ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/ray.html
Revision: 1.41
Committed: Thu May 29 16:42:28 2025 UTC (2 weeks, 6 days ago) by greg
Content type: text/html
Branch: MAIN
Changes since 1.40: +21 -1 lines
Log Message:
fix: Updated behavior of "mirror" type to handle indirect transmission, thanks to Jon Sargent

File Contents

# Content
1 <html>
2 <!-- RCSid $Id: ray.html,v 1.40 2024/12/13 18:17:17 greg Exp $ -->
3 <head>
4 <title>
5 The RADIANCE 6.0 Synthetic Imaging System
6 </title>
7 </head>
8 <body>
9
10 <p>
11
12 <h1>
13 The RADIANCE 6.0 Synthetic Imaging System
14 </h1>
15
16 <p>
17
18 Building Technologies Program<br>
19 Lawrence Berkeley National Laboratory<br>
20 1 Cyclotron Rd., 90-3111<br>
21 Berkeley, CA 94720<br>
22 <a HREF="http://radsite.lbl.gov/radiance"</a>
23 http://radsite.lbl.gov/radiance<br>
24
25 <p>
26 <hr>
27
28 <h2>
29 <a NAME="Overview">Overview</a>
30 </h2>
31 <ol>
32 <li><a HREF="#Intro">Introduction</a><!P>
33 <li><a HREF="#Scene">Scene Description</a><!P>
34 <ol>
35 <li><a HREF="#Primitive"> Primitive Types</a>
36 <ol>
37 <li><a HREF="#Surfaces">Surfaces</a>
38 <li><a HREF="#Materials">Materials</a>
39 <li><a HREF="#Textures">Textures</a>
40 <li><a HREF="#Patterns">Patterns</a>
41 <li><a HREF="#Mixtures">Mixtures</a>
42 </ol><!P>
43 <li><a HREF="#Auxiliary">Auxiliary Files</a>
44 <ol>
45 <li><a HREF="#Function">Function Files</a>
46 <li><a HREF="#Data">Data Files</a>
47 <li><a HREF="#Font">Font Files</a>
48 </ol><!P>
49 <li><a HREF="#Generators">Generators</a>
50 </ol><!P>
51 <li><a HREF="#Image">Image Generation</a><!P>
52 <li><a HREF="#License">License</a><!P>
53 <li><a HREF="#Ack">Acknowledgements</a><!P>
54 <li><a HREF="#Ref">References</a><!P>
55 <li><a HREF="#Index">Types Index</a><!P>
56 </ol>
57
58 <p>
59 <hr>
60
61 <h2>
62 <a NAME="Intro">1. Introduction</a>
63 </h2>
64
65 RADIANCE was developed as a research tool for predicting
66 the distribution of visible radiation in illuminated spaces.
67 It takes as input a three-dimensional geometric model
68 of the physical environment, and produces a map of
69 spectral radiance values in a color image.
70 The technique of ray-tracing follows light backwards
71 from the image plane to the source(s).
72 Because it can produce realistic images from a
73 simple description, RADIANCE has a wide range of applications
74 in graphic arts, lighting design,
75 computer-aided engineering and architecture.
76
77 <p>
78 <img SRC="diagram1.gif">
79 <p>
80 Figure 1
81 <p>
82 The diagram in Figure 1 shows the flow between programs (boxes) and data
83 (ovals).
84 The central program is <i>rpict</i>, which produces a picture from a scene
85 description.
86 <i>Rvu</i> is a variation of rpict that computes and displays images
87 interactively, and rtrace computes single ray values.
88 Other programs (not shown) connect many of these elements together,
89 such as the executive programs
90 <i>rad</i>
91 and
92 <i>ranimate</i>,
93 the interactive rendering program
94 <i>rholo</i>,
95 and the animation program
96 <i>ranimove</i>.
97 The program
98 <i>obj2mesh</i>
99 acts as both a converter and scene compiler, converting a Wavefront .OBJ
100 file into a compiled mesh octree for efficient rendering.
101
102 <p>
103 A scene description file lists the surfaces and materials
104 that make up a specific environment.
105 The current surface types are spheres, polygons, cones, and cylinders.
106 There is also a composite surface type, called mesh, and a pseudosurface
107 type, called instance, which facilitates very complex geometries.
108 Surfaces can be made from materials such as plastic, metal, and glass.
109 Light sources can be distant disks as well as local spheres, disks
110 and polygons.
111
112 <p>
113 From a three-dimensional scene description and a specified view,
114 <i>rpict</i> produces a two-dimensional image.
115 A picture file is a compressed binary representation of the
116 pixels in the image.
117 This picture can be scaled in size and brightness,
118 anti-aliased, and sent to a graphics output device.
119
120 <p>
121 A header in each picture file lists the program(s)
122 and parameters that produced it.
123 This is useful for identifying a picture without having to display it.
124 The information can be read by the program <i>getinfo</i>.
125
126 <p>
127 <hr>
128
129 <h2>
130 <a name="Scene">2. Scene Description</a>
131 </h2>
132
133 A scene description file represents a three-dimensional physical environment in Cartesian (rectilinear) world coordinates.
134 It is stored as ASCII text, with the following basic format:
135
136 <pre>
137 # comment
138
139 modifier type identifier
140 n S1 S2 &quot;S 3&quot; .. Sn
141 0
142 m R1 R2 R3 .. Rm
143
144 modifier alias identifier reference
145
146 ! command
147
148 ...
149 </pre>
150
151 <p>
152
153 A comment line begins with a pound sign, `#'.
154
155 <p>
156 The <a NAME="scene_desc">scene description primitives</a>
157 all have the same general format, and can be either surfaces or modifiers.
158 A primitive has a modifier, a type, and an identifier.
159 <p>
160 A <a NAME="modifier"><b>modifier</b></a> is either the
161 identifier of a previously defined primitive, or &quot;void&quot;.
162 <br>
163 [ The most recent definition of a modifier is the
164 one used, and later definitions do not cause relinking
165 of loaded primitives.
166 Thus, the same identifier may be used repeatedly,
167 and each new definition will apply to the primitives following it. ]
168 <p>
169 An <a NAME="identifier"><b>identifier</b></a> can be any string
170 (i.e., any sequence of non-white characters).
171 <p>
172 The arguments associated with a primitive can be strings or real numbers.
173 <ul>
174 <li> The first integer following the identifier is the number of <b>string arguments</b>,
175 and it is followed by the arguments themselves (separated by white space or enclosed in quotes).
176 <li> The next integer is the number of integer arguments, and is followed by the <b>integer arguments</b>.
177 (There are currently no primitives that use them, however.)
178 <li> The next integer is the real argument count, and it is followed by the <b>real arguments</b>.
179 </ul>
180
181 <p>
182 An <a NAME="alias"><b>alias</b></a> gets its type and arguments from
183 a previously defined primitive.
184 This is useful when the same material is
185 used with a different modifier, or as a convenient naming mechanism.
186 The reserved modifier name &quot;inherit&quot; may be used to specificy that
187 an alias will inherit its modifier from the original.
188 Surfaces cannot be aliased.
189
190 <p>
191 A line beginning with an exclamation point, `!',
192 is interpreted as a command.
193 It is executed by the shell, and its output is read as input to the program.
194 The command must not try to read from its standard input, or confusion
195 will result.
196 A command may be continued over multiple lines using a
197 backslash, `\', to escape the newline.
198
199 <p>
200 White space is generally ignored, except as a separator.
201 The exception is the newline character after a command or comment.
202 Commands, comments and primitives may appear in any
203 combination, so long as they are not intermingled.
204
205 <p>
206 <hr>
207
208 <h3>
209 <a NAME="Primitive">2.1. Primitive Types</a>
210 </h3>
211
212 Primitives can be <a HREF="#Surfaces">surfaces</a>,
213 <a HREF="#Materials">materials</a>,
214 <a HREF="#Textures">textures</a> or
215 <a HREF="#Patterns">patterns</a>.
216 Modifiers can be <a HREF="#Materials">materials</a>,
217 <a HREF="#Mixtures">mixtures</a>,
218 <a HREF="#Textures">textures</a> or <a HREF="#Patterns">patterns</a>.
219 Simple surfaces must have one material in their modifier list.
220
221 <p>
222 <hr>
223
224 <h4>
225 <a NAME="Surfaces">2.1.1. Surfaces</a>
226 </h4>
227 <dl>
228
229 A scene description will consist mostly of surfaces.
230 The basic types are given below.
231
232 <p>
233
234 <dt>
235 <a NAME="Source">
236 <b>Source </b>
237 </a>
238 <dd>
239 A source is not really a surface, but a solid angle.
240 It is used for specifying light sources that are very distant.
241 The direction to the center of the source and the number of degrees subtended by its disk are given as follows:
242
243 <pre>
244 mod source id
245 0
246 0
247 4 xdir ydir zdir angle
248 </pre>
249
250 <p>
251
252 <dt>
253 <a NAME="Sphere">
254 <b>Sphere</b>
255 </a>
256 <dd>
257 A sphere is given by its center and radius:
258
259 <pre>
260 mod sphere id
261 0
262 0
263 4 xcent ycent zcent radius
264 </pre>
265
266 <p>
267
268 <dt>
269 <a NAME="Bubble">
270 <b>Bubble</b>
271 </a>
272
273 <dd>
274 A bubble is simply a sphere whose surface normal points inward.
275
276 <p>
277
278 <dt>
279 <a NAME="Polygon">
280 <b>Polygon</b>
281 </a>
282 <dd>
283 A polygon is given by a list of three-dimensional vertices,
284 which are ordered counter-clockwise as viewed from the
285 front side (into the surface normal).
286 The last vertex is automatically connected to the first.
287 Holes are represented in polygons as interior vertices
288 connected to the outer perimeter by coincident edges (seams).
289
290 <pre>
291 mod polygon id
292 0
293 0
294 3n
295 x1 y1 z1
296 x2 y2 z2
297 ...
298 xn yn zn
299 </pre>
300
301 <p>
302
303 <dt>
304 <a NAME="Cone">
305 <b>Cone</b>
306 </a>
307 <dd>
308 A cone is a megaphone-shaped object.
309 It is truncated by two planes perpendicular to its axis,
310 and one of its ends may come to a point.
311 It is given as two axis endpoints, and the starting and ending radii:
312
313 <pre>
314 mod cone id
315 0
316 0
317 8
318 x0 y0 z0
319 x1 y1 z1
320 r0 r1
321 </pre>
322
323 <p>
324
325 <dt>
326 <a NAME="Cup">
327 <b>Cup</b>
328 </a>
329 <dd>
330 A cup is an inverted <a HREF="#Cone">cone</a> (i.e., has an
331 inward surface normal).
332
333 <p>
334
335 <dt>
336 <a NAME="Cylinder">
337 <b>Cylinder</b>
338 </a>
339 <dd>
340 A cylinder is like a <a HREF="#Cone">cone</a>, but its
341 starting and ending radii are equal.
