ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/ray.html
(Generate patch)

Comparing ray/doc/ray.html (file contents):
Revision 1.11 by greg, Wed Apr 6 22:03:04 2011 UTC vs.
Revision 1.27 by greg, Mon Oct 8 20:04:09 2018 UTC

# Line 1 | Line 1
1   <html>
2 + <!-- RCSid $Id$ -->
3   <head>
4   <title>
5 < The RADIANCE 4.1 Synthetic Imaging System
5 > The RADIANCE 5.2 Synthetic Imaging System
6   </title>
7   </head>
8   <body>
# Line 9 | Line 10 | The RADIANCE 4.1 Synthetic Imaging System
10   <p>
11  
12   <h1>
13 < The RADIANCE 4.1 Synthetic Imaging System
13 > The RADIANCE 5.2 Synthetic Imaging System
14   </h1>
15  
16   <p>
# Line 797 | Line 798 | unless the line integrals consider enclosed geometry.
798  
799   <dd>
800          Trans2 is the anisotropic version of <a HREF="#Trans">trans</a>.  
801 <        The string arguments  are  the same as for plastic2, and the real arguments are the same as  for  trans  but  with  an  additional roughness value.
801 >        The string arguments  are  the same as for <a HREF="#Plastic2">plastic2</a>,
802 >        and the real arguments are the same as  for  trans  but  with  an  additional roughness value.
803  
804   <pre>
805          mod trans2 id
# Line 809 | Line 811 | unless the line integrals consider enclosed geometry.
811   <p>
812  
813   <dt>
814 +        <a NAME="Ashik2">
815 +        <b>Ashik2</b>
816 +        </a>
817 +
818 + <dd>
819 +        Ashik2 is the anisotropic reflectance model by Ashikhmin & Shirley.
820 +        The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>, but the real
821 +        arguments have additional flexibility to specify the specular color.
822 +        Also, rather than roughness, specular power is used, which has no
823 +        physical meaning other than larger numbers are equivalent to a smoother
824 +        surface.
825 + <pre>
826 +        mod ashik2 id
827 +        4+ ux uy uz funcfile transform
828 +        0
829 +        8 dred dgrn dblu sred sgrn sblu u-power v-power
830 + </pre>
831 +
832 + <p>
833 +
834 + <dt>
835          <a NAME="Dielectric">
836          <b>Dielectric</b>
837          </a>
# Line 1092 | Line 1115 | unless the line integrals consider enclosed geometry.
1115          a parallel BSDF surface may be
1116          placed slightly less than the given thickness away from the front surface
1117          to enclose the complex geometry on both sides.
1118 +        The sign of the thickness is important, as it indicates
1119 +        whether the proxied geometry is behind the BSDF
1120 +        surface (when thickness is positive) or in front (when
1121 +        thickness is negative).
1122   <p>
1123 <        The second string argument is the name of the BSDF file, which is
1124 <        found in the usual auxiliary locations.
1125 <        The following three string parameters name variables for an &quot;up&quot; vector,
1126 <        which together with the surface normal, define the
1127 <        local coordinate system that orients the BSDF.
1128 <        These variables, along with the thickness, are defined in a function
1129 <        file given as the next string argument.
1130 <        An optional transform is used to scale the thickness and reorient the up vector.
1123 >        The second string argument is the name of the BSDF file,
1124 >        which is found in the usual auxiliary locations.  The
1125 >        following three string parameters name variables for an
1126 >        &quot;up&quot; vector, which together with the surface
1127 >        normal, define the local coordinate system that orients the
1128 >        BSDF.  These variables, along with the thickness, are defined
1129 >        in a function file given as the next string argument.  An
1130 >        optional transform is used to scale the thickness and
1131 >        reorient the up vector.
1132   <p>
1133 <        If no real arguments are given, the BSDF is used by itself to determine
1134 <        reflection and transmission.
1135 <        If there are at least 3 real arguments, the first triplet is an
1136 <        additional diffuse reflectance for the front side.
1137 <        At least 6 real arguments adds diffuse reflectance to the rear side of the surface.
1138 <        If there are 9 real arguments, the final triplet will be taken as an additional
1139 <        diffuse transmittance.
1140 <        All diffuse components as well as the non-diffuse transmission are
1141 <        modified by patterns applied to this material.
1142 <        The non-diffuse reflection from either side are unaffected.
1143 <        Textures perturb the effective surface normal in the usual way.
1133 >        If no real arguments are given, the BSDF is used by itself
1134 >        to determine reflection and transmission.  If there are at
1135 >        least 3 real arguments, the first triplet is an additional
1136 >        diffuse reflectance for the front side.  At least 6 real
1137 >        arguments adds diffuse reflectance to the rear side of the
1138 >        surface.  If there are 9 real arguments, the final triplet
1139 >        will be taken as an additional diffuse transmittance.  All
1140 >        diffuse components as well as the non-diffuse transmission
1141 >        are modified by patterns applied to this material.  The
1142 >        non-diffuse reflection from either side are unaffected.
1143 >        Textures perturb the effective surface normal in the usual
1144 >        way.
1145   <p>
1146 <        The surface normal of this type is not altered to face the incoming ray,
1147 <        so the front and back BSDF reflections may differ.
1148 <        (Transmission is identical front-to-back by physical law.)
1149 <        If back visibility is turned off during rendering and there is no
1150 <        transmission or back-side reflection, only then the surface will be
1151 <        invisible from behind.
1152 <        Unlike other data-driven material types, the BSDF type is fully
1153 <        supported and all parts of the distribution are properly sampled.
1146 >        The surface normal of this type is not altered to face the
1147 >        incoming ray, so the front and back BSDF reflections may
1148 >        differ.  (Transmission is identical front-to-back by physical
1149 >        law.) If back visibility is turned off during rendering and
1150 >        there is no transmission or back-side reflection, only then
1151 >        the surface will be invisible from behind.  Unlike other
1152 >        data-driven material types, the BSDF type is fully supported
1153 >        and all parts of the distribution are properly sampled.
1154   <p>
1155  
1156   <dt>
1157 +        <a NAME="aBSDF">
1158 +        <b>aBSDF</b>
1159 +        </a>
1160 +
1161 + <dd>
1162 +        The aBSDF material is identical to the BSDF type with two
1163 +        important differences.  First, proxy geometry is not
1164 +        supported, so there is no thickness parameter.  Second, an
1165 +        aBSDF is assumed to have some specular through component
1166 +        (the &rsquo;a&rsquo; stands for &quot;aperture&quot;),
1167 +        which is treated specially during the direct calculation
1168 +        and when viewing the material.  Based on the BSDF data, the
1169 +        coefficient of specular transmission is determined and used
1170 +        for modifying unscattered shadow and view rays.
1171 +
1172 + <pre>
1173 +        mod aBSDF id
1174 +        5+ BSDFfile ux uy uz funcfile transform
1175 +        0
1176 +        0|3|6|9
1177 +             rfdif gfdif bfdif
1178 +             rbdif gbdif bbdif
1179 +             rtdif gtdif btdif
1180 + </pre>
1181 +
1182 + <p>
1183 +        If a material has no specular transmitted component, it is
1184 +        much better to use the BSDF type with a zero thickness
1185 +        than to use aBSDF.
1186 + <p>
1187 +
1188 + <dt>
1189          <a NAME="Antimatter">
1190          <b>Antimatter</b>
1191          </a>
# Line 1408 | Line 1469 | or:
1469   </h4>
1470  
1471   A mixture is a blend of one or more materials or textures and patterns.
1472 + Blended materials should not be light source types or virtual source types.
1473   The basic types are given below.
1474  
1475   <p>
# Line 1480 | Line 1542 | A mixfunc mixes  two  modifiers  procedurally.   It  i
1542          arguments, the red, green and blue values
1543          corresponding to the pixel at (u,v).
1544  
1483 </dl>
1545   <p>
1546  
1547   <dt>
# Line 1782 | Line 1843 | Pictures may be displayed directly under X11 using the
1843   or converted a standard image format using one of the following
1844   <b>translators</b>:
1845          <ul>
1846 <        <li> <b>Ra_avs</b>
1847 <                converts to and from AVS image format.
1787 <        <li> <a HREF="../man_html/ra_pict.1.html"><b>Ra_pict</b></a>
1788 <                converts to Macintosh 32-bit PICT2 format.
1846 >        <li> <a HREF="../man_html/ra_bmp.1.html"><b>Ra_bmp</b>
1847 >                converts to and from BMP image format.
1848          <li> <a HREF="../man_html/ra_ppm.1.html"><b>Ra_ppm</b></a>
1849                  converts to and from Poskanzer Portable Pixmap formats.
1791        <li> <a HREF="../man_html/ra_pr.1.html"><b>Ra_pr</b></a>
1792                converts to and from Sun 8-bit rasterfile format.
1793        <li> <a HREF="../man_html/ra_pr24.1.html"><b>Ra_pr24</b></a>
1794                converts to and from Sun 24-bit rasterfile format.
1850          <li> <a HREF="../man_html/ra_ps.1.html"><b>Ra_ps</b></a>
1851                  converts to PostScript color and greyscale formats.
1852          <li> <a HREF="../man_html/ra_rgbe.1.html"><b>Ra_rgbe</b></a>
# Line 1817 | Line 1872 | or converted a standard image format using one of the
1872   <pre>
1873   The Radiance Software License, Version 1.0
1874  
1875 < Copyright (c) 1990 - 2010 The Regents of the University of California,
1875 > Copyright (c) 1990 - 2014 The Regents of the University of California,
1876   through Lawrence Berkeley National Laboratory.   All rights reserved.
1877  
1878   Redistribution and use in source and binary forms, with or without
# Line 1851 | Line 1906 | are met:
1906        nor may &quot;Radiance&quot; appear in their name, without prior written
1907        permission of Lawrence Berkeley National Laboratory.
1908  
1909 < THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
1909 > THIS SOFTWARE IS PROVIDED ``AS IS&quot; AND ANY EXPRESSED OR IMPLIED
1910   WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
1911   OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
1912   DISCLAIMED.   IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
# Line 1890 | Line 1945 | Ecole  Polytechnique  Federale de Lausanne (EPFL Unive
1945   </h2>
1946   <p>
1947   <ul>
1948 +    <li>Wang, Taoning, Gregory Ward, Eleanor Lee,
1949 +      &quot;<a href="https://authors.elsevier.com/a/1XQ0a1M7zGwT7v">Efficient
1950 +      modeling of optically-complex, non-coplanar exterior shading:
1951 +      Validation of matrix algebraic methods</a>&quot;
1952 +      <em>Energy & Buildings</em>, vol. 174, pp. 464-83, Sept. 2018.
1953 +    <li>Lee, Eleanor S., David Geisler-Moroder, Gregory Ward,
1954 +      &quot;<a href="https://eta.lbl.gov/sites/default/files/publications/solar_energy.pdf">Modeling
1955 +      the direct sun component in buildings using matrix
1956 +      algebraic approaches: Methods and
1957 +      validation</a>,&quot; <em>Solar Energy</em>,
1958 +      vol. 160, 15 January 2018, pp 380-395.
1959 +    <li>Narain, Rahul, Rachel A. Albert, Abdullah Bulbul,
1960 +       Gregory J. Ward, Marty Banks, James F. O'Brien,
1961 +       &quot;<a href="http://graphics.berkeley.edu/papers/Narain-OPI-2015-08/index.html">Optimal
1962 +       Presentation of Imagery with Focus
1963 +       Cues on Multi-Plane Displays</a>,&quot;
1964 +       <em>SIGGRAPH 2015</em>.
1965 +    <li>Ward, Greg, Murat Kurt, and Nicolas Bonneel,
1966 +        &quot;<a href="papers/WMAM14_Tensor_Tree_Representation.pdf">Reducing
1967 +        Anisotropic BSDF Measurement to Common Practice</a>,&quot;
1968 +        <em>Workshop on Material Appearance Modeling</em>, 2014.
1969 +    <li>Banks, Martin, Abdullah Bulbul, Rachel Albert, Rahul Narain,
1970 +        James F. O'Brien, Gregory Ward,
1971 +        &quot;<a href="http://graphics.berkeley.edu/papers/Banks-TPO-2014-05/index.html">The
1972 +        Perception of Surface Material from Disparity and Focus Cues</a>,&quot;
1973 +        <em>VSS 2014</em>.
1974 +    <li>McNeil, A., C.J. Jonsson, D. Appelfeld, G. Ward, E.S. Lee,
1975 +        &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">
1976 +        A validation of a ray-tracing tool used to generate
1977 +        bi-directional scattering distribution functions for
1978 +        complex fenestration systems</a>,&quot;
1979 +        <em>Solar Energy</em>, 98, 404-14,
1980 +        November 2013.
1981 +    <li>Ward, G., R. Mistrick, E.S. Lee, A. McNeil, J. Jonsson,
1982 +        &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">Simulating
1983 +        the Daylight Performance of Complex Fenestration Systems
1984 +        Using Bidirectional Scattering Distribution Functions within
1985 +        Radiance</a>,&quot;
1986 +        <em>Leukos</em>, 7(4)
1987 +        April 2011.
1988      <li>Cater, Kirsten, Alan Chalmers, Greg Ward,
1989          &quot;<a href="http://www.anyhere.com/gward/papers/egsr2003.pdf">Detail to Attention:
1990          Exploiting Visual Tasks for Selective Rendering</a>,&quot;
1991          <em>Eurographics Symposium
1992          on Rendering 2003</em>, June 2003.
1993      <li>Ward, Greg, Elena Eydelberg-Vileshin,
1994 <        ``<a HREF="http://www.anyhere.com/gward/papers/egwr02/index.html">Picture Perfect RGB
1995 <        Rendering Using Spectral Prefiltering and Sharp Color Primaries</a>,''
1994 >        &quot;<a HREF="http://www.anyhere.com/gward/papers/egwr02/index.html">Picture Perfect RGB
1995 >        Rendering Using Spectral Prefiltering and Sharp Color Primaries</a>,&quot;
1996          Thirteenth Eurographics Workshop on Rendering (2002),
1997          P. Debevec and S. Gibson (Editors), June 2002.
1998      <li>Ward, Gregory,
1999 <        ``<a HREF="http://www.anyhere.com/gward/papers/cic01.pdf">High Dynamic Range Imaging</a>,''
1999 >        &quot;<a HREF="http://www.anyhere.com/gward/papers/cic01.pdf">High Dynamic Range Imaging</a>,&quot;
2000          Proceedings of the Ninth Color Imaging Conference, November 2001.
2001      <li>Ward, Gregory and Maryann Simmons,
2002 <        ``<a HREF="http://www.anyhere.com/gward/papers/tog99.pdf">
2002 >        &quot;<a HREF="http://www.anyhere.com/gward/papers/tog99.pdf">
2003          The Holodeck Ray Cache: An Interactive Rendering System for Global Illumination in Nondiffuse
2004 <        Environments</a>,'' ACM Transactions on Graphics, 18(4):361-98, October 1999.
2005 <    <li>Larson, G.W., ``<a HREF="http://www.anyhere.com/gward/papers/ewp98.pdf">The Holodeck: A Parallel
2006 <        Ray-caching Rendering System</a>,'' Proceedings of the Second
2004 >        Environments</a>,&quot; ACM Transactions on Graphics, 18(4):361-98, October 1999.
2005 >    <li>Larson, G.W., &quot;<a HREF="http://www.anyhere.com/gward/papers/ewp98.pdf">The Holodeck: A Parallel
2006 >        Ray-caching Rendering System</a>,&quot; Proceedings of the Second
2007          Eurographics Workshop on Parallel Graphics and Visualisation,
2008          September 1998.
2009      <li>Larson, G.W. and R.A. Shakespeare,
# Line 1916 | Line 2011 | Ecole  Polytechnique  Federale de Lausanne (EPFL Unive
2011          the Art and Science of Lighting Visualization</em></a>,
2012          Morgan Kaufmann Publishers, 1998.
2013      <li>Larson, G.W., H. Rushmeier, C. Piatko,
2014 <        ``<a HREF="http://radsite.lbl.gov/radiance/papers/lbnl39882/tonemap.pdf">A Visibility
2014 >        &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/lbnl39882/tonemap.pdf">A Visibility
2015          Matching Tone Reproduction Operator for
2016 <        High Dynamic Range Scenes</a>,'' LBNL Technical Report 39882,
2016 >        High Dynamic Range Scenes</a>,&quot; LBNL Technical Report 39882,
2017          January 1997.
2018 <    <li>Ward, G., ``<a HREF="http://radsite.lbl.gov/radiance/papers/erw95.1/paper.html">Making
2019 <        Global Illumination User-Friendly</a>,'' Sixth
2018 >    <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw95.1/paper.html">Making
2019 >        Global Illumination User-Friendly</a>,&quot; Sixth
2020          Eurographics Workshop on Rendering, Springer-Verlag,
2021          Dublin, Ireland, June 1995.</li>
2022      <li>Rushmeier, H., G. Ward, C. Piatko, P. Sanders, B. Rust,
2023 <        ``<a HREF="http://radsite.lbl.gov/mgf/compare.html">
2023 >        &quot;<a HREF="http://radsite.lbl.gov/mgf/compare.html">
2024          Comparing Real and Synthetic Images: Some Ideas about
2025 <        Metrics</a>,'' Sixth Eurographics Workshop on Rendering,
2025 >        Metrics</a>,&quot; Sixth Eurographics Workshop on Rendering,
2026          Springer-Verlag, Dublin, Ireland, June 1995.</li>
2027 <    <li>Ward, G., ``<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.1/paper.html">The RADIANCE
2028 <        Lighting Simulation and Rendering System</a>,'' <em>Computer
2027 >    <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.1/paper.html">The RADIANCE
2028 >        Lighting Simulation and Rendering System</a>,&quot; <em>Computer
2029          Graphics</em>, July 1994.</li>
2030 <    <li>Rushmeier, H., G. Ward, ``<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.2/energy.html">Energy
2031 <        Preserving Non-Linear Filters</a>,'' <em>Computer
2030 >    <li>Rushmeier, H., G. Ward, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.2/energy.html">Energy
2031 >        Preserving Non-Linear Filters</a>,&quot; <em>Computer
2032          Graphics</em>, July 1994.</li>
2033 <    <li>Ward, G., ``A Contrast-Based Scalefactor for Luminance
2034 <        Display,'' <em>Graphics Gems IV</em>, Edited by Paul Heckbert,
2033 >    <li>Ward, G., &quot;A Contrast-Based Scalefactor for Luminance
2034 >        Display,&quot; <em>Graphics Gems IV</em>, Edited by Paul Heckbert,
2035          Academic Press 1994.</li>
2036 <    <li>Ward, G., ``<a HREF="http://radsite.lbl.gov/radiance/papers/sg92/paper.html">Measuring and
2037 <        Modeling Anisotropic Reflection</a>,'' <em>Computer
2036 >    <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg92/paper.html">Measuring and
2037 >        Modeling Anisotropic Reflection</a>,&quot; <em>Computer
2038          Graphics</em>, Vol. 26, No. 2, July 1992. </li>
2039 <    <li>Ward, G., P. Heckbert, ``<a HREF="http://radsite.lbl.gov/radiance/papers/erw92/paper.html">Irradiance
2040 <        Gradients</a>,'' Third Annual Eurographics Workshop on
2039 >    <li>Ward, G., P. Heckbert, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw92/paper.html">Irradiance
2040 >        Gradients</a>,&quot; Third Annual Eurographics Workshop on
2041          Rendering, Springer-Verlag, May 1992. </li>
2042 <    <li>Ward, G., ``<a HREF="http://radsite.lbl.gov/radiance/papers/erw91/erw91.html">Adaptive Shadow
2043 <        Testing for Ray Tracing</a>'' Photorealistic Rendering in
2042 >    <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw91/erw91.html">Adaptive Shadow
2043 >        Testing for Ray Tracing</a>&quot; Photorealistic Rendering in
2044          Computer Graphics, proceedings of 1991 Eurographics
2045          Rendering Workshop, edited by P. Brunet and F.W. Jansen,
2046          Springer-Verlag. </li>
2047 <    <li>Ward, G., ``Visualization,'' <em>Lighting Design and
2047 >    <li>Ward, G., &quot;Visualization,&quot; <em>Lighting Design and
2048          Application</em>, Vol. 20, No. 6, June 1990. </li>
2049 <    <li>Ward, G., F. Rubinstein, R. Clear, ``<a HREF="http://radsite.lbl.gov/radiance/papers/sg88/paper.html">A Ray Tracing Solution for
2050 <        Diffuse Interreflection</a>,'' <em>Computer Graphics</em>,
2049 >    <li>Ward, G., F. Rubinstein, R. Clear, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg88/paper.html">A Ray Tracing Solution for
2050 >        Diffuse Interreflection</a>,&quot; <em>Computer Graphics</em>,
2051          Vol. 22, No. 4, August 1988. </li>
2052 <    <li>Ward, G., F. Rubinstein, ``A New Technique for Computer
2053 <        Simulation of Illuminated Spaces,'' <em>Journal of the
2052 >    <li>Ward, G., F. Rubinstein, &quot;A New Technique for Computer
2053 >        Simulation of Illuminated Spaces,&quot; <em>Journal of the
2054          Illuminating Engineering Society</em>, Vol. 17, No. 1,
2055          Winter 1988. </li>
2056   </ul>

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines