ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/ray.html
(Generate patch)

Comparing ray/doc/ray.html (file contents):
Revision 1.11 by greg, Wed Apr 6 22:03:04 2011 UTC vs.
Revision 1.31 by greg, Thu May 11 17:18:39 2023 UTC

# Line 1 | Line 1
1   <html>
2 + <!-- RCSid $Id$ -->
3   <head>
4   <title>
5 < The RADIANCE 4.1 Synthetic Imaging System
5 > The RADIANCE 5.4 Synthetic Imaging System
6   </title>
7   </head>
8   <body>
# Line 9 | Line 10 | The RADIANCE 4.1 Synthetic Imaging System
10   <p>
11  
12   <h1>
13 < The RADIANCE 4.1 Synthetic Imaging System
13 > The RADIANCE 5.4 Synthetic Imaging System
14   </h1>
15  
16   <p>
# Line 82 | Line 83 | The diagram in Figure 1 shows the flow between program
83   (ovals).  
84   The central program is <i>rpict</i>, which produces a picture from a scene
85   description.
86 < <i>Rview</i> is a  variation  of  rpict  that  computes  and displays images
86 > <i>Rvu</i> is a  variation  of  rpict  that  computes  and displays images
87   interactively, and rtrace computes single ray values.
88   Other programs (not shown) connect many of these elements together,
89   such as the executive programs
# Line 797 | Line 798 | unless the line integrals consider enclosed geometry.
798  
799   <dd>
800          Trans2 is the anisotropic version of <a HREF="#Trans">trans</a>.  
801 <        The string arguments  are  the same as for plastic2, and the real arguments are the same as  for  trans  but  with  an  additional roughness value.
801 >        The string arguments  are  the same as for <a HREF="#Plastic2">plastic2</a>,
802 >        and the real arguments are the same as  for  trans  but  with  an  additional roughness value.
803  
804   <pre>
805          mod trans2 id
# Line 809 | Line 811 | unless the line integrals consider enclosed geometry.
811   <p>
812  
813   <dt>
814 +        <a NAME="Ashik2">
815 +        <b>Ashik2</b>
816 +        </a>
817 +
818 + <dd>
819 +        Ashik2 is the anisotropic reflectance model by Ashikhmin & Shirley.
820 +        The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>, but the real
821 +        arguments have additional flexibility to specify the specular color.
822 +        Also, rather than roughness, specular power is used, which has no
823 +        physical meaning other than larger numbers are equivalent to a smoother
824 +        surface.
825 +        Unlike other material types, total reflectance is the sum of
826 +        diffuse and specular colors, and should be adjusted accordingly.
827 + <pre>
828 +        mod ashik2 id
829 +        4+ ux uy uz funcfile transform
830 +        0
831 +        8 dred dgrn dblu sred sgrn sblu u-power v-power
832 + </pre>
833 +
834 + <p>
835 +
836 + <dt>
837          <a NAME="Dielectric">
838          <b>Dielectric</b>
839          </a>
# Line 1092 | Line 1117 | unless the line integrals consider enclosed geometry.
1117          a parallel BSDF surface may be
1118          placed slightly less than the given thickness away from the front surface
1119          to enclose the complex geometry on both sides.
1120 +        The sign of the thickness is important, as it indicates
1121 +        whether the proxied geometry is behind the BSDF
1122 +        surface (when thickness is positive) or in front (when
1123 +        thickness is negative).
1124   <p>
1125 <        The second string argument is the name of the BSDF file, which is
1126 <        found in the usual auxiliary locations.
1127 <        The following three string parameters name variables for an &quot;up&quot; vector,
1128 <        which together with the surface normal, define the
1129 <        local coordinate system that orients the BSDF.
1130 <        These variables, along with the thickness, are defined in a function
1131 <        file given as the next string argument.
1132 <        An optional transform is used to scale the thickness and reorient the up vector.
