ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/ray.html
(Generate patch)

Comparing ray/doc/ray.html (file contents):
Revision 1.25 by greg, Mon Jun 25 20:49:10 2018 UTC vs.
Revision 1.34 by greg, Thu Nov 16 21:57:39 2023 UTC

# Line 2 | Line 2
2   <!-- RCSid $Id$ -->
3   <head>
4   <title>
5 < The RADIANCE 5.2 Synthetic Imaging System
5 > The RADIANCE 6.0 Synthetic Imaging System
6   </title>
7   </head>
8   <body>
# Line 10 | Line 10 | The RADIANCE 5.2 Synthetic Imaging System
10   <p>
11  
12   <h1>
13 < The RADIANCE 5.2 Synthetic Imaging System
13 > The RADIANCE 6.0 Synthetic Imaging System
14   </h1>
15  
16   <p>
# Line 83 | Line 83 | The diagram in Figure 1 shows the flow between program
83   (ovals).  
84   The central program is <i>rpict</i>, which produces a picture from a scene
85   description.
86 < <i>Rview</i> is a  variation  of  rpict  that  computes  and displays images
86 > <i>Rvu</i> is a  variation  of  rpict  that  computes  and displays images
87   interactively, and rtrace computes single ray values.
88   Other programs (not shown) connect many of these elements together,
89   such as the executive programs
# Line 822 | Line 822 | unless the line integrals consider enclosed geometry.
822          Also, rather than roughness, specular power is used, which has no
823          physical meaning other than larger numbers are equivalent to a smoother
824          surface.
825 +        Unlike other material types, total reflectance is the sum of
826 +        diffuse and specular colors, and should be adjusted accordingly.
827   <pre>
828          mod ashik2 id
829          4+ ux uy uz funcfile transform
# Line 1154 | Line 1156 | unless the line integrals consider enclosed geometry.
1156   <p>
1157  
1158   <dt>
1159 <        <a NAME="sBSDF">
1160 <        <b>sBSDF</b>
1159 >        <a NAME="aBSDF">
1160 >        <b>aBSDF</b>
1161          </a>
1162  
1163   <dd>
1164 <        The sBSDF material is identical to the BSDF type with two
1164 >        The aBSDF material is identical to the BSDF type with two
1165          important differences.  First, proxy geometry is not
1166          supported, so there is no thickness parameter.  Second, an
1167 <        sBSDF is assumed to have some specular through component,
1167 >        aBSDF is assumed to have some specular through component
1168 >        (the &rsquo;a&rsquo; stands for &quot;aperture&quot;),
1169          which is treated specially during the direct calculation
1170          and when viewing the material.  Based on the BSDF data, the
1171          coefficient of specular transmission is determined and used
1172          for modifying unscattered shadow and view rays.
1173  
1174   <pre>
1175 <        mod sBSDF id
1175 >        mod aBSDF id
1176          5+ BSDFfile ux uy uz funcfile transform
1177          0
1178          0|3|6|9
# Line 1181 | Line 1184 | unless the line integrals consider enclosed geometry.
1184   <p>
1185          If a material has no specular transmitted component, it is
1186          much better to use the BSDF type with a zero thickness
1187 <        than to use sBSDF.
1187 >        than to use aBSDF.
1188   <p>
1189  
1190   <dt>
# Line 1458 | Line 1461 | or:
1461          A section of text meant to  depict  a  picture, perhaps using a special purpose font such as hexbit4x1.fnt, calls for uniform  spacing.  
1462          Reasonable  magnitudes  for  proportional  spacing are between 0.1 (for tightly spaced characters) and 0.3 (for wide spacing).
1463  
1464 + <p>
1465 +
1466 + <dt>
1467 +        <a NAME="Spectrum">
1468 +        <b>Spectrum</b>
1469 +        </a>
1470 +
1471 + <dd>
1472 +        The spectrum primitive is the most basic type for introducing spectral
1473 +        color to a material.
1474 +        Since materials only provide RGB parameters, spectral patterns
1475 +        are the only way to superimpose wavelength-dependent behavior.
1476 +
1477 + <pre>
1478 +        mod spectrum id
1479 +        0
1480 +        0
1481 +        5+ nmA nmB s1 s2 .. sN
1482 + </pre>
1483 +
1484 + <p>
1485 +        The first two real arguments indicate the limits of the covered
1486 +        spectral range in nanometers.
1487 +        Subsequent real values correspond to multipliers in each wavelength band,
1488 +        where the first band goes from nmA to nmA+(nmB-nmA)/N, and N is the
1489 +        number of bands (i.e., the number of real arguments minus 2).
1490 +        The nmA wavelength may be greater or less than nmB,
1491 +        but they may not be equal, and their ordering matches
1492 +        the order of the spectral values.
1493 +        A minimum of 3 values must be given, which would act
1494 +        more or less the same as a constant RGB multiplier.
1495 +        As with RGB values, spectral quantities normally range between 0
1496 +        and 1 at each wavelength, or average to 1.0 against a standard
1497 +        sensitivity functions such as V(lambda).
1498 +        The best results obtain when the spectral range and number
1499 +        of samples match rendering options, though resampling will handle
1500 +        any differences, zero-filling wavelenths outside the nmA to nmB
1501 +        range.
1502 +        A warning will be issued if the given wavelength range does not
1503 +        adequately cover the visible spectrum.
1504 +
1505 + <p>
1506 +
1507 + <dt>
1508 +        <a NAME="Specfile">
1509 +        <b>Specfile</b>
1510 +        </a>
1511 +
1512 + <dd>
1513 +        The specfile primitive is equivalent to the spectrum type, but
1514 +        the wavelength range and values are contained in a 1-dimensional
1515 +        data file.
1516 +        This may be a more convenient way to specify a spectral color,
1517 +        especially one corresponding to a standard illuminant such as D65
1518 +        or a library of measured spectra.
1519 +
1520 + <pre>
1521 +        mod specfile id
1522 +        1 datafile
1523 +        0
1524 +        0
1525 + </pre>
1526 +
1527 + <p>
1528 +        As with the spectrum type, rendering wavelengths outside the defined
1529 +        range will be zero-filled.
1530 +        Unlike the spectrum type, the file may contain non-uniform samples.
1531 +
1532 + <p>
1533 +
1534 + <dt>
1535 +        <a NAME="Specfunc">
1536 +        <b>Specfunc</b>
1537 +        </a>
1538 +
1539 + <dd>
1540 +        The specfunc primitive offers dynamic control over a spectral
1541 +        pattern, similar to the colorfunc type.
1542 +
1543 + <pre>
1544 +        mod specfunc id
1545 +        2+ sval funcfile transform
1546 +        0
1547 +        2+ nmA nmB A3 ..
1548 + </pre>
1549 +
1550 + <p>
1551 +        Like the spectrum primitive, the wavelength range is specified
1552 +        in the first two real arguments, and additional real values are
1553 +        accessible to the sval function.
1554 +        This function is fed a wavelenth sample
1555 +        between nmA and nmB as its only argument,
1556 +        and it returns the corresponding spectral intensity.
1557 +
1558   </dl>
1559  
1560   <p>
# Line 1806 | Line 1903 | The details of this process  are  not  important, but
1903   directs the use of a scene description.
1904   <ul>
1905   <li>
1906 < <a NAME="rvu" HREF="../man_html/rvu.1.html"><b>Rview</b></a>  is  ray-tracing  program  for  viewing  a  scene interactively.  
1906 > <a NAME="rvu" HREF="../man_html/rvu.1.html"><b>Rvu</b></a>  is  ray-tracing  program  for  viewing  a  scene interactively.  
1907   When  the user specifies a new perspective, rvu quickly displays a rough image on the  terminal,  
1908   then progressively increases the resolution as the user looks on.
1909   He can select a particular section of the image to  improve, or  move  to  a different view and start over.  
# Line 1842 | Line 1939 | Pictures may be displayed directly under X11 using the
1939   or converted a standard image format using one of the following
1940   <b>translators</b>:
1941          <ul>
1942 <        <li> <a HREF="../man_html/ra_bmp.1.html"><b>Ra_bmp</b>
1942 >        <li> <a HREF="../man_html/ra_bmp.1.html"><b>Ra_bmp</b></a>
1943                  converts to and from BMP image format.
1944          <li> <a HREF="../man_html/ra_ppm.1.html"><b>Ra_ppm</b></a>
1945                  converts to and from Poskanzer Portable Pixmap formats.
# Line 1871 | Line 1968 | or converted a standard image format using one of the
1968   <pre>
1969   The Radiance Software License, Version 1.0
1970  
1971 < Copyright (c) 1990 - 2014 The Regents of the University of California,
1971 > Copyright (c) 1990 - 2021 The Regents of the University of California,
1972   through Lawrence Berkeley National Laboratory.   All rights reserved.
1973  
1974   Redistribution and use in source and binary forms, with or without
# Line 1944 | Line 2041 | Ecole  Polytechnique  Federale de Lausanne (EPFL Unive
2041   </h2>
2042   <p>
2043   <ul>
2044 +    <li>Ward, Gregory J., Bruno Bueno, David Geisler-Moroder,
2045 +      Lars O. Grobe, Jacob C. Jonsson, Eleanor
2046 +      S. Lee, Taoning Wang, Helen Rose Wilson,
2047 +      &quot;<a href="https://doi.org/10.1016/j.enbuild.2022.111890">Daylight
2048 +      Simulation Workflows Incorporating Measured Bidirectional
2049 +      Scattering Distribution Functions</a>&quot;
2050 +      <em>Energy &amp; Buildings</em>, Vol. 259, No. 11890, 2022.
2051 +    <li>Wang, Taoning, Gregory Ward, Eleanor Lee,
2052 +      &quot;<a href="https://authors.elsevier.com/a/1XQ0a1M7zGwT7v">Efficient
2053 +      modeling of optically-complex, non-coplanar exterior shading:
2054 +      Validation of matrix algebraic methods</a>&quot;
2055 +      <em>Energy & Buildings</em>, vol. 174, pp. 464-83, Sept. 2018.
2056 +    <li>Lee, Eleanor S., David Geisler-Moroder, Gregory Ward,
2057 +      &quot;<a href="https://eta.lbl.gov/sites/default/files/publications/solar_energy.pdf">Modeling
2058 +      the direct sun component in buildings using matrix
2059 +      algebraic approaches: Methods and
2060 +      validation</a>,&quot; <em>Solar Energy</em>,
2061 +      vol. 160, 15 January 2018, pp 380-395.
2062 +    <li>Narain, Rahul, Rachel A. Albert, Abdullah Bulbul,
2063 +       Gregory J. Ward, Marty Banks, James F. O'Brien,
2064 +       &quot;<a href="http://graphics.berkeley.edu/papers/Narain-OPI-2015-08/index.html">Optimal
2065 +       Presentation of Imagery with Focus
2066 +       Cues on Multi-Plane Displays</a>,&quot;
2067 +       <em>SIGGRAPH 2015</em>.
2068 +    <li>Ward, Greg, Murat Kurt, and Nicolas Bonneel,
2069 +        &quot;<a href="papers/WMAM14_Tensor_Tree_Representation.pdf">Reducing
2070 +        Anisotropic BSDF Measurement to Common Practice</a>,&quot;
2071 +        <em>Workshop on Material Appearance Modeling</em>, 2014.
2072 +    <li>Banks, Martin, Abdullah Bulbul, Rachel Albert, Rahul Narain,
2073 +        James F. O'Brien, Gregory Ward,
2074 +        &quot;<a href="http://graphics.berkeley.edu/papers/Banks-TPO-2014-05/index.html">The
2075 +        Perception of Surface Material from Disparity and Focus Cues</a>,&quot;
2076 +        <em>VSS 2014</em>.
2077      <li>McNeil, A., C.J. Jonsson, D. Appelfeld, G. Ward, E.S. Lee,
2078          &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">
2079          A validation of a ray-tracing tool used to generate

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines