</a>. |
| 801 |
< |
The string arguments are the same as for plastic2, and the real arguments are the same as for trans but with an additional roughness value. |
| 801 |
> |
The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>, |
| 802 |
> |
and the real arguments are the same as for trans but with an additional roughness value. |
| 803 |
|
|
| 804 |
|
<pre> |
| 805 |
|
mod trans2 id |
| 811 |
|
<p> |
| 812 |
|
|
| 813 |
|
<dt> |
| 814 |
+ |
<a NAME="Ashik2"> |
| 815 |
+ |
<b>Ashik2</b> |
| 816 |
+ |
</a> |
| 817 |
+ |
|
| 818 |
+ |
<dd> |
| 819 |
+ |
Ashik2 is the anisotropic reflectance model by Ashikhmin & Shirley. |
| 820 |
+ |
The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>, but the real |
| 821 |
+ |
arguments have additional flexibility to specify the specular color. |
| 822 |
+ |
Also, rather than roughness, specular power is used, which has no |
| 823 |
+ |
physical meaning other than larger numbers are equivalent to a smoother |
| 824 |
+ |
surface. |
| 825 |
+ |
<pre> |
| 826 |
+ |
mod ashik2 id |
| 827 |
+ |
4+ ux uy uz funcfile transform |
| 828 |
+ |
0 |
| 829 |
+ |
8 dred dgrn dblu sred sgrn sblu u-power v-power |
| 830 |
+ |
</pre> |
| 831 |
+ |
|
| 832 |
+ |
<p> |
| 833 |
+ |
|
| 834 |
+ |
<dt> |
| 835 |
|
<a NAME="Dielectric"> |
| 836 |
|
<b>Dielectric</b> |
| 837 |
|
</a> |
| 1154 |
|
<p> |
| 1155 |
|
|
| 1156 |
|
<dt> |
| 1157 |
+ |
<a NAME="aBSDF"> |
| 1158 |
+ |
<b>aBSDF</b> |
| 1159 |
+ |
</a> |
| 1160 |
+ |
|
| 1161 |
+ |
<dd> |
| 1162 |
+ |
The aBSDF material is identical to the BSDF type with two |
| 1163 |
+ |
important differences. First, proxy geometry is not |
| 1164 |
+ |
supported, so there is no thickness parameter. Second, an |
| 1165 |
+ |
aBSDF is assumed to have some specular through component |
| 1166 |
+ |
(the ’a’ stands for "aperture"), |
| 1167 |
+ |
which is treated specially during the direct calculation |
| 1168 |
+ |
and when viewing the material. Based on the BSDF data, the |
| 1169 |
+ |
coefficient of specular transmission is determined and used |
| 1170 |
+ |
for modifying unscattered shadow and view rays. |
| 1171 |
+ |
|
| 1172 |
+ |
<pre> |
| 1173 |
+ |
mod aBSDF id |
| 1174 |
+ |
5+ BSDFfile ux uy uz funcfile transform |
| 1175 |
+ |
0 |
| 1176 |
+ |
0|3|6|9 |
| 1177 |
+ |
rfdif gfdif bfdif |
| 1178 |
+ |
rbdif gbdif bbdif |
| 1179 |
+ |
rtdif gtdif btdif |
| 1180 |
+ |
</pre> |
| 1181 |
+ |
|
| 1182 |
+ |
<p> |
| 1183 |
+ |
If a material has no specular transmitted component, it is |
| 1184 |
+ |
much better to use the BSDF type with a zero thickness |
| 1185 |
+ |
than to use aBSDF. |
| 1186 |
+ |
<p> |
| 1187 |
+ |
|
| 1188 |
+ |
<dt> |
| 1189 |
|
<a NAME="Antimatter"> |
| 1190 |
|
<b>Antimatter</b> |
| 1191 |
|
</a> |
| 1469 |
|
</h4> |
| 1470 |
|
|
| 1471 |
|
A mixture is a blend of one or more materials or textures and patterns. |
| 1472 |
+ |
Blended materials should not be light source types or virtual source types. |
| 1473 |
|
The basic types are given below. |
| 1474 |
|
|
| 1475 |
|
<p> |
| 1542 |
|
arguments, the red, green and blue values |
| 1543 |
|
corresponding to the pixel at (u,v). |
| 1544 |
|
|
| 1490 |
– |
</dl> |
| 1545 |
|
<p> |
| 1546 |
|
|
| 1547 |
|
<dt> |
| 1945 |
|
</h2> |
| 1946 |
|
<p> |
| 1947 |
|
<ul> |
| 1948 |
+ |
<li>Wang, Taoning, Gregory Ward, Eleanor Lee, |
| 1949 |
+ |
"<a href="https://authors.elsevier.com/a/1XQ0a1M7zGwT7v">Efficient |
| 1950 |
+ |
modeling of optically-complex, non-coplanar exterior shading: |
| 1951 |
+ |
Validation of matrix algebraic methods</a>" |
| 1952 |
+ |
<em>Energy & Buildings</em>, vol. 174, pp. 464-83, Sept. 2018. |
| 1953 |
+ |
<li>Lee, Eleanor S., David Geisler-Moroder, Gregory Ward, |
| 1954 |
+ |
"<a href="https://eta.lbl.gov/sites/default/files/publications/solar_energy.pdf">Modeling |
| 1955 |
+ |
the direct sun component in buildings using matrix |
| 1956 |
+ |
algebraic approaches: Methods and |
| 1957 |
+ |
validation</a>," <em>Solar Energy</em>, |
| 1958 |
+ |
vol. 160, 15 January 2018, pp 380-395. |
| 1959 |
+ |
<li>Narain, Rahul, Rachel A. Albert, Abdullah Bulbul, |
| 1960 |
+ |
Gregory J. Ward, Marty Banks, James F. O'Brien, |
| 1961 |
+ |
"<a href="http://graphics.berkeley.edu/papers/Narain-OPI-2015-08/index.html">Optimal |
| 1962 |
+ |
Presentation of Imagery with Focus |
| 1963 |
+ |
Cues on Multi-Plane Displays</a>," |
| 1964 |
+ |
<em>SIGGRAPH 2015</em>. |
| 1965 |
+ |
<li>Ward, Greg, Murat Kurt, and Nicolas Bonneel, |
| 1966 |
+ |
"<a href="papers/WMAM14_Tensor_Tree_Representation.pdf">Reducing |
| 1967 |
+ |
Anisotropic BSDF Measurement to Common Practice</a>," |
| 1968 |
+ |
<em>Workshop on Material Appearance Modeling</em>, 2014. |
| 1969 |
+ |
<li>Banks, Martin, Abdullah Bulbul, Rachel Albert, Rahul Narain, |
| 1970 |
+ |
James F. O'Brien, Gregory Ward, |
| 1971 |
+ |
"<a href="http://graphics.berkeley.edu/papers/Banks-TPO-2014-05/index.html">The |
| 1972 |
+ |
Perception of Surface Material from Disparity and Focus Cues</a>," |
| 1973 |
+ |
<em>VSS 2014</em>. |
| 1974 |
|
<li>McNeil, A., C.J. Jonsson, D. Appelfeld, G. Ward, E.S. Lee, |
| 1975 |
|
"<a href="http://gaia.lbl.gov/btech/papers/4414.pdf"> |
| 1976 |
|
A validation of a ray-tracing tool used to generate |