342
343 <pre>
344 mod cylinder id
345 0
346 0
347 7
348 x0 y0 z0
349 x1 y1 z1
350 rad
351 </pre>
352
353 <p>
354
355 <dt>
356 <a NAME="Tube">
357 <b>Tube</b>
358 </a>
359 <dd>
360 A tube is an inverted <a HREF="#Cylinder">cylinder</a>.
361
362 <p>
363
364 <dt>
365 <a NAME="Ring">
366 <b>Ring</b>
367 </a>
368 <dd>
369 A ring is a circular disk given by its center,
370 surface normal, and inner and outer radii:
371
372 <pre>
373 mod ring id
374 0
375 0
376 8
377 xcent ycent zcent
378 xdir ydir zdir
379 r0 r1
380 </pre>
381
382 <p>
383
384 <dt>
385 <a NAME="Instance">
386 <b>Instance</b>
387 </a>
388 <dd>
389 An instance is a compound surface, given
390 by the contents of an octree file (created by oconv).
391
392 <pre>
393 mod instance id
394 1+ octree transform
395 0
396 0
397 </pre>
398
399 <p>
400 If the modifier is &quot;void&quot;, then surfaces will
401 use the modifiers given in the original description.
402 Otherwise, the modifier specified is used in their place.
403 The transform moves the octree to the desired location in the scene.
404 Multiple instances using the same octree take
405 little extra memory, hence very complex
406 descriptions can be rendered using this primitive.
407
408 <p>
409 There are a number of important limitations to be aware of
410 when using instances.
411 First, the scene description used to generate the octree must
412 stand on its own, without referring to modifiers in the
413 parent description.
414 This is necessary for oconv to create the octree.
415 Second, light sources in the octree will not be
416 incorporated correctly in the calculation,
417 and they are not recommended.
418 Finally, there is no advantage (other than
419 convenience) to using a single instance of an octree,
420 or an octree containing only a few surfaces.
421 An <a HREF="../man_html/xform.1.html">xform</a> command
422 on the subordinate description is prefered in such cases.
423 </dl>
424
425 <p>
426
427 <dt>
428 <a NAME="Mesh">
429 <b>Mesh</b>
430 </a>
431 <dd>
432 A mesh is a compound surface, made up of many triangles and
433 an octree data structure to accelerate ray intersection.
434 It is typically converted from a Wavefront .OBJ file using the
435 <i>obj2mesh</i> program.
436
437 <pre>
438 mod mesh id
439 1+ meshfile transform
440 0
441 0
442 </pre>
443
444 <p>
445
446 If the modifier is &quot;void&quot;, then surfaces will
447 use the modifiers given in the original mesh description.
448 Otherwise, the modifier specified is used in their place.
449 The transform moves the mesh to the desired location in the scene.
450 Multiple instances using the same meshfile take little extra memory,
451 and the compiled mesh itself takes much less space than individual
452 polygons would.
453 In the case of an unsmoothed mesh, using the mesh primitive reduces
454 memory requirements by a factor of 30 relative to individual triangles.
455 If a mesh has smoothed surfaces, we save a factor of 50 or more,
456 permitting very detailed geometries that would otherwise exhaust the
457 available memory.
458 In addition, the mesh primitive can have associated (u,v) coordinates
459 for pattern and texture mapping.
460 These are made available to function files via the Lu and Lv variables.
461
462 </dl>
463
464 <p>
465 <hr>
466
467 <h4>
468 <a NAME="Materials">2.1.2. Materials</a>
469 </h4>
470
471 A material defines the way light interacts with a surface. The basic types are given below.
472
473 <p>
474
475 <dl>
476
477 <dt>
478 <a NAME="Light">
479 <b>Light</b>
480 </a>
481 <dd>
482 Light is the basic material for self-luminous surfaces (i.e.,
483 light sources).
484 In addition to the <a HREF="#Source">source</a> surface type,
485 <a HREF="#Sphere">spheres</a>,
486 discs (<a HREF="#Ring">rings</a> with zero inner radius),
487 <a HREF="#Cylinder">cylinders</a> (provided they are long enough), and <a HREF="#Polygon">polygons</a> can act as light sources.
488 Polygons work best when they are rectangular.
489 Cones cannot be used at this time.
490 A pattern may be used to specify a light output distribution.
491 Light is defined simply as a RGB radiance value (watts/steradian/m2):
492
493 <pre>
494 mod light id
495 0
496 0
497 3 red green blue
498 </pre>
499
500 <p>
501
502 <dt>
503 <a NAME="Illum">
504 <b>Illum</b>
505 </a>
506
507 <dd>
508 Illum is used for secondary light sources with broad distributions.
509 A secondary light source is treated like any other light source, except when viewed directly.
510 It then acts like it is made of a different material (indicated by
511 the string argument), or becomes invisible (if no string argument is given,
512 or the argument is &quot;void&quot;).
513 Secondary sources are useful when modeling windows or brightly illuminated surfaces.
514
515 <pre>
516 mod illum id
517 1 material
518 0
519 3 red green blue
520 </pre>
521
522 <p>
523
524 <dt>
525 <a NAME="Glow">
526 <b>Glow</b>
527 </a>
528
529 <dd>
530 Glow is used for surfaces that are self-luminous, but limited in their effect.
531 In addition to the radiance value, a maximum radius for shadow testing is given:
532
533 <pre>
534 mod glow id
535 0
536 0
537 4 red green blue maxrad
538 </pre>
539
540 <p>
541 If maxrad is zero, then the surface will never be tested for shadow, although it may participate in an interreflection calculation.
542 If maxrad is negative, then the surface will never contribute to scene illumination.
543 Glow sources will never illuminate objects on the other side of an illum surface.
544 This provides a convenient way to illuminate local light fixture geometry without overlighting nearby objects.
545
546 <p>
547
548 <dt>
549 <a NAME="Spotlight">
550 <b>Spotlight</b>
551 </a>
552
553 <dd>
554 Spotlight is used for self-luminous surfaces having directed output.
555 As well as radiance, the full cone angle (in degrees) and orientation (output direction) vector are given.
556 The length of the orientation vector is the distance of the effective
557 focus behind the source center (i.e., the focal length).
558
559 <pre>
560 mod spotlight id
561 0
562 0
563 7 red green blue angle xdir ydir zdir
564 </pre>
565
566 <p>
567
568 <dt>
569 <a NAME="Mirror">
570 <b>Mirror</b>
571 </a>
572
573 <dd>
574 Mirror is used for planar surfaces that produce virtual source reflections.
575 This material should be used sparingly, as it may cause the light source calculation to blow up if it is applied to many small surfaces.
576 This material is only supported for flat surfaces such as <a HREF="#Polygon">polygons</a> and <a HREF="#Ring">rings</a>.
577 The arguments are simply the RGB reflectance values, which should be between 0 and 1.
578 An optional string argument may be used like the illum type to specify a different material to be used for shading non-source rays.
579 If this alternate material is given as &quot;void&quot;, then the mirror surface will be invisible.
580 This is only appropriate if the surface hides other (more detailed) geometry with the same overall reflectance.
581
582 <pre>
583 mod mirror id
584 1 material
585 0
586 3 red green blue
587 </pre>
588
589 While alternate materials that are reflective will appear as normal,
590 indirect rays will use the mirror's reflectance rather than the
591 alternate type.
592 Transmitting materials are an exception, where both transmission and
593 reflection will use the alternate type for all rays not specifically
594 targeting virtual light sources.
595 Therefore, transmitting alternate types should only have pure specular
596 reflection if they reflect at all, to maintain a valid calculation.
597
598 <p>
599
600 The mirror material type reflects light sources only from the front side
601 of a surface, regardless of any alternate material.
602 If virtual source generation is desired on both sides, two coincident
603 surfaces with opposite normal orientations may be employed to achieve
604 this effect.
605 The reflectance and alternate material type may be
606 different for the overlapped surfaces,
607 and the two sides will behave accordingly.
608
609 <p>
610
611 <dt>
612 <a NAME="Prism1">
613 <b>Prism1</b>
614 </a>
615
616 <dd>
617 The prism1 material is for general light redirection from prismatic glazings, generating virtual light sources.
618 It can only be used to modify a planar surface
619 (i.e., a <a HREF="#Polygon">polygon</a> or <a HREF="#Ring">disk</a>)
620 and should not result in either light concentration or scattering.
621 The new direction of the ray can be on either side of the material,
622 and the definitions must have the correct bidirectional properties to work properly with virtual light sources.
623 The arguments give the coefficient for the redirected light and its direction.
624
625 <pre>
626 mod prism1 id
627 5+ coef dx dy dz funcfile transform
628 0
629 n A1 A2 .. An
630 </pre>
631
632 <p>
633
634 The new direction variables dx, dy and dz need not produce a normalized vector.
635 For convenience, the variables DxA, DyA and DzA are defined as the normalized direction to the target light source.
636 See <a HREF="#Function">section 2.2.1</a> on function files for further information.
637
638 <p>
639
640 <dt>
641 <a NAME="Prism2">
642 <b>Prism2</b>
643 </a>
644
645 <dd>
646 The material prism2 is identical to <a HREF="#Prism1">prism1</a> except that it provides for two ray redirections rather than one.
647
648 <pre>
649 mod prism2 id
650 9+ coef1 dx1 dy1 dz1 coef2 dx2 dy2 dz2 funcfile transform
651 0
652 n A1 A2 .. An
653 </pre>
654
655 <p>
656
657 <dt>
658 <a NAME="Mist">
659 <b>Mist</b>
660 </a>
661
662 <dd>
663 Mist is a virtual material used to delineate a volume
664 of participating atmosphere.
665 A list of important light sources may be given, along with an
666 extinction coefficient, scattering albedo and scattering eccentricity
667 parameter.
668 The light sources named by the string argument list
669 will be tested for scattering within the volume.
670 Sources are identified by name, and virtual light sources may be indicated
671 by giving the relaying object followed by '&gt;' followed by the source, i.e:
672
673 <pre>
674 3 source1 mirror1&gt;source10 mirror2&gt;mirror1&gt;source3
675 </pre>
676
677 <p>
678 Normally, only one source is given per mist material, and there is an
679 upper limit of 32 to the total number of active scattering sources.
680 The extinction coefficient, if given, is added the the global
681 coefficient set on the command line.
682 Extinction is in units of 1/distance (distance based on the world coordinates),
683 and indicates the proportional loss of radiance over one unit distance.
684 The scattering albedo, if present, will override the global setting within
685 the volume.
686 An albedo of 0 0 0 means a perfectly absorbing medium, and an albedo of
687 1 1 1 means
688 a perfectly scattering medium (no absorption).
689 The scattering eccentricity parameter will likewise override the global
690 setting if it is present.
691 Scattering eccentricity indicates how much scattered light favors the
692 forward direction, as fit by the Henyey-Greenstein function:
693
694 <pre>
695 P(theta) = (1 - g*g) / (1 + g*g - 2*g*cos(theta))^1.5
696 </pre>
697
698 <p>
699
700 A perfectly isotropic scattering medium has a g parameter of 0, and
701 a highly directional material has a g parameter close to 1.
702 Fits to the g parameter may be found along with typical extinction
703 coefficients and scattering albedos for various atmospheres and
704 cloud types in USGS meteorological tables.
705 (A pattern will be applied to the extinction values.)
706
707 <pre>
708 mod mist id
709 N src1 src2 .. srcN
710 0
711 0|3|6|7 [ rext gext bext [ ralb galb balb [ g ] ] ]
712 </pre>
713
714 <p>
715
716 There are two usual uses of the mist type.
717 One is to surround a beam from a spotlight or laser so that it is
718 visible during rendering.
719 For this application, it is important to use a <a HREF="#Cone">cone</a>
720 (or <a HREF="#Cylinder">cylinder</a>) that
721 is long enough and wide enough to contain the important visible portion.
722 Light source photometry and intervening objects will have the desired
723 effect, and crossing beams will result in additive scattering.
724 For this application, it is best to leave off the real arguments, and
725 use the global rendering parameters to control the atmosphere.
726 The second application is to model clouds or other localized media.
727 Complex boundary geometry may be used to give shape to a uniform medium,
728 so long as the boundary encloses a proper volume.
729 Alternatively, a pattern may be used to set the line integral value
730 through the cloud for a ray entering or exiting a point in a given
731 direction.
732 For this application, it is best if cloud volumes do not overlap each other,
733 and opaque objects contained within them may not be illuminated correctly
734 unless the line integrals consider enclosed geometry.
735
736 <dt>
737 <a NAME="Plastic">
738 <b>Plastic</b>
739 </a>
740
741 <dd>
742 Plastic is a material with uncolored highlights.
743 It is given by its RGB reflectance, its fraction of specularity, and its roughness value.
744 Roughness is specified as the rms slope of surface facets.
745 A value of 0 corresponds to a perfectly smooth surface, and a value of 1 would be a very rough surface.
746 Specularity fractions greater than 0.1 and roughness values greater than 0.2 are not very realistic.
747 (A pattern modifying plastic will affect the material color.)
748
749 <pre>
750 mod plastic id
751 0
752 0
753 5 red green blue spec rough
754 </pre>
755
756 <p>
757
758 <dt>
759 <a NAME="Metal">
760 <b>Metal</b>
761 </a>
762
763 <dd>
764 Metal is similar to <a HREF="#Plastic">plastic</a>, but specular highlights are modified by the material color.
765 Specularity of metals is usually .9 or greater.
766 As for plastic, roughness values above .2 are uncommon.
767
768 <p>
769
770 <dt>
771 <a NAME="Trans">
772 <b>Trans</b>
773 </a>
774
775 <dd>
776 Trans is a translucent material, similar to <a HREF="#Plastic">plastic</a>.
777 The transmissivity is the fraction of penetrating light that travels all the way through the material.
778 The transmitted specular component is the fraction of transmitted light that is not diffusely scattered.
779 Transmitted and diffusely reflected light is modified by the material color.
780 Translucent objects are infinitely thin.
781
782 <pre>
783 mod trans id
784 0
785 0
786 7 red green blue spec rough trans tspec
787 </pre>
788
789 <p>
790
791 <dt>
792 <a NAME="Plastic2">
793 <b>Plastic2</b>
794 </a>
795
796 <dd>
797 Plastic2 is similar to <a HREF="#Plastic">plastic</a>, but with anisotropic roughness.
798 This means that highlights in the surface will appear elliptical rather than round.
799 The orientation of the anisotropy is determined by the unnormalized direction vector ux uy uz.
800 These three expressions (separated by white space) are evaluated in the context of the function file funcfile.
801 If no function file is required (i.e., no special variables or functions are required), a period (`.') may be given in its place.
802 (See the discussion of <a HREF="#Function">Function Files</a> in the Auxiliary Files section).
803 The urough value defines the roughness along the u vector given projected onto the surface.
804 The vrough value defines the roughness perpendicular to this vector.
805 Note that the highlight will be narrower in the direction of the smaller roughness value.
806 Roughness values of zero are not allowed for efficiency reasons since the behavior would be the same as regular plastic in that case.
807
808 <pre>
809 mod plastic2 id
810 4+ ux uy uz funcfile transform
811 0
812 6 red green blue spec urough vrough
813 </pre>
814
815 <p>
816
817 <dt>
818 <a NAME="Metal2">
819 <b>Metal2</b>
820 </a>
821
822 <dd>
823 Metal2 is the same as <a HREF="#Plastic2">plastic2</a>, except that the highlights are modified by the material color.
824
825 <p>
826
827 <dt>
828 <a NAME="Trans2">
829 <b>Trans2</b>
830 </a>
831
832 <dd>
833 Trans2 is the anisotropic version of <a HREF="#Trans">trans</a>.
834 The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>,
835 and the real arguments are the same as for trans but with an additional roughness value.
836
837 <pre>
838 mod trans2 id
839 4+ ux uy uz funcfile transform
840 0
841 8 red green blue spec urough vrough trans tspec
842 </pre>
843
844 <p>
845
846 <dt>
847 <a NAME="Ashik2">
848 <b>Ashik2</b>
849 </a>
850
851 <dd>
852 Ashik2 is the anisotropic reflectance model by Ashikhmin & Shirley.
853 The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>, but the real
854 arguments have additional flexibility to specify the specular color.
855 Also, rather than roughness, specular power is used, which has no
856 physical meaning other than larger numbers are equivalent to a smoother
857 surface.
858 Unlike other material types, total reflectance is the sum of
859 diffuse and specular colors, and should be adjusted accordingly.
860 <pre>
861 mod ashik2 id
862 4+ ux uy uz funcfile transform
863 0
864 8 dred dgrn dblu sred sgrn sblu u-power v-power
865 </pre>
866
867 <p>
868
869 <dt>
870 <a NAME="WGMDfunc">
871 <b>WGMDfunc</b>
872 </a>
873
874 <dd>
875 WGMDfunc is a more programmable version of <a HREF="#Trans2">trans2</a>,
876 with separate modifier paths and variables to control each component.
877 (WGMD stands for Ward-Geisler-Moroder-Duer, which is the basis for
878 this empirical model, similar to previous ones beside Ashik2.)
879 The specification of this material is given below.
880 <pre>
881 mod WGMDfunc id
882 13+ rs_mod rs rs_urough rs_vrough
883 ts_mod ts ts_urough ts_vrough
884 td_mod
885 ux uy uz funcfile transform
886 0
887 9+ rfdif gfdif bfdif
888 rbdif gbdif bbdif
889 rtdif gtdif btdif
890 A10 ..
891 </pre>
892
893 <p>
894
895 The sum of specular reflectance (<I>rs</I>), specular transmittance (<I>ts</I>),
896 diffuse reflectance (<I>rfdif gfdif bfdif</I> for front and <I>rbdif gbdif bbdif</I> for back)
897 and diffuse transmittance (<I>rtdif gtdif btdif</I>) should be less than 1 for each
898 channel.
899
900 <p>
901
902 Unique to this material, separate modifier channels are
903 provided for each component.
904 The main modifier is used on the diffuse reflectance, both
905 front and back.
906 The <I>rs_mod</I> modifier is used for specular reflectance.
907 If "void" is given for <I>rs_mod</I>,
908 then the specular reflection color will be white.
909 The special "inherit" keyword may also be given, in which case
910 specular reflectance will share the main modifier.
911 This behavior is replicated for the specular transmittance modifier
912 <I>ts_mod</I>, which also has its own independent roughness expressions.
913 Finally, the diffuse transmittance modifier is given as
914 <I>td_mod</I>, which may also be "void" or "inherit".
915 Note that any spectra or color for specular components must be
916 carried by the named modifier(s).
917
918 <p>
919
920 The main advantage to this material over
921 <a HREF="#BRTDfunc">BRTDfunc</a> and
922 other programmable types described below is that the specular sampling is
923 well-defined, so that all components are fully computed.
924
925 <p>
926
927 <dt>
928 <a NAME="Dielectric">
929 <b>Dielectric</b>
930 </a>
931
932 <dd>
933 A dielectric material is transparent, and it refracts light as well as reflecting it.
934 Its behavior is determined by the index of refraction and transmission coefficient in each wavelength band per unit length.
935 Common glass has a index of refraction (n) around 1.5, and a transmission coefficient of roughly 0.92 over an inch.
936 An additional number, the Hartmann constant, describes how the index of refraction changes as a function of wavelength.
937 It is usually zero. (A <a HREF="#Patterns">pattern</a> modifies only the refracted value.)
938
939 <pre>
940 mod dielectric id
941 0
942 0
943 5 rtn gtn btn n hc
944 </pre>
945
946 <p>
947
948 <dt>
949 <a NAME="Interface">
950 <b>Interface</b>
951 </a>
952
953 <dd>
954 An interface is a boundary between two dielectrics.
955 The first transmission coefficient and refractive index are for the inside; the second ones are for the outside.
956 Ordinary dielectrics are surrounded by a vacuum (1 1 1 1).
957
958 <pre>
959 mod interface id
960 0
961 0
962 8 rtn1 gtn1 btn1 n1 rtn2 gtn2 btn2 n2
963 </pre>
964
965 <p>
966
967 <dt>
968 <a NAME="Glass">
969 <b>Glass</b>
970 </a>
971
972 <dd>
973 Glass is similar to <a HREF="#Dielectric">dielectric</a>, but it is optimized for thin glass surfaces (n = 1.52).
974 One transmitted ray and one reflected ray is produced.
975 By using a single surface is in place of two, internal reflections are avoided.
976 The surface orientation is irrelevant, as it is for <a HREF="#Plastic">plastic</a>, <a HREF="#Metal">metal</a>, and <a HREF="#Trans">trans</a>.
977 The only specification required is the transmissivity at normal incidence.
978 (Transmissivity is the amount of light not absorbed in one traversal
979 of the material.
980 Transmittance -- the value usually measured -- is the total light
981 transmitted through the pane including multiple reflections.)
982 To compute transmissivity (tn) from transmittance (Tn) use:
983
984 <pre>
985 tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn
986 </pre>
987
988 <p>
989
990 Standard 88% transmittance glass has a transmissivity of 0.96.
991 (A <a HREF="#Patterns">pattern</a> modifying glass will affect the transmissivity.)
992 If a fourth real argument is given, it is interpreted as the index of refraction to use instead of 1.52.
993
994 <pre>
995 mod glass id
996 0
997 0
998 3 rtn gtn btn
999 </pre>
1000
1001 <p>
1002
1003 <dt>
1004 <a NAME="Plasfunc">
1005 <b>Plasfunc</b>
1006 </a>
1007
1008 <dd>
1009 Plasfunc in used for the procedural definition of plastic-like materials
1010 with arbitrary bidirectional reflectance distribution functions (BRDF's).
1011 The arguments to this material include the color and specularity,
1012 as well as the function defining the specular distribution and the auxiliary file where it may be found.
1013
1014 <pre>
1015 mod plasfunc id
1016 2+ refl funcfile transform
1017 0
1018 4+ red green blue spec A5 ..
1019 </pre>
1020
1021 <p>
1022
1023 The function refl takes four arguments, the x, y and z
1024 direction towards the incident light, and the solid angle
1025 subtended by the source.
1026 The solid angle is provided to facilitate averaging, and is usually
1027 ignored.
1028 The refl function should integrate to 1 over
1029 the projected hemisphere to maintain energy balance.
1030 At least four real arguments must be given, and these are made available along with any additional values to the reflectance function.
1031 Currently, only the contribution from direct light sources is considered in the specular calculation.
1032 As in most material types, the surface normal is always altered to face the incoming ray.
1033
1034 <p>
1035
1036 <dt>
1037 <a NAME="Metfunc">
1038 <b>Metfunc</b>
1039 </a>
1040
1041 <dd>
1042 Metfunc is identical to <a HREF="#Plasfunc">plasfunc</a> and takes the same arguments,
1043 but the specular component is multiplied also by the material color.
1044
1045 <p>
1046
1047 <dt>
1048 <a NAME="Transfunc">
1049 <b>Transfunc</b>
1050 </a>
1051
1052 <dd>
1053 Transfunc is similar to <a HREF="#Plasfunc">plasfunc</a> but with an arbitrary bidirectional transmittance distribution
1054 as well as a reflectance distribution.
1055 Both reflectance and transmittance are specified with the same function.
1056
1057 <pre>
1058 mod transfunc id
1059 2+ brtd funcfile transform
1060 0
1061 6+ red green blue rspec trans tspec A7 ..
1062 </pre>
1063
1064 <p>
1065
1066 Where trans is the total light transmitted and tspec is the non-Lambertian fraction of transmitted light.
1067 The function brtd should integrate to 1 over each projected hemisphere.
1068
1069 <p>
1070
1071 <dt>
1072 <a NAME="BRTDfunc">
1073 <b>BRTDfunc</b>
1074 </a>
1075
1076 <dd>
1077 The material BRTDfunc gives the maximum flexibility over surface reflectance and transmittance,
1078 providing for spectrally-dependent specular rays and reflectance and transmittance distribution functions.
1079
1080 <pre>
1081 mod BRTDfunc id
1082 10+ rrefl grefl brefl
1083 rtrns gtrns btrns
1084 rbrtd gbrtd bbrtd
1085 funcfile transform
1086 0
1087 9+ rfdif gfdif bfdif
1088 rbdif gbdif bbdif
1089 rtdif gtdif btdif
1090 A10 ..
1091 </pre>
1092
1093 <p>
1094
1095 The variables rrefl, grefl and brefl specify the color coefficients for the ideal specular (mirror) reflection of the surface.
1096 The variables rtrns, gtrns and btrns specify the color coefficients for the ideal specular transmission.
1097 The functions rbrtd, gbrtd and bbrtd take the direction to the incident light (and its solid angle) and
1098 compute the color coefficients for the directional diffuse part of reflection and transmission.
1099 As a special case, three identical values of '0' may be given in place of these function names to indicate no directional diffuse component.
1100
1101 <p>
1102 Unlike most other material types, the surface normal is not altered to face the incoming ray.
1103 Thus, functions and variables must pay attention to the orientation of the surface and make adjustments appropriately.
1104 However, the special variables for the perturbed dot product and surface normal, RdotP, NxP, NyP and NzP are reoriented
1105 as if the ray hit the front surface for convenience.
1106
1107 <p>
1108 A diffuse reflection component may be given for the front side with rfdif, gfdif and bfdif for the front side of the surface
1109 or rbdif, gbdif and bbdif for the back side.
1110 The diffuse transmittance (must be the same for both sides by physical law) is given by rtdif, gtdif and btdif.
1111 A pattern will modify these diffuse scattering values, and will be available through the special variables CrP, CgP and CbP.
1112
1113 <p>
1114 Care must be taken when using this material type to produce a physically valid reflection model.
1115 The reflectance functions should be bidirectional, and under no circumstances should the sum of reflected diffuse,
1116 transmitted diffuse, reflected specular, transmitted specular and the integrated directional diffuse component be greater than one.
1117
1118 <p>
1119
1120 <dt>
1121 <a NAME="Plasdata">
1122 <b>Plasdata</b>
1123 </a>
1124
1125 <dd>
1126 Plasdata is used for arbitrary BRDF's that are most conveniently given as interpolated data.
1127 The arguments to this material are the <a HREF="#Data">data file</a> and coordinate index functions,
1128 as well as a function to optionally modify the data values.
1129
1130 <pre>
1131 mod plasdata id
1132 3+n+
1133 func datafile
1134 funcfile x1 x2 .. xn transform
1135 0
1136 4+ red green blue spec A5 ..
1137 </pre>
1138
1139 <p>
1140
1141 The coordinate indices (x1, x2, etc.) are themselves functions of the x, y and z direction to the incident light, plus the solid angle
1142 subtended by the light source (usually ignored).
1143 The data function (func) takes five variables, the
1144 interpolated value from the n-dimensional data file, followed by the
1145 x, y and z direction to the incident light and the solid angle of the source.
1146 The light source direction and size may of course be ignored by the function.
1147
1148 <p>
1149
1150 <dt>
1151 <a NAME="Metdata">
1152 <b>Metdata</b>
1153 </a>
1154
1155 <dd>
1156 As metfunc is to plasfunc, metdata is to <a HREF="#Plasdata">plasdata</a>.
1157 Metdata takes the same arguments as plasdata, but the specular component is modified by the given material color.
1158
1159 <p>
1160
1161 <dt>
1162 <a NAME="Transdata">
1163 <b>Transdata</b>
1164 </a>
1165
1166 <dd>
1167 Transdata is like <a HREF="#Plasdata">plasdata</a> but the specification includes transmittance as well as reflectance.
1168 The parameters are as follows.
1169
1170 <pre>
1171 mod transdata id
1172 3+n+
1173 func datafile
1174 funcfile x1 x2 .. xn transform
1175 0
1176 6+ red green blue rspec trans tspec A7 ..
1177 </pre>
1178
1179 <p>
1180
1181 <dt>
1182 <a NAME="BSDF">
1183 <b>BSDF</b>
1184 </a>
1185
1186 <dd>
1187 The BSDF material type loads an XML (eXtensible Markup Language)
1188 file describing a bidirectional scattering distribution function.
1189 Real arguments to this material may define additional
1190 diffuse components that augment the BSDF data.
1191 String arguments are used to define thickness for proxied
1192 surfaces and the &quot;up&quot; orientation for the material.
1193
1194 <pre>
1195 mod BSDF id
1196 6+ thick BSDFfile ux uy uz funcfile transform
1197 0
1198 0|3|6|9
1199 rfdif gfdif bfdif
1200 rbdif gbdif bbdif
1201 rtdif gtdif btdif
1202 </pre>
1203
1204 <p>
1205 The first string argument is a &quot;thickness&quot; parameter that may be used
1206 to hide detail geometry being proxied by an aggregate BSDF material.
1207 If a view or shadow ray hits a BSDF proxy with non-zero thickness,
1208 it will pass directly through as if the surface were not there.
1209 Similar to the illum type, this permits direct viewing and
1210 shadow testing of complex geometry.
1211 The BSDF is used when a scattered (indirect) ray hits the surface,
1212 and any transmitted sample rays will be offset by the thickness amount
1213 to avoid the hidden geometry and gather samples from the other side.
1214 In this manner, BSDF surfaces can improve the results for indirect
1215 scattering from complex systems without sacrificing appearance or
1216 shadow accuracy.
1217 If the BSDF has transmission and back-side reflection data,
1218 a parallel BSDF surface may be
1219 placed slightly less than the given thickness away from the front surface
1220 to enclose the complex geometry on both sides.
1221 The sign of the thickness is important, as it indicates
1222 whether the proxied geometry is behind the BSDF
1223 surface (when thickness is positive) or in front (when
1224 thickness is negative).
1225 <p>
1226 The second string argument is the name of the BSDF file,
1227 which is found in the usual auxiliary locations. The
1228 following three string parameters name variables for an
1229 &quot;up&quot; vector, which together with the surface
1230 normal, define the local coordinate system that orients the
1231 BSDF. These variables, along with the thickness, are defined
1232 in a function file given as the next string argument. An
1233 optional transform is used to scale the thickness and
1234 reorient the up vector.
1235 <p>
1236 If no real arguments are given, the BSDF is used by itself
1237 to determine reflection and transmission. If there are at
1238 least 3 real arguments, the first triplet is an additional
1239 diffuse reflectance for the front side. At least 6 real
1240 arguments adds diffuse reflectance to the rear side of the
1241 surface. If there are 9 real arguments, the final triplet
1242 will be taken as an additional diffuse transmittance. All
1243 diffuse components as well as the non-diffuse transmission
1244 are modified by patterns applied to this material. The
1245 non-diffuse reflection from either side are unaffected.
1246 Textures perturb the effective surface normal in the usual
1247 way.
1248 <p>
1249 The surface normal of this type is not altered to face the
1250 incoming ray, so the front and back BSDF reflections may
1251 differ. (Transmission is identical front-to-back by physical
1252 law.) If back visibility is turned off during rendering and
1253 there is no transmission or back-side reflection, only then
1254 the surface will be invisible from behind. Unlike other
1255 data-driven material types, the BSDF type is fully supported
1256 and all parts of the distribution are properly sampled.
1257 <p>
1258
1259 <dt>
1260 <a NAME="aBSDF">
1261 <b>aBSDF</b>
1262 </a>
1263
1264 <dd>
1265 The aBSDF material is identical to the BSDF type with two
1266 important differences. First, proxy geometry is not
1267 supported, so there is no thickness parameter. Second, an
1268 aBSDF is assumed to have some specular through component
1269 (the &rsquo;a&rsquo; stands for &quot;aperture&quot;),
1270 which is treated specially during the direct calculation
1271 and when viewing the material. Based on the BSDF data, the
1272 coefficient of specular transmission is determined and used
1273 for modifying unscattered shadow and view rays.
1274
1275 <pre>
1276 mod aBSDF id
1277 5+ BSDFfile ux uy uz funcfile transform
1278 0
1279 0|3|6|9
1280 rfdif gfdif bfdif
1281 rbdif gbdif bbdif
1282 rtdif gtdif btdif
1283 </pre>
1284
1285 <p>
1286 If a material has no specular transmitted component, it is
1287 much better to use the BSDF type with a zero thickness
1288 than to use aBSDF.
1289 <p>
1290
1291 <dt>
1292 <a NAME="Antimatter">
1293 <b>Antimatter</b>
1294 </a>
1295
1296 <dd>
1297 Antimatter is a material that can &quot;subtract&quot; volumes from other volumes.
1298 A ray passing into an antimatter object becomes blind to all the specified modifiers:
1299
1300 <pre>
1301 mod antimatter id
1302 N mod1 mod2 .. modN
1303 0
1304 0
1305 </pre>
1306
1307 <p>
1308
1309 The first modifier will also be used to shade the area leaving the antimatter volume and entering the regular volume.
1310 If mod1 is void, the antimatter volume is completely invisible.
1311 Antimatter does not work properly with the material type <a HREF="#Trans">&quot;trans&quot;</a>,
1312 and multiple antimatter surfaces should be disjoint.
1313 The viewpoint must be outside all volumes concerned for a correct rendering.
1314
1315 </dl>
1316
1317 <p>
1318 <hr>
1319
1320 <h4>
1321 <a NAME="Textures">2.1.3. Textures</a>
1322 </h4>
1323
1324 A texture is a perturbation of the surface normal, and is given by either a function or data.
1325
1326 <p>
1327
1328 <dl>
1329
1330 <dt>
1331 <a NAME="Texfunc">
1332 <b>Texfunc</b>
1333 </a>
1334
1335 <dd>
1336 A texfunc uses an auxiliary function file to specify a procedural texture:
1337
1338 <pre>
1339 mod texfunc id
1340 4+ xpert ypert zpert funcfile transform
1341 0
1342 n A1 A2 .. An
1343 </pre>
1344
1345 <p>
1346
1347 <dt>
1348 <a NAME="Texdata">
1349 <b>Texdata</b>
1350 </a>
1351
1352 <dd>
1353 A texdata texture uses three data files to get the surface normal perturbations.
1354 The variables xfunc, yfunc and zfunc take three arguments each from the interpolated values in xdfname, ydfname and zdfname.
1355
1356 <pre>
1357 mod texdata id
1358 8+ xfunc yfunc zfunc xdfname ydfname zdfname vfname x0 x1 .. xf
1359 0
1360 n A1 A2 .. An
1361 </pre>
1362
1363 <p>
1364
1365 </dl>
1366
1367 <p>
1368 <hr>
1369
1370 <h4>
1371 <a NAME="Patterns">2.1.4. Patterns</a>
1372 </h4>
1373
1374 Patterns are used to modify the reflectance of materials. The basic types are given below.
1375
1376 <p>
1377
1378 <dl>
1379
1380 <dt>
1381 <a NAME="Colorfunc">
1382 <b>Colorfunc</b>
1383 </a>
1384
1385 <dd>
1386 A colorfunc is a procedurally defined color pattern. It is specified as follows:
1387
1388 <pre>
1389 mod colorfunc id
1390 4+ red green blue funcfile transform
1391 0
1392 n A1 A2 .. An
1393 </pre>
1394
1395 <p>
1396
1397 <dt>
1398 <a NAME="Brightfunc">
1399 <b>Brightfunc</b>
1400 </a>
1401
1402 <dd>
1403 A brightfunc is the same as a colorfunc, except it is monochromatic.
1404
1405 <pre>
1406 mod brightfunc id
1407 2+ refl funcfile transform
1408 0
1409 n A1 A2 .. An
1410 </pre>
1411
1412 <p>
1413
1414 <dt>
1415 <a NAME="Colordata">
1416 <b>Colordata</b>
1417 </a>
1418
1419 <dd>
1420 Colordata uses an interpolated data map to modify a material's color.
1421 The map is n-dimensional, and is stored in three auxiliary files, one for each color.
1422 The coordinates used to look up and interpolate the data are defined in another auxiliary file.
1423 The interpolated data values are modified by functions of one or three variables.
1424 If the functions are of one variable, then they are passed the corresponding color component (red or green or blue).
1425 If the functions are of three variables, then they are passed the original red, green, and blue values as parameters.
1426
1427 <pre>
1428 mod colordata id
1429 7+n+
1430 rfunc gfunc bfunc rdatafile gdatafile bdatafile
1431 funcfile x1 x2 .. xn transform
1432 0
1433 m A1 A2 .. Am
1434 </pre>
1435
1436 <p>
1437
1438 <dt>
1439 <a NAME="Brightdata">
1440 <b>Brightdata</b>
1441 </a>
1442
1443 <dd>
1444 Brightdata is like colordata, except monochromatic.
1445
1446 <pre>
1447 mod brightdata id
1448 3+n+
1449 func datafile
1450 funcfile x1 x2 .. xn transform
1451 0
1452 m A1 A2 .. Am
1453 </pre>
1454
1455 <p>
1456
1457 <dt>
1458 <a NAME="Colorpict">
1459 <b>Colorpict</b>
1460 </a>
1461
1462 <dd>
1463 Colorpict is a special case of colordata, where the pattern is a two-dimensional image stored in the RADIANCE picture format.
1464 The dimensions of the image data are determined by the picture such that the smaller dimension is always 1,
1465 and the other is the ratio between the larger and the smaller.
1466 For example, a 500x338 picture would have coordinates (u,v) in the rectangle between (0,0) and (1.48,1).
1467
1468 <pre>
1469 mod colorpict id
1470 7+
1471 rfunc gfunc bfunc pictfile
1472 funcfile u v transform
1473 0
1474 m A1 A2 .. Am
1475 </pre>
1476
1477 <p>
1478
1479 <dt>
1480 <a NAME="Colortext">
1481 <b>Colortext</b>
1482 </a>
1483
1484 <dd>
1485 Colortext is dichromatic writing in a polygonal font.
1486 The font is defined in an auxiliary file, such as helvet.fnt.
1487 The text itself is also specified in a separate file, or can be part of the material arguments.
1488 The character size, orientation, aspect ratio and slant is determined by right and down motion vectors.
1489 The upper left origin for the text block as well as the foreground and background colors must also be given.
1490
1491 <pre>
1492 mod colortext id
1493 2 fontfile textfile
1494 0
1495 15+
1496 Ox Oy Oz
1497 Rx Ry Rz
1498 Dx Dy Dz
1499 rfore gfore bfore
1500 rback gback bback
1501 [spacing]
1502 </pre>
1503
1504 <p>
1505
1506 or:
1507
1508 <pre>
1509 mod colortext id
1510 2+N fontfile . This is a line with N words ...
1511 0
1512 15+
1513 Ox Oy Oz
1514 Rx Ry Rz
1515 Dx Dy Dz
1516 rfore gfore bfore
1517 rback gback bback
1518 [spacing]
1519 </pre>
1520
1521 <p>
1522
1523 <dt>
1524 <a NAME="Brighttext">
1525 <b>Brighttext</b>
1526 </a>
1527
1528 <dd>
1529 Brighttext is like colortext, but the writing is monochromatic.
1530
1531 <pre>
1532 mod brighttext id
1533 2 fontfile textfile
1534 0
1535 11+
1536 Ox Oy Oz
1537 Rx Ry Rz
1538 Dx Dy Dz
1539 foreground background
1540 [spacing]
1541 </pre>
1542
1543 <p>
1544
1545 or:
1546
1547 <pre>
1548 mod brighttext id
1549 2+N fontfile . This is a line with N words ...
1550 0
1551 11+
1552 Ox Oy Oz
1553 Rx Ry Rz
1554 Dx Dy Dz
1555 foreground background
1556 [spacing]
1557 </pre>
1558
1559 <p>
1560
1561 By default, a uniform spacing algorithm is used that guarantees every character will appear in a precisely determined position.
1562 Unfortunately, such a scheme results in rather unattractive and difficult to read text with most fonts.
1563 The optional spacing value defines the distance between characters for proportional spacing.
1564 A positive value selects a spacing algorithm that preserves right margins and indentation,
1565 but does not provide the ultimate in proportionally spaced text.
1566 A negative value insures that characters are properly spaced, but the placement of words then varies unpredictably.
1567 The choice depends on the relative importance of spacing versus formatting.
1568 When presenting a section of formatted text, a positive spacing value is usually preferred.
1569 A single line of text will often be accompanied by a negative spacing value.
1570 A section of text meant to depict a picture, perhaps using a special purpose font such as hexbit4x1.fnt, calls for uniform spacing.
1571 Reasonable magnitudes for proportional spacing are between 0.1 (for tightly spaced characters) and 0.3 (for wide spacing).
1572
1573 <p>
1574
1575 <dt>
1576 <a NAME="Spectrum">
1577 <b>Spectrum</b>
1578 </a>
1579
1580 <dd>
1581 The spectrum primitive is the most basic type for introducing spectral
1582 color to a material.
1583 Since materials only provide RGB parameters, spectral patterns
1584 are the only way to superimpose wavelength-dependent behavior.
1585
1586 <pre>
1587 mod spectrum id
1588 0
1589 0
1590 5+ nmA nmB s1 s2 .. sN
1591 </pre>
1592
1593 <p>
1594 The first two real arguments indicate the extrema of the
1595 spectral range in nanometers.
1596 Subsequent real values correspond to multipliers at each wavelength.
1597 The nmA wavelength may be greater or less than nmB,
1598 but they may not be equal, and their ordering matches
1599 the order of the spectral values.
1600 A minimum of 3 values must be given, which would act
1601 more or less the same as a constant RGB multiplier.
1602 As with RGB values, spectral quantities normally range between 0
1603 and 1 at each wavelength, or average to 1.0 against a standard
1604 sensitivity functions such as V(lambda).
1605 The best results obtain when the spectral range and number
1606 of samples match rendering options, though resampling will handle
1607 any differences, zero-filling wavelenths outside the nmA to nmB
1608 range.
1609 A warning will be issued if the given wavelength range does not
1610 adequately cover the visible spectrum.
1611
1612 <p>
1613
1614 <dt>
1615 <a NAME="Specfile">
1616 <b>Specfile</b>
1617 </a>
1618
1619 <dd>
1620 The specfile primitive is equivalent to the spectrum type, but
1621 the wavelength range and values are contained in a 1-dimensional
1622 data file.
1623 This may be a more convenient way to specify a spectral color,
1624 especially one corresponding to a standard illuminant such as D65
1625 or a library of measured spectra.
1626
1627 <pre>
1628 mod specfile id
1629 1 datafile
1630 0
1631 0
1632 </pre>
1633
1634 <p>
1635 As with the spectrum type, rendering wavelengths outside the defined
1636 range will be zero-filled.
1637 Unlike the spectrum type, the file may contain non-uniform samples.
1638
1639 <p>
1640
1641 <dt>
1642 <a NAME="Specfunc">
1643 <b>Specfunc</b>
1644 </a>
1645
1646 <dd>
1647 The specfunc primitive offers dynamic control over a spectral
1648 pattern, similar to the colorfunc type.
1649
1650 <pre>
1651 mod specfunc id
1652 2+ sfunc funcfile transform
1653 0
1654 2+ nmA nmB A3 ..
1655 </pre>
1656
1657 <p>
1658 Like the spectrum primitive, the wavelength range is specified
1659 in the first two real arguments, and additional real values are
1660 set in the evaluation context.
1661 This function is fed a wavelenth sample
1662 between nmA and nmB as its only argument,
1663 and it returns the corresponding spectral intensity.
1664
1665 <dt>
1666 <a NAME="Specdata">
1667 <b>Specdata</b>
1668 </a>
1669
1670 <dd>
1671 Specdata is like brightdata and colordata, but with more
1672 than 3 specular samples.
1673
1674 <pre>
1675 mod specdata id
1676 3+n+
1677 func datafile
1678 funcfile x1 x2 .. xn transform
1679 0
1680 m A1 A2 .. Am
1681 </pre>
1682
1683 <p>
1684 The data file must have one more dimension than the coordinate
1685 variable count, as this final dimension corresponds to the covered
1686 spectrum.
1687 The starting and ending wavelengths are specified in "datafile"
1688 as well as the number of spectral samples.
1689 The function "func" will be called with two parameters, the
1690 interpolated spectral value for the current coordinate and the
1691 associated wavelength.
1692 If the spectrum is broken into 12 components, then 12 calls
1693 will be made to "func" for the relevant ray evaluation.
1694
1695 <dt>
1696 <a NAME="Specpict">
1697 <b>Specpict</b>
1698 </a>
1699
1700 <dd>
1701 Specpict is a special case of specdata, where the pattern is
1702 a hyperspectral image stored in the common-exponent file format.
1703 The dimensions of the image data are determined by the picture
1704 just as with the colorpict primitive.
1705
1706 <pre>
1707 mod specpict id
1708 5+
1709 func specfile
1710 funcfile u v transform
1711 0
1712 m A1 A2 .. Am
1713 </pre>
1714
1715 <p>
1716 The function "func" is called with the interpolated pixel value
1717 and the wavelength sample in nanometers, the same as specdata,
1718 with as many calls made as there are components in "specfile".
1719
1720 </dl>
1721
1722 <p>
1723 <hr>
1724
1725 <h4>
1726 <a NAME="Mixtures">2.1.5. Mixtures</a>
1727 </h4>
1728
1729 A mixture is a blend of one or more materials or textures and patterns.
1730 Blended materials should not be light source types or virtual source types.
1731 The basic types are given below.
1732
1733 <p>
1734
1735 <dl>
1736
1737 <dt>
1738 <a NAME="Mixfunc">
1739 <b>Mixfunc</b>
1740 </a>
1741
1742 <dd>
1743 A mixfunc mixes two modifiers procedurally. It is specified as follows:
1744
1745 <pre>
1746 mod mixfunc id
1747 4+ foreground background vname funcfile transform
1748 0
1749 n A1 A2 .. An
1750 </pre>
1751
1752 <p>
1753
1754 Foreground and background are modifier names that must be
1755 defined earlier in the scene description.
1756 If one of these is a material, then
1757 the modifier of the mixfunc must be &quot;void&quot;.
1758 (Either the foreground or background modifier may be &quot;void&quot;,
1759 which serves as a form of opacity control when used with a material.)
1760 Vname is the coefficient defined in funcfile that determines the influence of foreground.
1761 The background coefficient is always (1-vname).
1762
1763 <p>
1764
1765 <dt>
1766 <a NAME="Mixdata">
1767 <b>Mixdata</b>
1768 </a>
1769
1770 <dd>
1771 Mixdata combines two modifiers using an auxiliary data file:
1772
1773 <pre>
1774 mod mixdata id
1775 5+n+
1776 foreground background func datafile
1777 funcfile x1 x2 .. xn transform
1778 0
1779 m A1 A2 .. Am
1780 </pre>
1781
1782 <p>
1783
1784 <dt>
1785 <a NAME="Mixpict">
1786 <b>Mixpict</b>
1787 </a>
1788
1789 <dd>
1790 Mixpict combines two modifiers based on a picture:
1791
1792 <pre>
1793 mod mixpict id
1794 7+
1795 foreground background func pictfile
1796 funcfile u v transform
1797 0
1798 m A1 A2 .. Am
1799 </pre>
1800
1801 <p>
1802
1803 The mixing coefficient function &quot;func&quot; takes three
1804 arguments, the red, green and blue values
1805 corresponding to the pixel at (u,v).
1806
1807 <p>
1808
1809 <dt>
1810 <a NAME="Mixtext">
1811 <b>Mixtext</b>
1812 </a>
1813
1814 <dd>
1815 Mixtext uses one modifier for the text foreground, and one for the background:
1816
1817 <pre>
1818 mod mixtext id
1819 4 foreground background fontfile textfile
1820 0
1821 9+
1822 Ox Oy Oz
1823 Rx Ry Rz
1824 Dx Dy Dz
1825 [spacing]
1826 </pre>
1827
1828 <p>
1829
1830 or:
1831
1832 <pre>
1833 mod mixtext id
1834 4+N
1835 foreground background fontfile .
1836 This is a line with N words ...
1837 0
1838 9+
1839 Ox Oy Oz
1840 Rx Ry Rz
1841 Dx Dy Dz
1842 [spacing]
1843 </pre>
1844
1845 <p>
1846
1847 </dl>
1848
1849 <p>
1850 <hr>
1851
1852 <h3>
1853 <a NAME="Auxiliary">2.2. Auxiliary Files</a>
1854 </h3>
1855
1856 Auxiliary files used in <a HREF="#Textures">textures</a> and <a HREF="#Patterns">patterns</a>
1857 are accessed by the programs during image generation.
1858 These files may be located in the working directory, or in a library directory.
1859 The environment variable RAYPATH can be assigned an alternate set of search directories.
1860 Following is a brief description of some common file types.
1861
1862 <p>
1863
1864 <h4>
1865 <a NAME="Function">12.2.1. Function Files</a>
1866 </h4>
1867
1868 A function file contains the definitions of variables, functions and constants used by a primitive.
1869 The transformation that accompanies the file name contains the necessary rotations, translations and scalings
1870 to bring the coordinates of the function file into agreement with the world coordinates.
1871 The transformation specification is the same as for the <a HREF="#Generators">xform</a> command.
1872 An example function file is given below:
1873
1874 <pre>
1875 {
1876 This is a comment, enclosed in curly braces.
1877 {Comments can be nested.}
1878 }
1879 { standard expressions use +,-,*,/,^,(,) }
1880 vname = Ny * func(A1) ;
1881 { constants are defined with a colon }
1882 const : sqrt(PI/2) ;
1883 { user-defined functions add to library }
1884 func(x) = 5 + A1*sin(x/3) ;
1885 { functions may be passed and recursive }
1886 rfunc(f,x) = if(x,f(x),f(-x)*rfunc(f,x+1)) ;
1887 { constant functions may also be defined }
1888 cfunc(x) : 10*x / sqrt(x) ;
1889 </pre>
1890
1891 <p>
1892
1893 Many variables and functions are already defined by the program, and they are listed in the file rayinit.cal.
1894 The following variables are particularly important:
1895
1896 <pre>
1897 Dx, Dy, Dz - incident ray direction
1898 Nx, Ny, Nz - surface normal at intersection point
1899 Px, Py, Pz - intersection point
1900 T - distance from start
1901 Ts - single ray (shadow) distance
1902 Rdot - cosine between ray and normal
1903 arg(0) - number of real arguments
1904 arg(i) - i'th real argument
1905 </pre>
1906
1907 <p>
1908
1909 For mesh objects, the local surface coordinates are available:
1910
1911 <pre>
1912 Lu, Lv - local (u,v) coordinates
1913 </pre>
1914
1915 <p>
1916
1917 For BRDF types, the following variables are defined as well:
1918
1919 <pre>
1920 NxP, NyP, NzP - perturbed surface normal
1921 RdotP - perturbed dot product
1922 CrP, CgP, CbP - perturbed material color
1923 </pre>
1924
1925 <p>
1926
1927 A unique context is set up for each file so
1928 that the same variable may appear in different
1929 function files without conflict.
1930 The variables listed above and any others defined in
1931 rayinit.cal are available globally.
1932 If no file is needed by a given primitive because all
1933 the required variables are global,
1934 a period (`.') can be given in place of the file name.
1935 It is also possible to give an expression instead
1936 of a straight variable name in a scene file.
1937 Functions (requiring parameters) must be given
1938 as names and not as expressions.
1939
1940 <p>
1941 Constant expressions are used as an optimization in function files.
1942 They are replaced wherever they occur in an expression by their value.
1943 Constant expressions are evaluated only once, so they must not contain any variables or values that can change,
1944 such as the ray variables Px and Ny or the primitive argument function arg().
1945 All the math library functions such as sqrt() and cos() have the constant attribute,
1946 so they will be replaced by immediate values whenever they are given constant arguments.
1947 Thus, the subexpression cos(PI*sqrt(2)) is immediately replaced by its value, -.266255342,
1948 and does not cause any additional overhead in the calculation.
1949
1950 <p>
1951 It is generally a good idea to define constants and variables before they are referred to in a function file.
1952 Although evaluation does not take place until later, the interpreter does variable scoping and
1953 constant subexpression evaluation based on what it has compiled already.
1954 For example, a variable that is defined globally in rayinit.cal
1955 then referenced in the local context of a function file
1956 cannot subsequently be redefined in the same file
1957 because the compiler has already determined the scope of the referenced variable as global.
1958 To avoid such conflicts, one can state the scope of a variable explicitly by
1959 preceding the variable name with a context mark (a back-quote) for a local variable,
1960 or following the name with a context mark for a global variable.
1961
1962 <p>
1963
1964 <h4>
1965 <a NAME="Data">2.2.2. Data Files</a>
1966 </h4>
1967
1968 Data files contain n-dimensional arrays of real numbers used for interpolation.
1969 Typically, definitions in a function file determine how to index and use interpolated data values.
1970 The basic data file format is as follows:
1971
1972 <pre>
1973 N
1974 beg1 end1 m1
1975 0 0 m2 x2.1 x2.2 x2.3 x2.4 .. x2.m2
1976 ...
1977 begN endN mN
1978 DATA, later dimensions changing faster.
1979 </pre>
1980
1981 <p>
1982
1983 N is the number of dimensions.
1984 For each dimension, the beginning and ending coordinate values and the dimension size is given.
1985 Alternatively, individual coordinate values can be given when the points are not evenly spaced.
1986 These values must either be increasing or decreasing monotonically.
1987 The data is m1*m2*...*mN real numbers in ASCII form.
1988 Comments may appear anywhere in the file, beginning with a pound
1989 sign ('#') and continuing to the end of line.
1990
1991 <p>
1992
1993 <h4>
1994 <a NAME="Font">2.2.3. Font Files</a>
1995 </h4>
1996
1997 A font file lists the polygons which make up a character set.
1998 Comments may appear anywhere in the file, beginning with a pound
1999 sign ('#') and continuing to the end of line.
2000 All numbers are decimal integers:
2001
2002 <pre>
2003 code n
2004 x0 y0
2005 x1 y1
2006 ...
2007 xn yn
2008 ...
2009 </pre>
2010
2011 <p>
2012
2013 The ASCII codes can appear in any order. N is the number of vertices, and the last is automatically connected to the first.
2014 Separate polygonal sections are joined by coincident sides.
2015 The character coordinate system is a square with lower left corner at (0,0), lower right at (255,0) and upper right at (255,255).
2016
2017 <p>
2018
2019 <hr>
2020
2021 <h3>
2022 <a NAME="Generators">2.3. Generators</a>
2023 </h3>
2024
2025 A generator is any program that produces a scene description as its output.
2026 They usually appear as commands in a scene description file.
2027 An example of a simple generator is genbox.
2028
2029 <ul>
2030
2031 <li>
2032 <a NAME="Genbox" HREF="../man_html/genbox.1.html">
2033 <b>Genbox</b>
2034 </a>
2035 takes the arguments of width, height and depth to produce a parallelepiped description.
2036 <li>
2037 <a NAME="Genprism" HREF="../man_html/genprism.1.html">
2038 <b>Genprism</b>
2039 </a>
2040 takes a list of 2-dimensional coordinates and extrudes them along a vector to
2041 produce a 3-dimensional prism.
2042 <li>
2043 <a NAME="Genrev" HREF="../man_html/genrev.1.html">
2044 <b>Genrev</b>
2045 </a>
2046 is a more sophisticated generator that produces an object of rotation from parametric functions for radius and axis position.
2047 <li>
2048 <a NAME="Gensurf" HREF="../man_html/gensurf.1.html">
2049 <b>Gensurf</b>
2050 </a>
2051 tessellates a surface defined by the parametric functions x(s,t), y(s,t), and z(s,t).
2052 <li>
2053 <a NAME="Genworm" HREF="../man_html/genworm.1.html">
2054 <b>Genworm</b>
2055 </a>
2056 links cylinders and spheres along a curve.
2057 <li>
2058 <a NAME="Gensky" HREF="../man_html/gensky.1.html">
2059 <b>Gensky</b>
2060 </a>
2061 produces a sun and sky distribution corresponding to a given time and date.
2062 <li>
2063 <a NAME="Xform" HREF="../man_html/xform.1.html">
2064 <b>Xform</b>
2065 </a>
2066 is a program that transforms a scene description from one coordinate space to another.
2067 Xform does rotation, translation, scaling, and mirroring.
2068
2069 </ul>
2070
2071 <p>
2072 <hr>
2073
2074 <h2>
2075 <a NAME="Image">3. Image Generation</a>
2076 </h2>
2077
2078 Once the scene has been described in three-dimensions, it is possible to generate a two-dimensional image from a given perspective.
2079
2080 <p>
2081 The image generating programs use an <a NAME="octree"><b>octree</b></a> to efficiently trace rays through the scene.
2082 An octree subdivides space into nested octants which contain sets of surfaces.
2083 In RADIANCE, an octree is created from a scene description by <a NAME="oconv1" HREF="../man_html/oconv.1.html"><b>oconv</b></a>.
2084 The details of this process are not important, but the octree will serve as input to the ray-tracing programs and
2085 directs the use of a scene description.
2086 <ul>
2087 <li>
2088 <a NAME="rvu" HREF="../man_html/rvu.1.html"><b>Rvu</b></a> is ray-tracing program for viewing a scene interactively.
2089 When the user specifies a new perspective, rvu quickly displays a rough image on the terminal,
2090 then progressively increases the resolution as the user looks on.
2091 He can select a particular section of the image to improve, or move to a different view and start over.
2092 This mode of interaction is useful for debugging scenes as well as determining the best view for a final image.
2093
2094 <li>
2095 <a NAME="rpict" HREF="../man_html/rpict.1.html"><b>Rpict</b></a> produces a high-resolution picture of a scene from a particular perspective.
2096 This program features adaptive sampling, crash recovery and progress reporting, all of which are important for time-consuming images.
2097 </ul>
2098 <p>
2099 A number of <a NAME="filters"><b>filters</b></a> are available for manipulating picture files:
2100 <ul>
2101 <li> <a HREF="../man_html/pfilt.1.html"><b>Pfilt</b></a>
2102 sets the exposure and performs antialiasing.
2103 <li> <a HREF="../man_html/pcompos.1.html"><b>Pcompos</b></a>
2104 composites (cuts and pastes) pictures.
2105 <li> <a HREF="../man_html/pcomb.1.html"><b>Pcomb</b></a>
2106 performs arbitrary math on one or more pictures.
2107 <li> <a HREF="../man_html/pcond.1.html"><b>Pcond</b></a>
2108 conditions a picture for a specific display device.
2109 <li> <a HREF="../man_html/protate.1.html"><b>Protate</b></a>
2110 rotates a picture 90 degrees clockwise.
2111 <li> <a HREF="../man_html/pflip.1.html"><b>Pflip</b></a>
2112 flips a picture horizontally, vertically, or both
2113 (180 degree rotation).
2114 <li> <a HREF="../man_html/pvalue.1.html"><b>Pvalue</b></a>
2115 converts a picture to and from simpler formats.
2116 </ul>
2117
2118 <p>
2119 Pictures may be displayed directly under X11 using the program
2120 <a HREF="../man_html/ximage.1.html">ximage</a>,
2121 or converted a standard image format using one of the following
2122 <b>translators</b>:
2123 <ul>
2124 <li> <a HREF="../man_html/ra_bmp.1.html"><b>Ra_bmp</b></a>
2125 converts to and from BMP image format.
2126 <li> <a HREF="../man_html/ra_ppm.1.html"><b>Ra_ppm</b></a>
2127 converts to and from Poskanzer Portable Pixmap formats.
2128 <li> <a HREF="../man_html/ra_ps.1.html"><b>Ra_ps</b></a>
2129 converts to PostScript color and greyscale formats.
2130 <li> <a HREF="../man_html/ra_rgbe.1.html"><b>Ra_rgbe</b></a>
2131 converts to and from Radiance uncompressed picture format.
2132 <li> <a HREF="../man_html/ra_t16.1.html"><b>Ra_t16</b></a>
2133 converts to and from Targa 16 and 24-bit image formats.
2134 <li> <a HREF="../man_html/ra_t8.1.html"><b>Ra_t8</b></a>
2135 converts to and from Targa 8-bit image format.
2136 <li> <a HREF="../man_html/ra_tiff.1.html"><b>Ra_tiff</b></a>
2137 converts to and from TIFF.
2138 <li> <a HREF="../man_html/ra_xyze.1.html"><b>Ra_xyze</b></a>
2139 converts to and from Radiance CIE picture format.
2140 </ul>
2141
2142 <p>
2143
2144 <hr>
2145
2146 <h2>
2147 <a NAME="License">4. License</a>
2148 </h2>
2149
2150 <pre>
2151 The Radiance Software License, Version 1.0
2152
2153 Copyright (c) 1990 - 2021 The Regents of the University of California,
2154 through Lawrence Berkeley National Laboratory. All rights reserved.
2155
2156 Redistribution and use in source and binary forms, with or without
2157 modification, are permitted provided that the following conditions
2158 are met:
2159
2160 1. Redistributions of source code must retain the above copyright
2161 notice, this list of conditions and the following disclaimer.
2162
2163 2. Redistributions in binary form must reproduce the above copyright
2164 notice, this list of conditions and the following disclaimer in
2165 the documentation and/or other materials provided with the
2166 distribution.
2167
2168 3. The end-user documentation included with the redistribution,
2169 if any, must include the following acknowledgment:
2170 &quot;This product includes Radiance software
2171 (<a HREF="http://radsite.lbl.gov/">http://radsite.lbl.gov/</a>)
2172 developed by the Lawrence Berkeley National Laboratory
2173 (<a HREF="http://www.lbl.gov/">http://www.lbl.gov/</a>).&quot;
2174 Alternately, this acknowledgment may appear in the software itself,
2175 if and wherever such third-party acknowledgments normally appear.
2176
2177 4. The names &quot;Radiance,&quot; &quot;Lawrence Berkeley National Laboratory&quot;
2178 and &quot;The Regents of the University of California&quot; must
2179 not be used to endorse or promote products derived from this
2180 software without prior written permission. For written
2181 permission, please contact [email protected].
2182
2183 5. Products derived from this software may not be called &quot;Radiance&quot;,
2184 nor may &quot;Radiance&quot; appear in their name, without prior written
2185 permission of Lawrence Berkeley National Laboratory.
2186
2187 THIS SOFTWARE IS PROVIDED ``AS IS&quot; AND ANY EXPRESSED OR IMPLIED
2188 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
2189 OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
2190 DISCLAIMED. IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
2191 ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
2192 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
2193 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
2194 USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
2195 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
2196 OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
2197 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
2198 SUCH DAMAGE.
2199 </pre>
2200
2201 <p>
2202
2203 <hr>
2204
2205 <h2>
2206 <a NAME="Ack">5. Acknowledgements</a>
2207 </h2>
2208
2209 This work was supported by the Assistant Secretary of Conservation and Renewable Energy,
2210 Office of Building Energy Research and Development,
2211 Buildings Equipment Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
2212
2213 <p>
2214 Additional work was sponsored by the Swiss federal government
2215 under the Swiss LUMEN Project and was carried out in the
2216 Laboratoire d'Energie Solaire (LESO Group) at the
2217 Ecole Polytechnique Federale de Lausanne (EPFL University) in Lausanne, Switzerland.
2218
2219 <p>
2220
2221 <hr>
2222
2223 <h2>
2224 <a NAME="Ref">6.</a> References
2225 </h2>
2226 <p>
2227 <ul>
2228 <li>Ward, Gregory J., Bruno Bueno, David Geisler-Moroder,
2229 Lars O. Grobe, Jacob C. Jonsson, Eleanor
2230 S. Lee, Taoning Wang, Helen Rose Wilson,
2231 &quot;<a href="https://doi.org/10.1016/j.enbuild.2022.111890">Daylight
2232 Simulation Workflows Incorporating Measured Bidirectional
2233 Scattering Distribution Functions</a>&quot;
2234 <em>Energy &amp; Buildings</em>, Vol. 259, No. 11890, 2022.
2235 <li>Wang, Taoning, Gregory Ward, Eleanor Lee,
2236 &quot;<a href="https://authors.elsevier.com/a/1XQ0a1M7zGwT7v">Efficient
2237 modeling of optically-complex, non-coplanar exterior shading:
2238 Validation of matrix algebraic methods</a>&quot;
2239 <em>Energy & Buildings</em>, vol. 174, pp. 464-83, Sept. 2018.
2240 <li>Lee, Eleanor S., David Geisler-Moroder, Gregory Ward,
2241 &quot;<a href="https://eta.lbl.gov/sites/default/files/publications/solar_energy.pdf">Modeling
2242 the direct sun component in buildings using matrix
2243 algebraic approaches: Methods and
2244 validation</a>,&quot; <em>Solar Energy</em>,
2245 vol. 160, 15 January 2018, pp 380-395.
2246 <li>Narain, Rahul, Rachel A. Albert, Abdullah Bulbul,
2247 Gregory J. Ward, Marty Banks, James F. O'Brien,
2248 &quot;<a href="http://graphics.berkeley.edu/papers/Narain-OPI-2015-08/index.html">Optimal
2249 Presentation of Imagery with Focus
2250 Cues on Multi-Plane Displays</a>,&quot;
2251 <em>SIGGRAPH 2015</em>.
2252 <li>Ward, Greg, Murat Kurt, and Nicolas Bonneel,
2253 &quot;<a href="papers/WMAM14_Tensor_Tree_Representation.pdf">Reducing
2254 Anisotropic BSDF Measurement to Common Practice</a>,&quot;
2255 <em>Workshop on Material Appearance Modeling</em>, 2014.
2256 <li>Banks, Martin, Abdullah Bulbul, Rachel Albert, Rahul Narain,
2257 James F. O'Brien, Gregory Ward,
2258 &quot;<a href="http://graphics.berkeley.edu/papers/Banks-TPO-2014-05/index.html">The
2259 Perception of Surface Material from Disparity and Focus Cues</a>,&quot;
2260 <em>VSS 2014</em>.
2261 <li>McNeil, A., C.J. Jonsson, D. Appelfeld, G. Ward, E.S. Lee,
2262 &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">
2263 A validation of a ray-tracing tool used to generate
2264 bi-directional scattering distribution functions for
2265 complex fenestration systems</a>,&quot;
2266 <em>Solar Energy</em>, 98, 404-14,
2267 November 2013.
2268 <li>Ward, G., R. Mistrick, E.S. Lee, A. McNeil, J. Jonsson,
2269 &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">Simulating
2270 the Daylight Performance of Complex Fenestration Systems
2271 Using Bidirectional Scattering Distribution Functions within
2272 Radiance</a>,&quot;
2273 <em>Leukos</em>, 7(4)
2274 April 2011.
2275 <li>Cater, Kirsten, Alan Chalmers, Greg Ward,
2276 &quot;<a href="http://www.anyhere.com/gward/papers/egsr2003.pdf">Detail to Attention:
2277 Exploiting Visual Tasks for Selective Rendering</a>,&quot;
2278 <em>Eurographics Symposium
2279 on Rendering 2003</em>, June 2003.
2280 <li>Ward, Greg, Elena Eydelberg-Vileshin,
2281 &quot;<a HREF="http://www.anyhere.com/gward/papers/egwr02/index.html">Picture Perfect RGB
2282 Rendering Using Spectral Prefiltering and Sharp Color Primaries</a>,&quot;
2283 Thirteenth Eurographics Workshop on Rendering (2002),
2284 P. Debevec and S. Gibson (Editors), June 2002.
2285 <li>Ward, Gregory,
2286 &quot;<a HREF="http://www.anyhere.com/gward/papers/cic01.pdf">High Dynamic Range Imaging</a>,&quot;
2287 Proceedings of the Ninth Color Imaging Conference, November 2001.
2288 <li>Ward, Gregory and Maryann Simmons,
2289 &quot;<a HREF="http://www.anyhere.com/gward/papers/tog99.pdf">
2290 The Holodeck Ray Cache: An Interactive Rendering System for Global Illumination in Nondiffuse
2291 Environments</a>,&quot; ACM Transactions on Graphics, 18(4):361-98, October 1999.
2292 <li>Larson, G.W., &quot;<a HREF="http://www.anyhere.com/gward/papers/ewp98.pdf">The Holodeck: A Parallel
2293 Ray-caching Rendering System</a>,&quot; Proceedings of the Second
2294 Eurographics Workshop on Parallel Graphics and Visualisation,
2295 September 1998.
2296 <li>Larson, G.W. and R.A. Shakespeare,
2297 <a HREF="http://radsite.lbl.gov/radiance/book/index.html"><em>Rendering with Radiance:
2298 the Art and Science of Lighting Visualization</em></a>,
2299 Morgan Kaufmann Publishers, 1998.
2300 <li>Larson, G.W., H. Rushmeier, C. Piatko,
2301 &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/lbnl39882/tonemap.pdf">A Visibility
2302 Matching Tone Reproduction Operator for
2303 High Dynamic Range Scenes</a>,&quot; LBNL Technical Report 39882,
2304 January 1997.
2305 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw95.1/paper.html">Making
2306 Global Illumination User-Friendly</a>,&quot; Sixth
2307 Eurographics Workshop on Rendering, Springer-Verlag,
2308 Dublin, Ireland, June 1995.</li>
2309 <li>Rushmeier, H., G. Ward, C. Piatko, P. Sanders, B. Rust,
2310 &quot;<a HREF="http://radsite.lbl.gov/mgf/compare.html">
2311 Comparing Real and Synthetic Images: Some Ideas about
2312 Metrics</a>,&quot; Sixth Eurographics Workshop on Rendering,
2313 Springer-Verlag, Dublin, Ireland, June 1995.</li>
2314 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.1/paper.html">The RADIANCE
2315 Lighting Simulation and Rendering System</a>,&quot; <em>Computer
2316 Graphics</em>, July 1994.</li>
2317 <li>Rushmeier, H., G. Ward, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.2/energy.html">Energy
2318 Preserving Non-Linear Filters</a>,&quot; <em>Computer
2319 Graphics</em>, July 1994.</li>
2320 <li>Ward, G., &quot;A Contrast-Based Scalefactor for Luminance
2321 Display,&quot; <em>Graphics Gems IV</em>, Edited by Paul Heckbert,
2322 Academic Press 1994.</li>
2323 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg92/paper.html">Measuring and
2324 Modeling Anisotropic Reflection</a>,&quot; <em>Computer
2325 Graphics</em>, Vol. 26, No. 2, July 1992. </li>
2326 <li>Ward, G., P. Heckbert, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw92/paper.html">Irradiance
2327 Gradients</a>,&quot; Third Annual Eurographics Workshop on
2328 Rendering, Springer-Verlag, May 1992. </li>
2329 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw91/erw91.html">Adaptive Shadow
2330 Testing for Ray Tracing</a>&quot; Photorealistic Rendering in
2331 Computer Graphics, proceedings of 1991 Eurographics
2332 Rendering Workshop, edited by P. Brunet and F.W. Jansen,
2333 Springer-Verlag. </li>
2334 <li>Ward, G., &quot;Visualization,&quot; <em>Lighting Design and
2335 Application</em>, Vol. 20, No. 6, June 1990. </li>
2336 <li>Ward, G., F. Rubinstein, R. Clear, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg88/paper.html">A Ray Tracing Solution for
2337 Diffuse Interreflection</a>,&quot; <em>Computer Graphics</em>,
2338 Vol. 22, No. 4, August 1988. </li>
2339 <li>Ward, G., F. Rubinstein, &quot;A New Technique for Computer
2340 Simulation of Illuminated Spaces,&quot; <em>Journal of the
2341 Illuminating Engineering Society</em>, Vol. 17, No. 1,
2342 Winter 1988. </li>
2343 </ul>
2344 <p>
2345 See the <a HREF="index.html">RADIANCE Reference Materials</a> page
2346 for additional information.
2347 <hr>
2348
2349 <a NAME="Index"><h2>7. Types Index</h2></a>
2350
2351 <pre>
2352 <h4>
2353 SURFACES MATERIALS TEXTURES PATTERNS MIXTURES</h4>
2354 <a HREF="#Source">Source</a> <a HREF="#Light">Light</a> <a HREF="#Texfunc">Texfunc</a> <a HREF="#Colorfunc">Colorfunc</a> <a HREF="#Mixfunc">Mixfunc</a>
2355 <a HREF="#Sphere">Sphere</a> <a HREF="#Illum">Illum</a> <a HREF="#Texdata">Texdata</a> <a HREF="#Brightfunc">Brightfunc</a> <a HREF="#Mixdata">Mixdata</a>
2356 <a HREF="#Bubble">Bubble</a> <a HREF="#Glow">Glow</a> <a HREF="#Colordata">Colordata</a> <a HREF="#Mixtext">Mixtext</a>
2357 <a HREF="#Polygon">Polygon</a> <a HREF="#Spotlight">Spotlight</a> <a HREF="#Brightdata">Brightdata</a>
2358 <a HREF="#Cone">Cone</a> <a HREF="#Mirror">Mirror</a> <a HREF="#Colorpict">Colorpict</a>
2359 <a HREF="#Cup">Cup</a> <a HREF="#Prism1">Prism1</a> <a HREF="#Colortext">Colortext</a>
2360 <a HREF="#Cylinder">Cylinder</a> <a HREF="#Prism2">Prism2</a> <a HREF="#Brighttext">Brighttext</a>
2361 <a HREF="#Tube">Tube</a> <a HREF="#Plastic">Plastic</a>
2362 <a HREF="#Ring">Ring</a> <a HREF="#Metal">Metal</a>
2363 <a HREF="#Instance">Instance</a> <a HREF="#Trans">Trans</a>
2364 <a HREF="#Mesh">Mesh</a> <a HREF="#Plastic2">Plastic2</a>
2365 <a HREF="#Metal2">Metal2</a>
2366 <a HREF="#Trans2">Trans2</a>
2367 <a HREF="#Mist">Mist</a>
2368 <a HREF="#Dielectric">Dielectric</a>
2369 <a HREF="#Interface">Interface</a>
2370 <a HREF="#Glass">Glass</a>
2371 <a HREF="#Plasfunc">Plasfunc</a>
2372 <a HREF="#Metfunc">Metfunc</a>
2373 <a HREF="#Transfunc">Transfunc</a>
2374 <a HREF="#BRTDfunc">BRTDfunc</a>
2375 <a HREF="#Plasdata">Plasdata</a>
2376 <a HREF="#Metdata">Metdata</a>
2377 <a HREF="#Transdata">Transdata</a>
2378 <a HREF="#BSDF">BSDF</a>
2379 <a HREF="#Antimatter">Antimatter</a>
2380
2381 </pre>
2382
2383 <p>
2384
2385
2386 <hr>
2387 <center>Last Update: October 22, 1997</center>
2388 </body>
2389 </html>
2390