1125 >        The second string argument is the name of the BSDF file,
1126 >        which is found in the usual auxiliary locations.  The
1127 >        following three string parameters name variables for an
1128 >        &quot;up&quot; vector, which together with the surface
1129 >        normal, define the local coordinate system that orients the
1130 >        BSDF.  These variables, along with the thickness, are defined
1131 >        in a function file given as the next string argument.  An
1132 >        optional transform is used to scale the thickness and
1133 >        reorient the up vector.
1134   <p>
1135 <        If no real arguments are given, the BSDF is used by itself to determine
1136 <        reflection and transmission.
1137 <        If there are at least 3 real arguments, the first triplet is an
1138 <        additional diffuse reflectance for the front side.
1139 <        At least 6 real arguments adds diffuse reflectance to the rear side of the surface.
1140 <        If there are 9 real arguments, the final triplet will be taken as an additional
1141 <        diffuse transmittance.
1142 <        All diffuse components as well as the non-diffuse transmission are
1143 <        modified by patterns applied to this material.
1144 <        The non-diffuse reflection from either side are unaffected.
1145 <        Textures perturb the effective surface normal in the usual way.
1135 >        If no real arguments are given, the BSDF is used by itself
1136 >        to determine reflection and transmission.  If there are at
1137 >        least 3 real arguments, the first triplet is an additional
1138 >        diffuse reflectance for the front side.  At least 6 real
1139 >        arguments adds diffuse reflectance to the rear side of the
1140 >        surface.  If there are 9 real arguments, the final triplet
1141 >        will be taken as an additional diffuse transmittance.  All
1142 >        diffuse components as well as the non-diffuse transmission
1143 >        are modified by patterns applied to this material.  The
1144 >        non-diffuse reflection from either side are unaffected.
1145 >        Textures perturb the effective surface normal in the usual
1146 >        way.
1147   <p>
1148 <        The surface normal of this type is not altered to face the incoming ray,
1149 <        so the front and back BSDF reflections may differ.
1150 <        (Transmission is identical front-to-back by physical law.)
1151 <        If back visibility is turned off during rendering and there is no
1152 <        transmission or back-side reflection, only then the surface will be
1153 <        invisible from behind.
1154 <        Unlike other data-driven material types, the BSDF type is fully
1155 <        supported and all parts of the distribution are properly sampled.
1148 >        The surface normal of this type is not altered to face the
1149 >        incoming ray, so the front and back BSDF reflections may
1150 >        differ.  (Transmission is identical front-to-back by physical
1151 >        law.) If back visibility is turned off during rendering and
1152 >        there is no transmission or back-side reflection, only then
1153 >        the surface will be invisible from behind.  Unlike other
1154 >        data-driven material types, the BSDF type is fully supported
1155 >        and all parts of the distribution are properly sampled.
1156   <p>
1157  
1158   <dt>
1159 +        <a NAME="aBSDF">
1160 +        <b>aBSDF</b>
1161 +        </a>
1162 +
1163 + <dd>
1164 +        The aBSDF material is identical to the BSDF type with two
1165 +        important differences.  First, proxy geometry is not
1166 +        supported, so there is no thickness parameter.  Second, an
1167 +        aBSDF is assumed to have some specular through component
1168 +        (the &rsquo;a&rsquo; stands for &quot;aperture&quot;),
1169 +        which is treated specially during the direct calculation
1170 +        and when viewing the material.  Based on the BSDF data, the
1171 +        coefficient of specular transmission is determined and used
1172 +        for modifying unscattered shadow and view rays.
1173 +
1174 + <pre>
1175 +        mod aBSDF id
1176 +        5+ BSDFfile ux uy uz funcfile transform
1177 +        0
1178 +        0|3|6|9
1179 +             rfdif gfdif bfdif
1180 +             rbdif gbdif bbdif
1181 +             rtdif gtdif btdif
1182 + </pre>
1183 +
1184 + <p>
1185 +        If a material has no specular transmitted component, it is
1186 +        much better to use the BSDF type with a zero thickness
1187 +        than to use aBSDF.
1188 + <p>
1189 +
1190 + <dt>
1191          <a NAME="Antimatter">
1192          <b>Antimatter</b>
1193          </a>
# Line 1408 | Line 1471 | or:
1471   </h4>
1472  
1473   A mixture is a blend of one or more materials or textures and patterns.
1474 + Blended materials should not be light source types or virtual source types.
1475   The basic types are given below.
1476  
1477   <p>
# Line 1480 | Line 1544 | A mixfunc mixes  two  modifiers  procedurally.   It  i
1544          arguments, the red, green and blue values
1545          corresponding to the pixel at (u,v).
1546  
1483 </dl>
1547   <p>
1548  
1549   <dt>
# Line 1746 | Line 1809 | The details of this process  are  not  important, but
1809   directs the use of a scene description.
1810   <ul>
1811   <li>
1812 < <a NAME="rvu" HREF="../man_html/rvu.1.html"><b>Rview</b></a>  is  ray-tracing  program  for  viewing  a  scene interactively.  
1812 > <a NAME="rvu" HREF="../man_html/rvu.1.html"><b>Rvu</b></a>  is  ray-tracing  program  for  viewing  a  scene interactively.  
1813   When  the user specifies a new perspective, rvu quickly displays a rough image on the  terminal,  
1814   then progressively increases the resolution as the user looks on.
1815   He can select a particular section of the image to  improve, or  move  to  a different view and start over.  
# Line 1782 | Line 1845 | Pictures may be displayed directly under X11 using the
1845   or converted a standard image format using one of the following
1846   <b>translators</b>:
1847          <ul>
1848 <        <li> <b>Ra_avs</b>
1849 <                converts to and from AVS image format.
1787 <        <li> <a HREF="../man_html/ra_pict.1.html"><b>Ra_pict</b></a>
1788 <                converts to Macintosh 32-bit PICT2 format.
1848 >        <li> <a HREF="../man_html/ra_bmp.1.html"><b>Ra_bmp</b></a>
1849 >                converts to and from BMP image format.
1850          <li> <a HREF="../man_html/ra_ppm.1.html"><b>Ra_ppm</b></a>
1851                  converts to and from Poskanzer Portable Pixmap formats.
1791        <li> <a HREF="../man_html/ra_pr.1.html"><b>Ra_pr</b></a>
1792                converts to and from Sun 8-bit rasterfile format.
1793        <li> <a HREF="../man_html/ra_pr24.1.html"><b>Ra_pr24</b></a>
1794                converts to and from Sun 24-bit rasterfile format.
1852          <li> <a HREF="../man_html/ra_ps.1.html"><b>Ra_ps</b></a>
1853                  converts to PostScript color and greyscale formats.
1854          <li> <a HREF="../man_html/ra_rgbe.1.html"><b>Ra_rgbe</b></a>
# Line 1817 | Line 1874 | or converted a standard image format using one of the
1874   <pre>
1875   The Radiance Software License, Version 1.0
1876  
1877 < Copyright (c) 1990 - 2010 The Regents of the University of California,
1877 > Copyright (c) 1990 - 2021 The Regents of the University of California,
1878   through Lawrence Berkeley National Laboratory.   All rights reserved.
1879  
1880   Redistribution and use in source and binary forms, with or without
# Line 1851 | Line 1908 | are met:
1908        nor may &quot;Radiance&quot; appear in their name, without prior written
1909        permission of Lawrence Berkeley National Laboratory.
1910  
1911 < THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
1911 > THIS SOFTWARE IS PROVIDED ``AS IS&quot; AND ANY EXPRESSED OR IMPLIED
1912   WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
1913   OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
1914   DISCLAIMED.   IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
# Line 1890 | Line 1947 | Ecole  Polytechnique  Federale de Lausanne (EPFL Unive
1947   </h2>
1948   <p>
1949   <ul>
1950 +    <li>Wang, Taoning, Gregory Ward, Eleanor Lee,
1951 +      &quot;<a href="https://authors.elsevier.com/a/1XQ0a1M7zGwT7v">Efficient
1952 +      modeling of optically-complex, non-coplanar exterior shading:
1953 +      Validation of matrix algebraic methods</a>&quot;
1954 +      <em>Energy & Buildings</em>, vol. 174, pp. 464-83, Sept. 2018.
1955 +    <li>Lee, Eleanor S., David Geisler-Moroder, Gregory Ward,
1956 +      &quot;<a href="https://eta.lbl.gov/sites/default/files/publications/solar_energy.pdf">Modeling
1957 +      the direct sun component in buildings using matrix
1958 +      algebraic approaches: Methods and
1959 +      validation</a>,&quot; <em>Solar Energy</em>,
1960 +      vol. 160, 15 January 2018, pp 380-395.
1961 +    <li>Narain, Rahul, Rachel A. Albert, Abdullah Bulbul,
1962 +       Gregory J. Ward, Marty Banks, James F. O'Brien,
1963 +       &quot;<a href="http://graphics.berkeley.edu/papers/Narain-OPI-2015-08/index.html">Optimal
1964 +       Presentation of Imagery with Focus
1965 +       Cues on Multi-Plane Displays</a>,&quot;
1966 +       <em>SIGGRAPH 2015</em>.
1967 +    <li>Ward, Greg, Murat Kurt, and Nicolas Bonneel,
1968 +        &quot;<a href="papers/WMAM14_Tensor_Tree_Representation.pdf">Reducing
1969 +        Anisotropic BSDF Measurement to Common Practice</a>,&quot;
1970 +        <em>Workshop on Material Appearance Modeling</em>, 2014.
1971 +    <li>Banks, Martin, Abdullah Bulbul, Rachel Albert, Rahul Narain,
1972 +        James F. O'Brien, Gregory Ward,
1973 +        &quot;<a href="http://graphics.berkeley.edu/papers/Banks-TPO-2014-05/index.html">The
1974 +        Perception of Surface Material from Disparity and Focus Cues</a>,&quot;
1975 +        <em>VSS 2014</em>.
1976 +    <li>McNeil, A., C.J. Jonsson, D. Appelfeld, G. Ward, E.S. Lee,
1977 +        &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">
1978 +        A validation of a ray-tracing tool used to generate
1979 +        bi-directional scattering distribution functions for
1980 +        complex fenestration systems</a>,&quot;
1981 +        <em>Solar Energy</em>, 98, 404-14,
1982 +        November 2013.
1983 +    <li>Ward, G., R. Mistrick, E.S. Lee, A. McNeil, J. Jonsson,
1984 +        &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">Simulating
1985 +        the Daylight Performance of Complex Fenestration Systems
1986 +        Using Bidirectional Scattering Distribution Functions within
1987 +        Radiance</a>,&quot;
1988 +        <em>Leukos</em>, 7(4)
1989 +        April 2011.
1990      <li>Cater, Kirsten, Alan Chalmers, Greg Ward,
1991          &quot;<a href="http://www.anyhere.com/gward/papers/egsr2003.pdf">Detail to Attention:
1992          Exploiting Visual Tasks for Selective Rendering</a>,&quot;
1993          <em>Eurographics Symposium
1994          on Rendering 2003</em>, June 2003.
1995      <li>Ward, Greg, Elena Eydelberg-Vileshin,
1996 <        ``<a HREF="http://www.anyhere.com/gward/papers/egwr02/index.html">Picture Perfect RGB
1997 <        Rendering Using Spectral Prefiltering and Sharp Color Primaries</a>,''
1996 >        &quot;<a HREF="http://www.anyhere.com/gward/papers/egwr02/index.html">Picture Perfect RGB
1997 >        Rendering Using Spectral Prefiltering and Sharp Color Primaries</a>,&quot;
1998          Thirteenth Eurographics Workshop on Rendering (2002),
1999          P. Debevec and S. Gibson (Editors), June 2002.
2000      <li>Ward, Gregory,
2001 <        ``<a HREF="http://www.anyhere.com/gward/papers/cic01.pdf">High Dynamic Range Imaging</a>,''
2001 >        &quot;<a HREF="http://www.anyhere.com/gward/papers/cic01.pdf">High Dynamic Range Imaging</a>,&quot;
2002          Proceedings of the Ninth Color Imaging Conference, November 2001.
2003      <li>Ward, Gregory and Maryann Simmons,
2004 <        ``<a HREF="http://www.anyhere.com/gward/papers/tog99.pdf">
2004 >        &quot;<a HREF="http://www.anyhere.com/gward/papers/tog99.pdf">
2005          The Holodeck Ray Cache: An Interactive Rendering System for Global Illumination in Nondiffuse
2006 <        Environments</a>,'' ACM Transactions on Graphics, 18(4):361-98, October 1999.
2007 <    <li>Larson, G.W., ``<a HREF="http://www.anyhere.com/gward/papers/ewp98.pdf">The Holodeck: A Parallel
2008 <        Ray-caching Rendering System</a>,'' Proceedings of the Second
2006 >        Environments</a>,&quot; ACM Transactions on Graphics, 18(4):361-98, October 1999.
2007 >    <li>Larson, G.W., &quot;<a HREF="http://www.anyhere.com/gward/papers/ewp98.pdf">The Holodeck: A Parallel
2008 >        Ray-caching Rendering System</a>,&quot; Proceedings of the Second
2009          Eurographics Workshop on Parallel Graphics and Visualisation,
2010          September 1998.
2011      <li>Larson, G.W. and R.A. Shakespeare,
# Line 1916 | Line 2013 | Ecole  Polytechnique  Federale de Lausanne (EPFL Unive
2013          the Art and Science of Lighting Visualization</em></a>,
2014          Morgan Kaufmann Publishers, 1998.
2015      <li>Larson, G.W., H. Rushmeier, C. Piatko,
2016 <        ``<a HREF="http://radsite.lbl.gov/radiance/papers/lbnl39882/tonemap.pdf">A Visibility
2016 >        &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/lbnl39882/tonemap.pdf">A Visibility
2017          Matching Tone Reproduction Operator for
2018 <        High Dynamic Range Scenes</a>,'' LBNL Technical Report 39882,
2018 >        High Dynamic Range Scenes</a>,&quot; LBNL Technical Report 39882,
2019          January 1997.
2020 <    <li>Ward, G., ``<a HREF="http://radsite.lbl.gov/radiance/papers/erw95.1/paper.html">Making
2021 <        Global Illumination User-Friendly</a>,'' Sixth
2020 >    <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw95.1/paper.html">Making
2021 >        Global Illumination User-Friendly</a>,&quot; Sixth
2022          Eurographics Workshop on Rendering, Springer-Verlag,
2023          Dublin, Ireland, June 1995.</li>
2024      <li>Rushmeier, H., G. Ward, C. Piatko, P. Sanders, B. Rust,
2025 <        ``<a HREF="http://radsite.lbl.gov/mgf/compare.html">
2025 >        &quot;<a HREF="http://radsite.lbl.gov/mgf/compare.html">
2026          Comparing Real and Synthetic Images: Some Ideas about
2027 <        Metrics</a>,'' Sixth Eurographics Workshop on Rendering,
2027 >        Metrics</a>,&quot; Sixth Eurographics Workshop on Rendering,
2028          Springer-Verlag, Dublin, Ireland, June 1995.</li>
2029 <    <li>Ward, G., ``<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.1/paper.html">The RADIANCE
2030 <        Lighting Simulation and Rendering System</a>,'' <em>Computer
2029 >    <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.1/paper.html">The RADIANCE
2030 >        Lighting Simulation and Rendering System</a>,&quot; <em>Computer
2031          Graphics</em>, July 1994.</li>
2032 <    <li>Rushmeier, H., G. Ward, ``<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.2/energy.html">Energy
2033 <        Preserving Non-Linear Filters</a>,'' <em>Computer
2032 >    <li>Rushmeier, H., G. Ward, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.2/energy.html">Energy
2033 >        Preserving Non-Linear Filters</a>,&quot; <em>Computer
2034          Graphics</em>, July 1994.</li>
2035 <    <li>Ward, G., ``A Contrast-Based Scalefactor for Luminance
2036 <        Display,'' <em>Graphics Gems IV</em>, Edited by Paul Heckbert,
2035 >    <li>Ward, G., &quot;A Contrast-Based Scalefactor for Luminance
2036 >        Display,&quot; <em>Graphics Gems IV</em>, Edited by Paul Heckbert,
2037          Academic Press 1994.</li>
2038 <    <li>Ward, G., ``<a HREF="http://radsite.lbl.gov/radiance/papers/sg92/paper.html">Measuring and
2039 <        Modeling Anisotropic Reflection</a>,'' <em>Computer
2038 >    <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg92/paper.html">Measuring and
2039 >        Modeling Anisotropic Reflection</a>,&quot; <em>Computer
2040          Graphics</em>, Vol. 26, No. 2, July 1992. </li>
2041 <    <li>Ward, G., P. Heckbert, ``<a HREF="http://radsite.lbl.gov/radiance/papers/erw92/paper.html">Irradiance
2042 <        Gradients</a>,'' Third Annual Eurographics Workshop on
2041 >    <li>Ward, G., P. Heckbert, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw92/paper.html">Irradiance
2042 >        Gradients</a>,&quot; Third Annual Eurographics Workshop on
2043          Rendering, Springer-Verlag, May 1992. </li>
2044 <    <li>Ward, G., ``<a HREF="http://radsite.lbl.gov/radiance/papers/erw91/erw91.html">Adaptive Shadow
2045 <        Testing for Ray Tracing</a>'' Photorealistic Rendering in
2044 >    <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw91/erw91.html">Adaptive Shadow
2045 >        Testing for Ray Tracing</a>&quot; Photorealistic Rendering in
2046          Computer Graphics, proceedings of 1991 Eurographics
2047          Rendering Workshop, edited by P. Brunet and F.W. Jansen,
2048          Springer-Verlag. </li>
2049 <    <li>Ward, G., ``Visualization,'' <em>Lighting Design and
2049 >    <li>Ward, G., &quot;Visualization,&quot; <em>Lighting Design and
2050          Application</em>, Vol. 20, No. 6, June 1990. </li>
2051 <    <li>Ward, G., F. Rubinstein, R. Clear, ``<a HREF="http://radsite.lbl.gov/radiance/papers/sg88/paper.html">A Ray Tracing Solution for
2052 <        Diffuse Interreflection</a>,'' <em>Computer Graphics</em>,
2051 >    <li>Ward, G., F. Rubinstein, R. Clear, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg88/paper.html">A Ray Tracing Solution for
2052 >        Diffuse Interreflection</a>,&quot; <em>Computer Graphics</em>,
2053          Vol. 22, No. 4, August 1988. </li>
2054 <    <li>Ward, G., F. Rubinstein, ``A New Technique for Computer
2055 <        Simulation of Illuminated Spaces,'' <em>Journal of the
2054 >    <li>Ward, G., F. Rubinstein, &quot;A New Technique for Computer
2055 >        Simulation of Illuminated Spaces,&quot; <em>Journal of the
2056          Illuminating Engineering Society</em>, Vol. 17, No. 1,
2057          Winter 1988. </li>
2058   </ul>

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines