ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/ray.html
Revision: 1.41
Committed: Thu May 29 16:42:28 2025 UTC (16 hours, 52 minutes ago) by greg
Content type: text/html
Branch: MAIN
CVS Tags: HEAD
Changes since 1.40: +21 -1 lines
Log Message:
fix: Updated behavior of "mirror" type to handle indirect transmission, thanks to Jon Sargent

File Contents

# User Rev Content
1 greg 1.1 <html>
2 greg 1.41 <!-- RCSid $Id: ray.html,v 1.40 2024/12/13 18:17:17 greg Exp $ -->
3 greg 1.1 <head>
4     <title>
5 greg 1.33 The RADIANCE 6.0 Synthetic Imaging System
6 greg 1.1 </title>
7     </head>
8     <body>
9    
10     <p>
11    
12     <h1>
13 greg 1.33 The RADIANCE 6.0 Synthetic Imaging System
14 greg 1.1 </h1>
15    
16     <p>
17    
18 greg 1.4 Building Technologies Program<br>
19 greg 1.1 Lawrence Berkeley National Laboratory<br>
20     1 Cyclotron Rd., 90-3111<br>
21     Berkeley, CA 94720<br>
22     <a HREF="http://radsite.lbl.gov/radiance"</a>
23     http://radsite.lbl.gov/radiance<br>
24    
25     <p>
26     <hr>
27    
28     <h2>
29     <a NAME="Overview">Overview</a>
30     </h2>
31     <ol>
32     <li><a HREF="#Intro">Introduction</a><!P>
33     <li><a HREF="#Scene">Scene Description</a><!P>
34     <ol>
35     <li><a HREF="#Primitive"> Primitive Types</a>
36     <ol>
37     <li><a HREF="#Surfaces">Surfaces</a>
38     <li><a HREF="#Materials">Materials</a>
39     <li><a HREF="#Textures">Textures</a>
40     <li><a HREF="#Patterns">Patterns</a>
41     <li><a HREF="#Mixtures">Mixtures</a>
42     </ol><!P>
43     <li><a HREF="#Auxiliary">Auxiliary Files</a>
44     <ol>
45     <li><a HREF="#Function">Function Files</a>
46     <li><a HREF="#Data">Data Files</a>
47     <li><a HREF="#Font">Font Files</a>
48     </ol><!P>
49     <li><a HREF="#Generators">Generators</a>
50     </ol><!P>
51     <li><a HREF="#Image">Image Generation</a><!P>
52     <li><a HREF="#License">License</a><!P>
53     <li><a HREF="#Ack">Acknowledgements</a><!P>
54     <li><a HREF="#Ref">References</a><!P>
55     <li><a HREF="#Index">Types Index</a><!P>
56     </ol>
57    
58     <p>
59     <hr>
60    
61     <h2>
62     <a NAME="Intro">1. Introduction</a>
63     </h2>
64    
65     RADIANCE was developed as a research tool for predicting
66     the distribution of visible radiation in illuminated spaces.
67     It takes as input a three-dimensional geometric model
68     of the physical environment, and produces a map of
69     spectral radiance values in a color image.
70     The technique of ray-tracing follows light backwards
71     from the image plane to the source(s).
72     Because it can produce realistic images from a
73     simple description, RADIANCE has a wide range of applications
74     in graphic arts, lighting design,
75     computer-aided engineering and architecture.
76    
77     <p>
78     <img SRC="diagram1.gif">
79     <p>
80     Figure 1
81     <p>
82     The diagram in Figure 1 shows the flow between programs (boxes) and data
83     (ovals).
84     The central program is <i>rpict</i>, which produces a picture from a scene
85     description.
86 greg 1.30 <i>Rvu</i> is a variation of rpict that computes and displays images
87 greg 1.1 interactively, and rtrace computes single ray values.
88     Other programs (not shown) connect many of these elements together,
89     such as the executive programs
90     <i>rad</i>
91     and
92     <i>ranimate</i>,
93     the interactive rendering program
94     <i>rholo</i>,
95     and the animation program
96     <i>ranimove</i>.
97     The program
98     <i>obj2mesh</i>
99     acts as both a converter and scene compiler, converting a Wavefront .OBJ
100     file into a compiled mesh octree for efficient rendering.
101    
102     <p>
103     A scene description file lists the surfaces and materials
104     that make up a specific environment.
105     The current surface types are spheres, polygons, cones, and cylinders.
106     There is also a composite surface type, called mesh, and a pseudosurface
107     type, called instance, which facilitates very complex geometries.
108     Surfaces can be made from materials such as plastic, metal, and glass.
109     Light sources can be distant disks as well as local spheres, disks
110     and polygons.
111    
112     <p>
113     From a three-dimensional scene description and a specified view,
114     <i>rpict</i> produces a two-dimensional image.
115     A picture file is a compressed binary representation of the
116     pixels in the image.
117     This picture can be scaled in size and brightness,
118     anti-aliased, and sent to a graphics output device.
119    
120     <p>
121     A header in each picture file lists the program(s)
122     and parameters that produced it.
123     This is useful for identifying a picture without having to display it.
124     The information can be read by the program <i>getinfo</i>.
125    
126     <p>
127     <hr>
128    
129     <h2>
130     <a name="Scene">2. Scene Description</a>
131     </h2>
132    
133     A scene description file represents a three-dimensional physical environment in Cartesian (rectilinear) world coordinates.
134     It is stored as ASCII text, with the following basic format:
135    
136     <pre>
137     # comment
138    
139     modifier type identifier
140     n S1 S2 &quot;S 3&quot; .. Sn
141     0
142     m R1 R2 R3 .. Rm
143    
144     modifier alias identifier reference
145    
146     ! command
147    
148     ...
149     </pre>
150    
151 greg 1.40 <p>
152    
153 greg 1.1 A comment line begins with a pound sign, `#'.
154    
155     <p>
156     The <a NAME="scene_desc">scene description primitives</a>
157     all have the same general format, and can be either surfaces or modifiers.
158     A primitive has a modifier, a type, and an identifier.
159     <p>
160     A <a NAME="modifier"><b>modifier</b></a> is either the
161     identifier of a previously defined primitive, or &quot;void&quot;.
162     <br>
163     [ The most recent definition of a modifier is the
164     one used, and later definitions do not cause relinking
165     of loaded primitives.
166     Thus, the same identifier may be used repeatedly,
167     and each new definition will apply to the primitives following it. ]
168     <p>
169     An <a NAME="identifier"><b>identifier</b></a> can be any string
170     (i.e., any sequence of non-white characters).
171     <p>
172     The arguments associated with a primitive can be strings or real numbers.
173     <ul>
174     <li> The first integer following the identifier is the number of <b>string arguments</b>,
175     and it is followed by the arguments themselves (separated by white space or enclosed in quotes).
176     <li> The next integer is the number of integer arguments, and is followed by the <b>integer arguments</b>.
177     (There are currently no primitives that use them, however.)
178     <li> The next integer is the real argument count, and it is followed by the <b>real arguments</b>.
179     </ul>
180    
181     <p>
182     An <a NAME="alias"><b>alias</b></a> gets its type and arguments from
183     a previously defined primitive.
184     This is useful when the same material is
185     used with a different modifier, or as a convenient naming mechanism.
186     The reserved modifier name &quot;inherit&quot; may be used to specificy that
187     an alias will inherit its modifier from the original.
188     Surfaces cannot be aliased.
189    
190     <p>
191     A line beginning with an exclamation point, `!',
192     is interpreted as a command.
193     It is executed by the shell, and its output is read as input to the program.
194     The command must not try to read from its standard input, or confusion
195     will result.
196     A command may be continued over multiple lines using a
197     backslash, `\', to escape the newline.
198    
199     <p>
200     White space is generally ignored, except as a separator.
201     The exception is the newline character after a command or comment.
202     Commands, comments and primitives may appear in any
203     combination, so long as they are not intermingled.
204    
205     <p>
206     <hr>
207    
208     <h3>
209     <a NAME="Primitive">2.1. Primitive Types</a>
210     </h3>
211    
212     Primitives can be <a HREF="#Surfaces">surfaces</a>,
213     <a HREF="#Materials">materials</a>,
214     <a HREF="#Textures">textures</a> or
215     <a HREF="#Patterns">patterns</a>.
216     Modifiers can be <a HREF="#Materials">materials</a>,
217     <a HREF="#Mixtures">mixtures</a>,
218     <a HREF="#Textures">textures</a> or <a HREF="#Patterns">patterns</a>.
219     Simple surfaces must have one material in their modifier list.
220    
221     <p>
222     <hr>
223    
224     <h4>
225     <a NAME="Surfaces">2.1.1. Surfaces</a>
226     </h4>
227     <dl>
228    
229     A scene description will consist mostly of surfaces.
230     The basic types are given below.
231    
232     <p>
233    
234     <dt>
235     <a NAME="Source">
236     <b>Source </b>
237     </a>
238     <dd>
239     A source is not really a surface, but a solid angle.
240     It is used for specifying light sources that are very distant.
241     The direction to the center of the source and the number of degrees subtended by its disk are given as follows:
242    
243     <pre>
244     mod source id
245     0
246     0
247     4 xdir ydir zdir angle
248     </pre>
249    
250     <p>
251    
252     <dt>
253     <a NAME="Sphere">
254     <b>Sphere</b>
255     </a>
256     <dd>
257     A sphere is given by its center and radius:
258    
259     <pre>
260     mod sphere id
261     0
262     0
263     4 xcent ycent zcent radius
264     </pre>
265    
266     <p>
267    
268     <dt>
269     <a NAME="Bubble">
270     <b>Bubble</b>
271     </a>
272    
273     <dd>
274     A bubble is simply a sphere whose surface normal points inward.
275    
276     <p>
277    
278     <dt>
279     <a NAME="Polygon">
280     <b>Polygon</b>
281     </a>
282     <dd>
283     A polygon is given by a list of three-dimensional vertices,
284     which are ordered counter-clockwise as viewed from the
285     front side (into the surface normal).
286     The last vertex is automatically connected to the first.
287     Holes are represented in polygons as interior vertices
288     connected to the outer perimeter by coincident edges (seams).
289    
290     <pre>
291     mod polygon id
292     0
293     0
294     3n
295     x1 y1 z1
296     x2 y2 z2
297     ...
298     xn yn zn
299     </pre>
300    
301     <p>
302    
303     <dt>
304     <a NAME="Cone">
305     <b>Cone</b>
306     </a>
307     <dd>
308     A cone is a megaphone-shaped object.
309     It is truncated by two planes perpendicular to its axis,
310     and one of its ends may come to a point.
311     It is given as two axis endpoints, and the starting and ending radii:
312    
313     <pre>
314     mod cone id
315     0
316     0
317     8
318     x0 y0 z0
319     x1 y1 z1
320     r0 r1
321     </pre>
322    
323     <p>
324    
325     <dt>
326     <a NAME="Cup">
327     <b>Cup</b>
328     </a>
329     <dd>
330     A cup is an inverted <a HREF="#Cone">cone</a> (i.e., has an
331     inward surface normal).
332    
333     <p>
334    
335     <dt>
336     <a NAME="Cylinder">
337     <b>Cylinder</b>
338     </a>
339     <dd>
340     A cylinder is like a <a HREF="#Cone">cone</a>, but its
341     starting and ending radii are equal.
342    
343     <pre>
344     mod cylinder id
345     0
346     0
347     7
348     x0 y0 z0
349     x1 y1 z1
350     rad
351     </pre>
352    
353     <p>
354    
355     <dt>
356     <a NAME="Tube">
357     <b>Tube</b>
358     </a>
359     <dd>
360     A tube is an inverted <a HREF="#Cylinder">cylinder</a>.
361    
362     <p>
363    
364     <dt>
365     <a NAME="Ring">
366     <b>Ring</b>
367     </a>
368     <dd>
369     A ring is a circular disk given by its center,
370     surface normal, and inner and outer radii:
371    
372     <pre>
373     mod ring id
374     0
375     0
376     8
377     xcent ycent zcent
378     xdir ydir zdir
379     r0 r1
380     </pre>
381    
382     <p>
383    
384     <dt>
385     <a NAME="Instance">
386     <b>Instance</b>
387     </a>
388     <dd>
389     An instance is a compound surface, given
390     by the contents of an octree file (created by oconv).
391    
392     <pre>
393     mod instance id
394     1+ octree transform
395     0
396     0
397     </pre>
398    
399 greg 1.40 <p>
400 greg 1.1 If the modifier is &quot;void&quot;, then surfaces will
401     use the modifiers given in the original description.
402     Otherwise, the modifier specified is used in their place.
403     The transform moves the octree to the desired location in the scene.
404     Multiple instances using the same octree take
405     little extra memory, hence very complex
406     descriptions can be rendered using this primitive.
407    
408     <p>
409     There are a number of important limitations to be aware of
410     when using instances.
411     First, the scene description used to generate the octree must
412     stand on its own, without referring to modifiers in the
413     parent description.
414     This is necessary for oconv to create the octree.
415     Second, light sources in the octree will not be
416     incorporated correctly in the calculation,
417     and they are not recommended.
418     Finally, there is no advantage (other than
419     convenience) to using a single instance of an octree,
420     or an octree containing only a few surfaces.
421     An <a HREF="../man_html/xform.1.html">xform</a> command
422     on the subordinate description is prefered in such cases.
423     </dl>
424    
425     <p>
426    
427     <dt>
428     <a NAME="Mesh">
429     <b>Mesh</b>
430     </a>
431     <dd>
432     A mesh is a compound surface, made up of many triangles and
433     an octree data structure to accelerate ray intersection.
434     It is typically converted from a Wavefront .OBJ file using the
435     <i>obj2mesh</i> program.
436    
437     <pre>
438     mod mesh id
439     1+ meshfile transform
440     0
441     0
442     </pre>
443    
444 greg 1.40 <p>
445    
446 greg 1.1 If the modifier is &quot;void&quot;, then surfaces will
447     use the modifiers given in the original mesh description.
448     Otherwise, the modifier specified is used in their place.
449     The transform moves the mesh to the desired location in the scene.
450     Multiple instances using the same meshfile take little extra memory,
451     and the compiled mesh itself takes much less space than individual
452     polygons would.
453     In the case of an unsmoothed mesh, using the mesh primitive reduces
454     memory requirements by a factor of 30 relative to individual triangles.
455     If a mesh has smoothed surfaces, we save a factor of 50 or more,
456     permitting very detailed geometries that would otherwise exhaust the
457     available memory.
458     In addition, the mesh primitive can have associated (u,v) coordinates
459     for pattern and texture mapping.
460     These are made available to function files via the Lu and Lv variables.
461    
462     </dl>
463    
464     <p>
465     <hr>
466    
467     <h4>
468     <a NAME="Materials">2.1.2. Materials</a>
469     </h4>
470    
471     A material defines the way light interacts with a surface. The basic types are given below.
472    
473     <p>
474    
475     <dl>
476    
477     <dt>
478     <a NAME="Light">
479     <b>Light</b>
480     </a>
481     <dd>
482     Light is the basic material for self-luminous surfaces (i.e.,
483     light sources).
484     In addition to the <a HREF="#Source">source</a> surface type,
485     <a HREF="#Sphere">spheres</a>,
486     discs (<a HREF="#Ring">rings</a> with zero inner radius),
487     <a HREF="#Cylinder">cylinders</a> (provided they are long enough), and <a HREF="#Polygon">polygons</a> can act as light sources.
488     Polygons work best when they are rectangular.
489     Cones cannot be used at this time.
490     A pattern may be used to specify a light output distribution.
491     Light is defined simply as a RGB radiance value (watts/steradian/m2):
492    
493     <pre>
494     mod light id
495     0
496     0
497     3 red green blue
498     </pre>
499    
500     <p>
501    
502     <dt>
503     <a NAME="Illum">
504     <b>Illum</b>
505     </a>
506    
507     <dd>
508     Illum is used for secondary light sources with broad distributions.
509     A secondary light source is treated like any other light source, except when viewed directly.
510     It then acts like it is made of a different material (indicated by
511     the string argument), or becomes invisible (if no string argument is given,
512     or the argument is &quot;void&quot;).
513     Secondary sources are useful when modeling windows or brightly illuminated surfaces.
514    
515     <pre>
516     mod illum id
517     1 material
518     0
519     3 red green blue
520     </pre>
521    
522     <p>
523    
524     <dt>
525     <a NAME="Glow">
526     <b>Glow</b>
527     </a>
528    
529     <dd>
530     Glow is used for surfaces that are self-luminous, but limited in their effect.
531     In addition to the radiance value, a maximum radius for shadow testing is given:
532    
533     <pre>
534     mod glow id
535     0
536     0
537     4 red green blue maxrad
538     </pre>
539    
540 greg 1.40 <p>
541 greg 1.1 If maxrad is zero, then the surface will never be tested for shadow, although it may participate in an interreflection calculation.
542     If maxrad is negative, then the surface will never contribute to scene illumination.
543     Glow sources will never illuminate objects on the other side of an illum surface.
544     This provides a convenient way to illuminate local light fixture geometry without overlighting nearby objects.
545    
546     <p>
547    
548     <dt>
549     <a NAME="Spotlight">
550     <b>Spotlight</b>
551     </a>
552    
553     <dd>
554     Spotlight is used for self-luminous surfaces having directed output.
555     As well as radiance, the full cone angle (in degrees) and orientation (output direction) vector are given.
556     The length of the orientation vector is the distance of the effective
557     focus behind the source center (i.e., the focal length).
558    
559     <pre>
560     mod spotlight id
561     0
562     0
563     7 red green blue angle xdir ydir zdir
564     </pre>
565    
566     <p>
567    
568     <dt>
569     <a NAME="Mirror">
570     <b>Mirror</b>
571     </a>
572    
573     <dd>
574 greg 1.6 Mirror is used for planar surfaces that produce virtual source reflections.
575 greg 1.1 This material should be used sparingly, as it may cause the light source calculation to blow up if it is applied to many small surfaces.
576     This material is only supported for flat surfaces such as <a HREF="#Polygon">polygons</a> and <a HREF="#Ring">rings</a>.
577     The arguments are simply the RGB reflectance values, which should be between 0 and 1.
578     An optional string argument may be used like the illum type to specify a different material to be used for shading non-source rays.
579     If this alternate material is given as &quot;void&quot;, then the mirror surface will be invisible.
580     This is only appropriate if the surface hides other (more detailed) geometry with the same overall reflectance.
581    
582     <pre>
583     mod mirror id
584     1 material
585     0
586     3 red green blue
587     </pre>
588    
589 greg 1.41 While alternate materials that are reflective will appear as normal,
590     indirect rays will use the mirror's reflectance rather than the
591     alternate type.
592     Transmitting materials are an exception, where both transmission and
593     reflection will use the alternate type for all rays not specifically
594     targeting virtual light sources.
595     Therefore, transmitting alternate types should only have pure specular
596     reflection if they reflect at all, to maintain a valid calculation.
597    
598     <p>
599    
600     The mirror material type reflects light sources only from the front side
601     of a surface, regardless of any alternate material.
602     If virtual source generation is desired on both sides, two coincident
603     surfaces with opposite normal orientations may be employed to achieve
604     this effect.
605     The reflectance and alternate material type may be
606     different for the overlapped surfaces,
607     and the two sides will behave accordingly.
608    
609 greg 1.1 <p>
610    
611     <dt>
612     <a NAME="Prism1">
613     <b>Prism1</b>
614     </a>
615    
616     <dd>
617 greg 1.6 The prism1 material is for general light redirection from prismatic glazings, generating virtual light sources.
618 greg 1.1 It can only be used to modify a planar surface
619     (i.e., a <a HREF="#Polygon">polygon</a> or <a HREF="#Ring">disk</a>)
620     and should not result in either light concentration or scattering.
621     The new direction of the ray can be on either side of the material,
622 greg 1.6 and the definitions must have the correct bidirectional properties to work properly with virtual light sources.
623 greg 1.1 The arguments give the coefficient for the redirected light and its direction.
624    
625     <pre>
626     mod prism1 id
627     5+ coef dx dy dz funcfile transform
628     0
629     n A1 A2 .. An
630     </pre>
631    
632 greg 1.40 <p>
633    
634 greg 1.1 The new direction variables dx, dy and dz need not produce a normalized vector.
635     For convenience, the variables DxA, DyA and DzA are defined as the normalized direction to the target light source.
636     See <a HREF="#Function">section 2.2.1</a> on function files for further information.
637    
638     <p>
639    
640     <dt>
641     <a NAME="Prism2">
642     <b>Prism2</b>
643     </a>
644    
645     <dd>
646     The material prism2 is identical to <a HREF="#Prism1">prism1</a> except that it provides for two ray redirections rather than one.
647    
648     <pre>
649     mod prism2 id
650     9+ coef1 dx1 dy1 dz1 coef2 dx2 dy2 dz2 funcfile transform
651     0
652     n A1 A2 .. An
653     </pre>
654    
655     <p>
656    
657     <dt>
658     <a NAME="Mist">
659     <b>Mist</b>
660     </a>
661    
662     <dd>
663     Mist is a virtual material used to delineate a volume
664     of participating atmosphere.
665     A list of important light sources may be given, along with an
666     extinction coefficient, scattering albedo and scattering eccentricity
667     parameter.
668     The light sources named by the string argument list
669     will be tested for scattering within the volume.
670     Sources are identified by name, and virtual light sources may be indicated
671     by giving the relaying object followed by '&gt;' followed by the source, i.e:
672    
673     <pre>
674     3 source1 mirror1&gt;source10 mirror2&gt;mirror1&gt;source3
675     </pre>
676    
677 greg 1.40 <p>
678 greg 1.1 Normally, only one source is given per mist material, and there is an
679     upper limit of 32 to the total number of active scattering sources.
680     The extinction coefficient, if given, is added the the global
681     coefficient set on the command line.
682     Extinction is in units of 1/distance (distance based on the world coordinates),
683     and indicates the proportional loss of radiance over one unit distance.
684     The scattering albedo, if present, will override the global setting within
685     the volume.
686     An albedo of 0 0 0 means a perfectly absorbing medium, and an albedo of
687     1 1 1 means
688     a perfectly scattering medium (no absorption).
689     The scattering eccentricity parameter will likewise override the global
690     setting if it is present.
691     Scattering eccentricity indicates how much scattered light favors the
692 greg 1.8 forward direction, as fit by the Henyey-Greenstein function:
693 greg 1.1
694     <pre>
695     P(theta) = (1 - g*g) / (1 + g*g - 2*g*cos(theta))^1.5
696     </pre>
697    
698 greg 1.40 <p>
699    
700 greg 1.1 A perfectly isotropic scattering medium has a g parameter of 0, and
701     a highly directional material has a g parameter close to 1.
702     Fits to the g parameter may be found along with typical extinction
703     coefficients and scattering albedos for various atmospheres and
704     cloud types in USGS meteorological tables.
705     (A pattern will be applied to the extinction values.)
706    
707     <pre>
708     mod mist id
709     N src1 src2 .. srcN
710     0
711     0|3|6|7 [ rext gext bext [ ralb galb balb [ g ] ] ]
712     </pre>
713    
714 greg 1.40 <p>
715    
716 greg 1.1 There are two usual uses of the mist type.
717     One is to surround a beam from a spotlight or laser so that it is
718     visible during rendering.
719     For this application, it is important to use a <a HREF="#Cone">cone</a>
720     (or <a HREF="#Cylinder">cylinder</a>) that
721     is long enough and wide enough to contain the important visible portion.
722     Light source photometry and intervening objects will have the desired
723     effect, and crossing beams will result in additive scattering.
724     For this application, it is best to leave off the real arguments, and
725     use the global rendering parameters to control the atmosphere.
726     The second application is to model clouds or other localized media.
727     Complex boundary geometry may be used to give shape to a uniform medium,
728     so long as the boundary encloses a proper volume.
729     Alternatively, a pattern may be used to set the line integral value
730     through the cloud for a ray entering or exiting a point in a given
731     direction.
732     For this application, it is best if cloud volumes do not overlap each other,
733     and opaque objects contained within them may not be illuminated correctly
734     unless the line integrals consider enclosed geometry.
735    
736     <dt>
737     <a NAME="Plastic">
738     <b>Plastic</b>
739     </a>
740    
741     <dd>
742     Plastic is a material with uncolored highlights.
743     It is given by its RGB reflectance, its fraction of specularity, and its roughness value.
744     Roughness is specified as the rms slope of surface facets.
745     A value of 0 corresponds to a perfectly smooth surface, and a value of 1 would be a very rough surface.
746     Specularity fractions greater than 0.1 and roughness values greater than 0.2 are not very realistic.
747     (A pattern modifying plastic will affect the material color.)
748    
749     <pre>
750     mod plastic id
751     0
752     0
753     5 red green blue spec rough
754     </pre>
755    
756     <p>
757    
758     <dt>
759     <a NAME="Metal">
760     <b>Metal</b>
761     </a>
762    
763     <dd>
764     Metal is similar to <a HREF="#Plastic">plastic</a>, but specular highlights are modified by the material color.
765     Specularity of metals is usually .9 or greater.
766     As for plastic, roughness values above .2 are uncommon.
767    
768     <p>
769    
770     <dt>
771     <a NAME="Trans">
772     <b>Trans</b>
773     </a>
774    
775     <dd>
776     Trans is a translucent material, similar to <a HREF="#Plastic">plastic</a>.
777     The transmissivity is the fraction of penetrating light that travels all the way through the material.
778     The transmitted specular component is the fraction of transmitted light that is not diffusely scattered.
779     Transmitted and diffusely reflected light is modified by the material color.
780     Translucent objects are infinitely thin.
781    
782     <pre>
783     mod trans id
784     0
785     0
786     7 red green blue spec rough trans tspec
787     </pre>
788    
789     <p>
790    
791     <dt>
792     <a NAME="Plastic2">
793     <b>Plastic2</b>
794     </a>
795    
796     <dd>
797     Plastic2 is similar to <a HREF="#Plastic">plastic</a>, but with anisotropic roughness.
798     This means that highlights in the surface will appear elliptical rather than round.
799     The orientation of the anisotropy is determined by the unnormalized direction vector ux uy uz.
800     These three expressions (separated by white space) are evaluated in the context of the function file funcfile.
801     If no function file is required (i.e., no special variables or functions are required), a period (`.') may be given in its place.
802     (See the discussion of <a HREF="#Function">Function Files</a> in the Auxiliary Files section).
803     The urough value defines the roughness along the u vector given projected onto the surface.
804     The vrough value defines the roughness perpendicular to this vector.
805     Note that the highlight will be narrower in the direction of the smaller roughness value.
806     Roughness values of zero are not allowed for efficiency reasons since the behavior would be the same as regular plastic in that case.
807    
808     <pre>
809     mod plastic2 id
810     4+ ux uy uz funcfile transform
811     0
812     6 red green blue spec urough vrough
813     </pre>
814    
815     <p>
816    
817     <dt>
818     <a NAME="Metal2">
819     <b>Metal2</b>
820     </a>
821    
822     <dd>
823     Metal2 is the same as <a HREF="#Plastic2">plastic2</a>, except that the highlights are modified by the material color.
824    
825     <p>
826    
827     <dt>
828     <a NAME="Trans2">
829     <b>Trans2</b>
830     </a>
831    
832     <dd>
833     Trans2 is the anisotropic version of <a HREF="#Trans">trans</a>.
834 greg 1.23 The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>,
835     and the real arguments are the same as for trans but with an additional roughness value.
836 greg 1.1
837     <pre>
838     mod trans2 id
839     4+ ux uy uz funcfile transform
840     0
841     8 red green blue spec urough vrough trans tspec
842     </pre>
843    
844     <p>
845    
846     <dt>
847 greg 1.23 <a NAME="Ashik2">
848     <b>Ashik2</b>
849     </a>
850    
851     <dd>
852     Ashik2 is the anisotropic reflectance model by Ashikhmin & Shirley.
853     The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>, but the real
854     arguments have additional flexibility to specify the specular color.
855     Also, rather than roughness, specular power is used, which has no
856     physical meaning other than larger numbers are equivalent to a smoother
857     surface.
858 greg 1.31 Unlike other material types, total reflectance is the sum of
859     diffuse and specular colors, and should be adjusted accordingly.
860 greg 1.23 <pre>
861     mod ashik2 id
862     4+ ux uy uz funcfile transform
863     0
864     8 dred dgrn dblu sred sgrn sblu u-power v-power
865     </pre>
866    
867     <p>
868    
869     <dt>
870 greg 1.39 <a NAME="WGMDfunc">
871     <b>WGMDfunc</b>
872     </a>
873    
874     <dd>
875     WGMDfunc is a more programmable version of <a HREF="#Trans2">trans2</a>,
876     with separate modifier paths and variables to control each component.
877     (WGMD stands for Ward-Geisler-Moroder-Duer, which is the basis for
878     this empirical model, similar to previous ones beside Ashik2.)
879     The specification of this material is given below.
880     <pre>
881     mod WGMDfunc id
882     13+ rs_mod rs rs_urough rs_vrough
883     ts_mod ts ts_urough ts_vrough
884     td_mod
885     ux uy uz funcfile transform
886     0
887     9+ rfdif gfdif bfdif
888     rbdif gbdif bbdif
889     rtdif gtdif btdif
890     A10 ..
891     </pre>
892    
893 greg 1.40 <p>
894    
895 greg 1.39 The sum of specular reflectance (<I>rs</I>), specular transmittance (<I>ts</I>),
896     diffuse reflectance (<I>rfdif gfdif bfdif</I> for front and <I>rbdif gbdif bbdif</I> for back)
897     and diffuse transmittance (<I>rtdif gtdif btdif</I>) should be less than 1 for each
898     channel.
899    
900     <p>
901    
902     Unique to this material, separate modifier channels are
903     provided for each component.
904     The main modifier is used on the diffuse reflectance, both
905     front and back.
906     The <I>rs_mod</I> modifier is used for specular reflectance.
907     If "void" is given for <I>rs_mod</I>,
908     then the specular reflection color will be white.
909     The special "inherit" keyword may also be given, in which case
910     specular reflectance will share the main modifier.
911     This behavior is replicated for the specular transmittance modifier
912     <I>ts_mod</I>, which also has its own independent roughness expressions.
913     Finally, the diffuse transmittance modifier is given as
914     <I>td_mod</I>, which may also be "void" or "inherit".
915     Note that any spectra or color for specular components must be
916     carried by the named modifier(s).
917    
918     <p>
919    
920     The main advantage to this material over
921     <a HREF="#BRTDfunc">BRTDfunc</a> and
922     other programmable types described below is that the specular sampling is
923     well-defined, so that all components are fully computed.
924    
925     <p>
926    
927     <dt>
928 greg 1.1 <a NAME="Dielectric">
929     <b>Dielectric</b>
930     </a>
931    
932     <dd>
933     A dielectric material is transparent, and it refracts light as well as reflecting it.
934     Its behavior is determined by the index of refraction and transmission coefficient in each wavelength band per unit length.
935     Common glass has a index of refraction (n) around 1.5, and a transmission coefficient of roughly 0.92 over an inch.
936     An additional number, the Hartmann constant, describes how the index of refraction changes as a function of wavelength.
937     It is usually zero. (A <a HREF="#Patterns">pattern</a> modifies only the refracted value.)
938    
939     <pre>
940     mod dielectric id
941     0
942     0
943     5 rtn gtn btn n hc
944     </pre>
945    
946     <p>
947    
948     <dt>
949     <a NAME="Interface">
950     <b>Interface</b>
951     </a>
952    
953     <dd>
954     An interface is a boundary between two dielectrics.
955     The first transmission coefficient and refractive index are for the inside; the second ones are for the outside.
956     Ordinary dielectrics are surrounded by a vacuum (1 1 1 1).
957    
958     <pre>
959     mod interface id
960     0
961     0
962     8 rtn1 gtn1 btn1 n1 rtn2 gtn2 btn2 n2
963     </pre>
964    
965     <p>
966    
967     <dt>
968     <a NAME="Glass">
969     <b>Glass</b>
970     </a>
971    
972     <dd>
973     Glass is similar to <a HREF="#Dielectric">dielectric</a>, but it is optimized for thin glass surfaces (n = 1.52).
974     One transmitted ray and one reflected ray is produced.
975     By using a single surface is in place of two, internal reflections are avoided.
976     The surface orientation is irrelevant, as it is for <a HREF="#Plastic">plastic</a>, <a HREF="#Metal">metal</a>, and <a HREF="#Trans">trans</a>.
977     The only specification required is the transmissivity at normal incidence.
978     (Transmissivity is the amount of light not absorbed in one traversal
979     of the material.
980     Transmittance -- the value usually measured -- is the total light
981     transmitted through the pane including multiple reflections.)
982     To compute transmissivity (tn) from transmittance (Tn) use:
983    
984     <pre>
985     tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn
986     </pre>
987    
988 greg 1.40 <p>
989    
990 greg 1.1 Standard 88% transmittance glass has a transmissivity of 0.96.
991     (A <a HREF="#Patterns">pattern</a> modifying glass will affect the transmissivity.)
992     If a fourth real argument is given, it is interpreted as the index of refraction to use instead of 1.52.
993    
994     <pre>
995     mod glass id
996     0
997     0
998     3 rtn gtn btn
999     </pre>
1000    
1001     <p>
1002    
1003     <dt>
1004     <a NAME="Plasfunc">
1005     <b>Plasfunc</b>
1006     </a>
1007    
1008     <dd>
1009     Plasfunc in used for the procedural definition of plastic-like materials
1010     with arbitrary bidirectional reflectance distribution functions (BRDF's).
1011     The arguments to this material include the color and specularity,
1012     as well as the function defining the specular distribution and the auxiliary file where it may be found.
1013    
1014     <pre>
1015     mod plasfunc id
1016     2+ refl funcfile transform
1017     0
1018     4+ red green blue spec A5 ..
1019     </pre>
1020    
1021 greg 1.40 <p>
1022    
1023 greg 1.1 The function refl takes four arguments, the x, y and z
1024     direction towards the incident light, and the solid angle
1025     subtended by the source.
1026     The solid angle is provided to facilitate averaging, and is usually
1027     ignored.
1028     The refl function should integrate to 1 over
1029     the projected hemisphere to maintain energy balance.
1030     At least four real arguments must be given, and these are made available along with any additional values to the reflectance function.
1031     Currently, only the contribution from direct light sources is considered in the specular calculation.
1032     As in most material types, the surface normal is always altered to face the incoming ray.
1033    
1034     <p>
1035    
1036     <dt>
1037     <a NAME="Metfunc">
1038     <b>Metfunc</b>
1039     </a>
1040    
1041     <dd>
1042     Metfunc is identical to <a HREF="#Plasfunc">plasfunc</a> and takes the same arguments,
1043     but the specular component is multiplied also by the material color.
1044    
1045     <p>
1046    
1047     <dt>
1048     <a NAME="Transfunc">
1049     <b>Transfunc</b>
1050     </a>
1051    
1052     <dd>
1053     Transfunc is similar to <a HREF="#Plasfunc">plasfunc</a> but with an arbitrary bidirectional transmittance distribution
1054     as well as a reflectance distribution.
1055     Both reflectance and transmittance are specified with the same function.
1056    
1057     <pre>
1058     mod transfunc id
1059     2+ brtd funcfile transform
1060     0
1061     6+ red green blue rspec trans tspec A7 ..
1062     </pre>
1063    
1064 greg 1.40 <p>
1065    
1066 greg 1.1 Where trans is the total light transmitted and tspec is the non-Lambertian fraction of transmitted light.
1067     The function brtd should integrate to 1 over each projected hemisphere.
1068    
1069     <p>
1070    
1071     <dt>
1072     <a NAME="BRTDfunc">
1073     <b>BRTDfunc</b>
1074     </a>
1075    
1076     <dd>
1077     The material BRTDfunc gives the maximum flexibility over surface reflectance and transmittance,
1078     providing for spectrally-dependent specular rays and reflectance and transmittance distribution functions.
1079    
1080     <pre>
1081     mod BRTDfunc id
1082     10+ rrefl grefl brefl
1083     rtrns gtrns btrns
1084     rbrtd gbrtd bbrtd
1085     funcfile transform
1086     0
1087     9+ rfdif gfdif bfdif
1088     rbdif gbdif bbdif
1089     rtdif gtdif btdif
1090     A10 ..
1091     </pre>
1092    
1093 greg 1.40 <p>
1094    
1095 greg 1.1 The variables rrefl, grefl and brefl specify the color coefficients for the ideal specular (mirror) reflection of the surface.
1096     The variables rtrns, gtrns and btrns specify the color coefficients for the ideal specular transmission.
1097     The functions rbrtd, gbrtd and bbrtd take the direction to the incident light (and its solid angle) and
1098     compute the color coefficients for the directional diffuse part of reflection and transmission.
1099     As a special case, three identical values of '0' may be given in place of these function names to indicate no directional diffuse component.
1100    
1101     <p>
1102     Unlike most other material types, the surface normal is not altered to face the incoming ray.
1103     Thus, functions and variables must pay attention to the orientation of the surface and make adjustments appropriately.
1104     However, the special variables for the perturbed dot product and surface normal, RdotP, NxP, NyP and NzP are reoriented
1105     as if the ray hit the front surface for convenience.
1106    
1107     <p>
1108     A diffuse reflection component may be given for the front side with rfdif, gfdif and bfdif for the front side of the surface
1109     or rbdif, gbdif and bbdif for the back side.
1110     The diffuse transmittance (must be the same for both sides by physical law) is given by rtdif, gtdif and btdif.
1111     A pattern will modify these diffuse scattering values, and will be available through the special variables CrP, CgP and CbP.
1112    
1113     <p>
1114     Care must be taken when using this material type to produce a physically valid reflection model.
1115     The reflectance functions should be bidirectional, and under no circumstances should the sum of reflected diffuse,
1116     transmitted diffuse, reflected specular, transmitted specular and the integrated directional diffuse component be greater than one.
1117    
1118     <p>
1119    
1120     <dt>
1121     <a NAME="Plasdata">
1122     <b>Plasdata</b>
1123     </a>
1124    
1125     <dd>
1126     Plasdata is used for arbitrary BRDF's that are most conveniently given as interpolated data.
1127     The arguments to this material are the <a HREF="#Data">data file</a> and coordinate index functions,
1128     as well as a function to optionally modify the data values.
1129    
1130     <pre>
1131     mod plasdata id
1132     3+n+
1133     func datafile
1134     funcfile x1 x2 .. xn transform
1135     0
1136     4+ red green blue spec A5 ..
1137     </pre>
1138    
1139 greg 1.40 <p>
1140    
1141 greg 1.1 The coordinate indices (x1, x2, etc.) are themselves functions of the x, y and z direction to the incident light, plus the solid angle
1142     subtended by the light source (usually ignored).
1143     The data function (func) takes five variables, the
1144     interpolated value from the n-dimensional data file, followed by the
1145     x, y and z direction to the incident light and the solid angle of the source.
1146     The light source direction and size may of course be ignored by the function.
1147    
1148     <p>
1149    
1150     <dt>
1151     <a NAME="Metdata">
1152     <b>Metdata</b>
1153     </a>
1154    
1155     <dd>
1156     As metfunc is to plasfunc, metdata is to <a HREF="#Plasdata">plasdata</a>.
1157     Metdata takes the same arguments as plasdata, but the specular component is modified by the given material color.
1158    
1159     <p>
1160    
1161     <dt>
1162     <a NAME="Transdata">
1163     <b>Transdata</b>
1164     </a>
1165    
1166     <dd>
1167     Transdata is like <a HREF="#Plasdata">plasdata</a> but the specification includes transmittance as well as reflectance.
1168     The parameters are as follows.
1169    
1170     <pre>
1171     mod transdata id
1172     3+n+
1173     func datafile
1174     funcfile x1 x2 .. xn transform
1175     0
1176     6+ red green blue rspec trans tspec A7 ..
1177     </pre>
1178    
1179     <p>
1180    
1181     <dt>
1182 greg 1.10 <a NAME="BSDF">
1183     <b>BSDF</b>
1184     </a>
1185    
1186     <dd>
1187     The BSDF material type loads an XML (eXtensible Markup Language)
1188     file describing a bidirectional scattering distribution function.
1189     Real arguments to this material may define additional
1190     diffuse components that augment the BSDF data.
1191     String arguments are used to define thickness for proxied
1192 greg 1.11 surfaces and the &quot;up&quot; orientation for the material.
1193 greg 1.10
1194     <pre>
1195     mod BSDF id
1196     6+ thick BSDFfile ux uy uz funcfile transform
1197     0
1198     0|3|6|9
1199     rfdif gfdif bfdif
1200     rbdif gbdif bbdif
1201     rtdif gtdif btdif
1202     </pre>
1203    
1204     <p>
1205 greg 1.11 The first string argument is a &quot;thickness&quot; parameter that may be used
1206 greg 1.10 to hide detail geometry being proxied by an aggregate BSDF material.
1207     If a view or shadow ray hits a BSDF proxy with non-zero thickness,
1208     it will pass directly through as if the surface were not there.
1209     Similar to the illum type, this permits direct viewing and
1210     shadow testing of complex geometry.
1211     The BSDF is used when a scattered (indirect) ray hits the surface,
1212     and any transmitted sample rays will be offset by the thickness amount
1213     to avoid the hidden geometry and gather samples from the other side.
1214     In this manner, BSDF surfaces can improve the results for indirect
1215     scattering from complex systems without sacrificing appearance or
1216     shadow accuracy.
1217     If the BSDF has transmission and back-side reflection data,
1218     a parallel BSDF surface may be
1219     placed slightly less than the given thickness away from the front surface
1220     to enclose the complex geometry on both sides.
1221 greg 1.12 The sign of the thickness is important, as it indicates
1222 greg 1.14 whether the proxied geometry is behind the BSDF
1223 greg 1.12 surface (when thickness is positive) or in front (when
1224     thickness is negative).
1225     <p>
1226     The second string argument is the name of the BSDF file,
1227     which is found in the usual auxiliary locations. The
1228     following three string parameters name variables for an
1229     &quot;up&quot; vector, which together with the surface
1230     normal, define the local coordinate system that orients the
1231     BSDF. These variables, along with the thickness, are defined
1232     in a function file given as the next string argument. An
1233     optional transform is used to scale the thickness and
1234     reorient the up vector.
1235     <p>
1236     If no real arguments are given, the BSDF is used by itself
1237     to determine reflection and transmission. If there are at
1238     least 3 real arguments, the first triplet is an additional
1239     diffuse reflectance for the front side. At least 6 real
1240     arguments adds diffuse reflectance to the rear side of the
1241     surface. If there are 9 real arguments, the final triplet
1242     will be taken as an additional diffuse transmittance. All
1243     diffuse components as well as the non-diffuse transmission
1244     are modified by patterns applied to this material. The
1245     non-diffuse reflection from either side are unaffected.
1246     Textures perturb the effective surface normal in the usual
1247     way.
1248     <p>
1249     The surface normal of this type is not altered to face the
1250     incoming ray, so the front and back BSDF reflections may
1251     differ. (Transmission is identical front-to-back by physical
1252     law.) If back visibility is turned off during rendering and
1253     there is no transmission or back-side reflection, only then
1254     the surface will be invisible from behind. Unlike other
1255     data-driven material types, the BSDF type is fully supported
1256     and all parts of the distribution are properly sampled.
1257 greg 1.10 <p>
1258    
1259     <dt>
1260 greg 1.26 <a NAME="aBSDF">
1261     <b>aBSDF</b>
1262 greg 1.25 </a>
1263    
1264     <dd>
1265 greg 1.26 The aBSDF material is identical to the BSDF type with two
1266 greg 1.25 important differences. First, proxy geometry is not
1267     supported, so there is no thickness parameter. Second, an
1268 greg 1.26 aBSDF is assumed to have some specular through component
1269     (the &rsquo;a&rsquo; stands for &quot;aperture&quot;),
1270 greg 1.25 which is treated specially during the direct calculation
1271     and when viewing the material. Based on the BSDF data, the
1272     coefficient of specular transmission is determined and used
1273     for modifying unscattered shadow and view rays.
1274    
1275     <pre>
1276 greg 1.26 mod aBSDF id
1277 greg 1.25 5+ BSDFfile ux uy uz funcfile transform
1278     0
1279     0|3|6|9
1280     rfdif gfdif bfdif
1281     rbdif gbdif bbdif
1282     rtdif gtdif btdif
1283     </pre>
1284    
1285     <p>
1286     If a material has no specular transmitted component, it is
1287     much better to use the BSDF type with a zero thickness
1288 greg 1.26 than to use aBSDF.
1289 greg 1.25 <p>
1290    
1291     <dt>
1292 greg 1.1 <a NAME="Antimatter">
1293     <b>Antimatter</b>
1294     </a>
1295    
1296     <dd>
1297     Antimatter is a material that can &quot;subtract&quot; volumes from other volumes.
1298     A ray passing into an antimatter object becomes blind to all the specified modifiers:
1299    
1300     <pre>
1301     mod antimatter id
1302     N mod1 mod2 .. modN
1303     0
1304     0
1305     </pre>
1306    
1307 greg 1.40 <p>
1308    
1309 greg 1.1 The first modifier will also be used to shade the area leaving the antimatter volume and entering the regular volume.
1310     If mod1 is void, the antimatter volume is completely invisible.
1311     Antimatter does not work properly with the material type <a HREF="#Trans">&quot;trans&quot;</a>,
1312     and multiple antimatter surfaces should be disjoint.
1313     The viewpoint must be outside all volumes concerned for a correct rendering.
1314    
1315     </dl>
1316    
1317     <p>
1318     <hr>
1319    
1320     <h4>
1321     <a NAME="Textures">2.1.3. Textures</a>
1322     </h4>
1323    
1324     A texture is a perturbation of the surface normal, and is given by either a function or data.
1325    
1326     <p>
1327    
1328     <dl>
1329    
1330     <dt>
1331     <a NAME="Texfunc">
1332     <b>Texfunc</b>
1333     </a>
1334    
1335     <dd>
1336     A texfunc uses an auxiliary function file to specify a procedural texture:
1337    
1338     <pre>
1339     mod texfunc id
1340     4+ xpert ypert zpert funcfile transform
1341     0
1342     n A1 A2 .. An
1343     </pre>
1344    
1345     <p>
1346    
1347     <dt>
1348     <a NAME="Texdata">
1349     <b>Texdata</b>
1350     </a>
1351    
1352     <dd>
1353     A texdata texture uses three data files to get the surface normal perturbations.
1354     The variables xfunc, yfunc and zfunc take three arguments each from the interpolated values in xdfname, ydfname and zdfname.
1355    
1356     <pre>
1357     mod texdata id
1358     8+ xfunc yfunc zfunc xdfname ydfname zdfname vfname x0 x1 .. xf
1359     0
1360     n A1 A2 .. An
1361     </pre>
1362    
1363 greg 1.40 <p>
1364    
1365 greg 1.1 </dl>
1366    
1367     <p>
1368     <hr>
1369    
1370     <h4>
1371     <a NAME="Patterns">2.1.4. Patterns</a>
1372     </h4>
1373    
1374     Patterns are used to modify the reflectance of materials. The basic types are given below.
1375    
1376     <p>
1377    
1378     <dl>
1379    
1380     <dt>
1381     <a NAME="Colorfunc">
1382     <b>Colorfunc</b>
1383     </a>
1384    
1385     <dd>
1386     A colorfunc is a procedurally defined color pattern. It is specified as follows:
1387    
1388     <pre>
1389     mod colorfunc id
1390     4+ red green blue funcfile transform
1391     0
1392     n A1 A2 .. An
1393     </pre>
1394    
1395     <p>
1396    
1397     <dt>
1398     <a NAME="Brightfunc">
1399     <b>Brightfunc</b>
1400     </a>
1401    
1402     <dd>
1403     A brightfunc is the same as a colorfunc, except it is monochromatic.
1404    
1405     <pre>
1406     mod brightfunc id
1407     2+ refl funcfile transform
1408     0
1409     n A1 A2 .. An
1410     </pre>
1411    
1412     <p>
1413    
1414     <dt>
1415     <a NAME="Colordata">
1416     <b>Colordata</b>
1417     </a>
1418    
1419     <dd>
1420     Colordata uses an interpolated data map to modify a material's color.
1421     The map is n-dimensional, and is stored in three auxiliary files, one for each color.
1422     The coordinates used to look up and interpolate the data are defined in another auxiliary file.
1423     The interpolated data values are modified by functions of one or three variables.
1424     If the functions are of one variable, then they are passed the corresponding color component (red or green or blue).
1425     If the functions are of three variables, then they are passed the original red, green, and blue values as parameters.
1426    
1427     <pre>
1428     mod colordata id
1429     7+n+
1430     rfunc gfunc bfunc rdatafile gdatafile bdatafile
1431     funcfile x1 x2 .. xn transform
1432     0
1433     m A1 A2 .. Am
1434     </pre>
1435    
1436     <p>
1437    
1438     <dt>
1439     <a NAME="Brightdata">
1440     <b>Brightdata</b>
1441     </a>
1442    
1443     <dd>
1444     Brightdata is like colordata, except monochromatic.
1445    
1446     <pre>
1447     mod brightdata id
1448     3+n+
1449     func datafile
1450     funcfile x1 x2 .. xn transform
1451     0
1452     m A1 A2 .. Am
1453     </pre>
1454    
1455     <p>
1456    
1457     <dt>
1458     <a NAME="Colorpict">
1459     <b>Colorpict</b>
1460     </a>
1461    
1462     <dd>
1463     Colorpict is a special case of colordata, where the pattern is a two-dimensional image stored in the RADIANCE picture format.
1464     The dimensions of the image data are determined by the picture such that the smaller dimension is always 1,
1465     and the other is the ratio between the larger and the smaller.
1466     For example, a 500x338 picture would have coordinates (u,v) in the rectangle between (0,0) and (1.48,1).
1467    
1468     <pre>
1469     mod colorpict id
1470     7+
1471     rfunc gfunc bfunc pictfile
1472     funcfile u v transform
1473     0
1474     m A1 A2 .. Am
1475     </pre>
1476    
1477     <p>
1478    
1479     <dt>
1480     <a NAME="Colortext">
1481     <b>Colortext</b>
1482     </a>
1483    
1484     <dd>
1485     Colortext is dichromatic writing in a polygonal font.
1486     The font is defined in an auxiliary file, such as helvet.fnt.
1487     The text itself is also specified in a separate file, or can be part of the material arguments.
1488     The character size, orientation, aspect ratio and slant is determined by right and down motion vectors.
1489     The upper left origin for the text block as well as the foreground and background colors must also be given.
1490    
1491     <pre>
1492     mod colortext id
1493     2 fontfile textfile
1494     0
1495     15+
1496     Ox Oy Oz
1497     Rx Ry Rz
1498     Dx Dy Dz
1499     rfore gfore bfore
1500     rback gback bback
1501     [spacing]
1502     </pre>
1503    
1504 greg 1.40 <p>
1505    
1506 greg 1.1 or:
1507    
1508     <pre>
1509     mod colortext id
1510     2+N fontfile . This is a line with N words ...
1511     0
1512     15+
1513     Ox Oy Oz
1514     Rx Ry Rz
1515     Dx Dy Dz
1516     rfore gfore bfore
1517     rback gback bback
1518     [spacing]
1519     </pre>
1520    
1521     <p>
1522    
1523     <dt>
1524     <a NAME="Brighttext">
1525     <b>Brighttext</b>
1526     </a>
1527    
1528     <dd>
1529     Brighttext is like colortext, but the writing is monochromatic.
1530    
1531     <pre>
1532     mod brighttext id
1533     2 fontfile textfile
1534     0
1535     11+
1536     Ox Oy Oz
1537     Rx Ry Rz
1538     Dx Dy Dz
1539     foreground background
1540     [spacing]
1541     </pre>
1542    
1543 greg 1.40 <p>
1544    
1545 greg 1.1 or:
1546    
1547     <pre>
1548     mod brighttext id
1549     2+N fontfile . This is a line with N words ...
1550     0
1551     11+
1552     Ox Oy Oz
1553     Rx Ry Rz
1554     Dx Dy Dz
1555     foreground background
1556     [spacing]
1557     </pre>
1558    
1559     <p>
1560    
1561     By default, a uniform spacing algorithm is used that guarantees every character will appear in a precisely determined position.
1562     Unfortunately, such a scheme results in rather unattractive and difficult to read text with most fonts.
1563     The optional spacing value defines the distance between characters for proportional spacing.
1564     A positive value selects a spacing algorithm that preserves right margins and indentation,
1565     but does not provide the ultimate in proportionally spaced text.
1566     A negative value insures that characters are properly spaced, but the placement of words then varies unpredictably.
1567     The choice depends on the relative importance of spacing versus formatting.
1568     When presenting a section of formatted text, a positive spacing value is usually preferred.
1569     A single line of text will often be accompanied by a negative spacing value.
1570     A section of text meant to depict a picture, perhaps using a special purpose font such as hexbit4x1.fnt, calls for uniform spacing.
1571     Reasonable magnitudes for proportional spacing are between 0.1 (for tightly spaced characters) and 0.3 (for wide spacing).
1572    
1573 greg 1.33 <p>
1574    
1575     <dt>
1576     <a NAME="Spectrum">
1577     <b>Spectrum</b>
1578     </a>
1579    
1580     <dd>
1581     The spectrum primitive is the most basic type for introducing spectral
1582     color to a material.
1583     Since materials only provide RGB parameters, spectral patterns
1584     are the only way to superimpose wavelength-dependent behavior.
1585    
1586     <pre>
1587     mod spectrum id
1588     0
1589     0
1590     5+ nmA nmB s1 s2 .. sN
1591     </pre>
1592    
1593     <p>
1594 greg 1.35 The first two real arguments indicate the extrema of the
1595 greg 1.33 spectral range in nanometers.
1596 greg 1.36 Subsequent real values correspond to multipliers at each wavelength.
1597 greg 1.34 The nmA wavelength may be greater or less than nmB,
1598     but they may not be equal, and their ordering matches
1599     the order of the spectral values.
1600 greg 1.33 A minimum of 3 values must be given, which would act
1601     more or less the same as a constant RGB multiplier.
1602     As with RGB values, spectral quantities normally range between 0
1603     and 1 at each wavelength, or average to 1.0 against a standard
1604     sensitivity functions such as V(lambda).
1605     The best results obtain when the spectral range and number
1606     of samples match rendering options, though resampling will handle
1607     any differences, zero-filling wavelenths outside the nmA to nmB
1608     range.
1609     A warning will be issued if the given wavelength range does not
1610     adequately cover the visible spectrum.
1611    
1612     <p>
1613    
1614     <dt>
1615     <a NAME="Specfile">
1616     <b>Specfile</b>
1617     </a>
1618    
1619     <dd>
1620     The specfile primitive is equivalent to the spectrum type, but
1621     the wavelength range and values are contained in a 1-dimensional
1622     data file.
1623     This may be a more convenient way to specify a spectral color,
1624     especially one corresponding to a standard illuminant such as D65
1625     or a library of measured spectra.
1626    
1627     <pre>
1628     mod specfile id
1629     1 datafile
1630     0
1631     0
1632     </pre>
1633    
1634     <p>
1635     As with the spectrum type, rendering wavelengths outside the defined
1636     range will be zero-filled.
1637     Unlike the spectrum type, the file may contain non-uniform samples.
1638    
1639     <p>
1640    
1641     <dt>
1642     <a NAME="Specfunc">
1643     <b>Specfunc</b>
1644     </a>
1645    
1646     <dd>
1647     The specfunc primitive offers dynamic control over a spectral
1648     pattern, similar to the colorfunc type.
1649    
1650     <pre>
1651     mod specfunc id
1652 greg 1.37 2+ sfunc funcfile transform
1653 greg 1.33 0
1654     2+ nmA nmB A3 ..
1655     </pre>
1656    
1657     <p>
1658     Like the spectrum primitive, the wavelength range is specified
1659     in the first two real arguments, and additional real values are
1660 greg 1.36 set in the evaluation context.
1661 greg 1.33 This function is fed a wavelenth sample
1662     between nmA and nmB as its only argument,
1663     and it returns the corresponding spectral intensity.
1664    
1665 greg 1.38 <dt>
1666     <a NAME="Specdata">
1667     <b>Specdata</b>
1668     </a>
1669    
1670     <dd>
1671     Specdata is like brightdata and colordata, but with more
1672     than 3 specular samples.
1673    
1674     <pre>
1675     mod specdata id
1676     3+n+
1677     func datafile
1678     funcfile x1 x2 .. xn transform
1679     0
1680     m A1 A2 .. Am
1681     </pre>
1682    
1683     <p>
1684     The data file must have one more dimension than the coordinate
1685     variable count, as this final dimension corresponds to the covered
1686     spectrum.
1687     The starting and ending wavelengths are specified in "datafile"
1688     as well as the number of spectral samples.
1689     The function "func" will be called with two parameters, the
1690     interpolated spectral value for the current coordinate and the
1691     associated wavelength.
1692     If the spectrum is broken into 12 components, then 12 calls
1693     will be made to "func" for the relevant ray evaluation.
1694    
1695     <dt>
1696     <a NAME="Specpict">
1697     <b>Specpict</b>
1698     </a>
1699    
1700     <dd>
1701     Specpict is a special case of specdata, where the pattern is
1702     a hyperspectral image stored in the common-exponent file format.
1703     The dimensions of the image data are determined by the picture
1704     just as with the colorpict primitive.
1705    
1706     <pre>
1707     mod specpict id
1708     5+
1709     func specfile
1710     funcfile u v transform
1711     0
1712     m A1 A2 .. Am
1713     </pre>
1714    
1715     <p>
1716     The function "func" is called with the interpolated pixel value
1717     and the wavelength sample in nanometers, the same as specdata,
1718     with as many calls made as there are components in "specfile".
1719    
1720 greg 1.1 </dl>
1721    
1722     <p>
1723     <hr>
1724    
1725     <h4>
1726     <a NAME="Mixtures">2.1.5. Mixtures</a>
1727     </h4>
1728    
1729     A mixture is a blend of one or more materials or textures and patterns.
1730 greg 1.22 Blended materials should not be light source types or virtual source types.
1731 greg 1.1 The basic types are given below.
1732    
1733     <p>
1734    
1735     <dl>
1736    
1737     <dt>
1738     <a NAME="Mixfunc">
1739     <b>Mixfunc</b>
1740     </a>
1741    
1742     <dd>
1743     A mixfunc mixes two modifiers procedurally. It is specified as follows:
1744    
1745     <pre>
1746     mod mixfunc id
1747     4+ foreground background vname funcfile transform
1748     0
1749     n A1 A2 .. An
1750     </pre>
1751    
1752 greg 1.40 <p>
1753    
1754 greg 1.1 Foreground and background are modifier names that must be
1755     defined earlier in the scene description.
1756     If one of these is a material, then
1757     the modifier of the mixfunc must be &quot;void&quot;.
1758     (Either the foreground or background modifier may be &quot;void&quot;,
1759     which serves as a form of opacity control when used with a material.)
1760     Vname is the coefficient defined in funcfile that determines the influence of foreground.
1761     The background coefficient is always (1-vname).
1762    
1763     <p>
1764    
1765     <dt>
1766     <a NAME="Mixdata">
1767     <b>Mixdata</b>
1768     </a>
1769    
1770     <dd>
1771     Mixdata combines two modifiers using an auxiliary data file:
1772    
1773     <pre>
1774     mod mixdata id
1775     5+n+
1776     foreground background func datafile
1777     funcfile x1 x2 .. xn transform
1778     0
1779     m A1 A2 .. Am
1780     </pre>
1781    
1782 greg 1.40 <p>
1783    
1784 greg 1.1 <dt>
1785     <a NAME="Mixpict">
1786     <b>Mixpict</b>
1787     </a>
1788    
1789     <dd>
1790     Mixpict combines two modifiers based on a picture:
1791    
1792     <pre>
1793     mod mixpict id
1794     7+
1795     foreground background func pictfile
1796     funcfile u v transform
1797     0
1798     m A1 A2 .. Am
1799     </pre>
1800    
1801     <p>
1802    
1803     The mixing coefficient function &quot;func&quot; takes three
1804     arguments, the red, green and blue values
1805     corresponding to the pixel at (u,v).
1806    
1807     <p>
1808    
1809     <dt>
1810     <a NAME="Mixtext">
1811     <b>Mixtext</b>
1812     </a>
1813    
1814     <dd>
1815     Mixtext uses one modifier for the text foreground, and one for the background:
1816    
1817     <pre>
1818     mod mixtext id
1819     4 foreground background fontfile textfile
1820     0
1821     9+
1822     Ox Oy Oz
1823     Rx Ry Rz
1824     Dx Dy Dz
1825     [spacing]
1826     </pre>
1827    
1828 greg 1.40 <p>
1829    
1830 greg 1.1 or:
1831    
1832     <pre>
1833     mod mixtext id
1834     4+N
1835     foreground background fontfile .
1836     This is a line with N words ...
1837     0
1838     9+
1839     Ox Oy Oz
1840     Rx Ry Rz
1841     Dx Dy Dz
1842     [spacing]
1843     </pre>
1844    
1845 greg 1.40 <p>
1846    
1847 greg 1.1 </dl>
1848    
1849     <p>
1850     <hr>
1851    
1852     <h3>
1853     <a NAME="Auxiliary">2.2. Auxiliary Files</a>
1854     </h3>
1855    
1856     Auxiliary files used in <a HREF="#Textures">textures</a> and <a HREF="#Patterns">patterns</a>
1857     are accessed by the programs during image generation.
1858     These files may be located in the working directory, or in a library directory.
1859     The environment variable RAYPATH can be assigned an alternate set of search directories.
1860     Following is a brief description of some common file types.
1861    
1862     <p>
1863    
1864     <h4>
1865     <a NAME="Function">12.2.1. Function Files</a>
1866     </h4>
1867    
1868     A function file contains the definitions of variables, functions and constants used by a primitive.
1869     The transformation that accompanies the file name contains the necessary rotations, translations and scalings
1870     to bring the coordinates of the function file into agreement with the world coordinates.
1871     The transformation specification is the same as for the <a HREF="#Generators">xform</a> command.
1872     An example function file is given below:
1873    
1874     <pre>
1875     {
1876     This is a comment, enclosed in curly braces.
1877     {Comments can be nested.}
1878     }
1879     { standard expressions use +,-,*,/,^,(,) }
1880     vname = Ny * func(A1) ;
1881     { constants are defined with a colon }
1882     const : sqrt(PI/2) ;
1883     { user-defined functions add to library }
1884     func(x) = 5 + A1*sin(x/3) ;
1885     { functions may be passed and recursive }
1886     rfunc(f,x) = if(x,f(x),f(-x)*rfunc(f,x+1)) ;
1887     { constant functions may also be defined }
1888     cfunc(x) : 10*x / sqrt(x) ;
1889     </pre>
1890    
1891 greg 1.40 <p>
1892    
1893 greg 1.1 Many variables and functions are already defined by the program, and they are listed in the file rayinit.cal.
1894     The following variables are particularly important:
1895    
1896     <pre>
1897     Dx, Dy, Dz - incident ray direction
1898     Nx, Ny, Nz - surface normal at intersection point
1899     Px, Py, Pz - intersection point
1900     T - distance from start
1901     Ts - single ray (shadow) distance
1902     Rdot - cosine between ray and normal
1903     arg(0) - number of real arguments
1904     arg(i) - i'th real argument
1905     </pre>
1906    
1907 greg 1.40 <p>
1908    
1909 greg 1.1 For mesh objects, the local surface coordinates are available:
1910    
1911     <pre>
1912     Lu, Lv - local (u,v) coordinates
1913     </pre>
1914    
1915 greg 1.40 <p>
1916    
1917 greg 1.1 For BRDF types, the following variables are defined as well:
1918    
1919     <pre>
1920     NxP, NyP, NzP - perturbed surface normal
1921     RdotP - perturbed dot product
1922     CrP, CgP, CbP - perturbed material color
1923     </pre>
1924    
1925 greg 1.40 <p>
1926    
1927 greg 1.1 A unique context is set up for each file so
1928     that the same variable may appear in different
1929     function files without conflict.
1930     The variables listed above and any others defined in
1931     rayinit.cal are available globally.
1932     If no file is needed by a given primitive because all
1933     the required variables are global,
1934     a period (`.') can be given in place of the file name.
1935     It is also possible to give an expression instead
1936 greg 1.9 of a straight variable name in a scene file.
1937     Functions (requiring parameters) must be given
1938 greg 1.1 as names and not as expressions.
1939    
1940     <p>
1941     Constant expressions are used as an optimization in function files.
1942     They are replaced wherever they occur in an expression by their value.
1943     Constant expressions are evaluated only once, so they must not contain any variables or values that can change,
1944     such as the ray variables Px and Ny or the primitive argument function arg().
1945     All the math library functions such as sqrt() and cos() have the constant attribute,
1946     so they will be replaced by immediate values whenever they are given constant arguments.
1947     Thus, the subexpression cos(PI*sqrt(2)) is immediately replaced by its value, -.266255342,
1948     and does not cause any additional overhead in the calculation.
1949    
1950     <p>
1951     It is generally a good idea to define constants and variables before they are referred to in a function file.
1952     Although evaluation does not take place until later, the interpreter does variable scoping and
1953     constant subexpression evaluation based on what it has compiled already.
1954     For example, a variable that is defined globally in rayinit.cal
1955     then referenced in the local context of a function file
1956     cannot subsequently be redefined in the same file
1957     because the compiler has already determined the scope of the referenced variable as global.
1958     To avoid such conflicts, one can state the scope of a variable explicitly by
1959     preceding the variable name with a context mark (a back-quote) for a local variable,
1960     or following the name with a context mark for a global variable.
1961    
1962     <p>
1963    
1964     <h4>
1965     <a NAME="Data">2.2.2. Data Files</a>
1966     </h4>
1967    
1968     Data files contain n-dimensional arrays of real numbers used for interpolation.
1969     Typically, definitions in a function file determine how to index and use interpolated data values.
1970     The basic data file format is as follows:
1971    
1972     <pre>
1973     N
1974     beg1 end1 m1
1975     0 0 m2 x2.1 x2.2 x2.3 x2.4 .. x2.m2
1976     ...
1977     begN endN mN
1978     DATA, later dimensions changing faster.
1979     </pre>
1980    
1981 greg 1.40 <p>
1982    
1983 greg 1.1 N is the number of dimensions.
1984     For each dimension, the beginning and ending coordinate values and the dimension size is given.
1985     Alternatively, individual coordinate values can be given when the points are not evenly spaced.
1986     These values must either be increasing or decreasing monotonically.
1987     The data is m1*m2*...*mN real numbers in ASCII form.
1988     Comments may appear anywhere in the file, beginning with a pound
1989     sign ('#') and continuing to the end of line.
1990    
1991     <p>
1992    
1993     <h4>
1994     <a NAME="Font">2.2.3. Font Files</a>
1995     </h4>
1996    
1997     A font file lists the polygons which make up a character set.
1998     Comments may appear anywhere in the file, beginning with a pound
1999     sign ('#') and continuing to the end of line.
2000     All numbers are decimal integers:
2001    
2002     <pre>
2003     code n
2004     x0 y0
2005     x1 y1
2006     ...
2007     xn yn
2008     ...
2009     </pre>
2010    
2011 greg 1.40 <p>
2012    
2013 greg 1.1 The ASCII codes can appear in any order. N is the number of vertices, and the last is automatically connected to the first.
2014     Separate polygonal sections are joined by coincident sides.
2015     The character coordinate system is a square with lower left corner at (0,0), lower right at (255,0) and upper right at (255,255).
2016    
2017     <p>
2018    
2019     <hr>
2020    
2021     <h3>
2022     <a NAME="Generators">2.3. Generators</a>
2023     </h3>
2024    
2025     A generator is any program that produces a scene description as its output.
2026     They usually appear as commands in a scene description file.
2027     An example of a simple generator is genbox.
2028    
2029     <ul>
2030    
2031     <li>
2032     <a NAME="Genbox" HREF="../man_html/genbox.1.html">
2033     <b>Genbox</b>
2034     </a>
2035     takes the arguments of width, height and depth to produce a parallelepiped description.
2036     <li>
2037     <a NAME="Genprism" HREF="../man_html/genprism.1.html">
2038     <b>Genprism</b>
2039     </a>
2040     takes a list of 2-dimensional coordinates and extrudes them along a vector to
2041     produce a 3-dimensional prism.
2042     <li>
2043     <a NAME="Genrev" HREF="../man_html/genrev.1.html">
2044     <b>Genrev</b>
2045     </a>
2046     is a more sophisticated generator that produces an object of rotation from parametric functions for radius and axis position.
2047     <li>
2048     <a NAME="Gensurf" HREF="../man_html/gensurf.1.html">
2049     <b>Gensurf</b>
2050     </a>
2051     tessellates a surface defined by the parametric functions x(s,t), y(s,t), and z(s,t).
2052     <li>
2053     <a NAME="Genworm" HREF="../man_html/genworm.1.html">
2054     <b>Genworm</b>
2055     </a>
2056     links cylinders and spheres along a curve.
2057     <li>
2058     <a NAME="Gensky" HREF="../man_html/gensky.1.html">
2059     <b>Gensky</b>
2060     </a>
2061     produces a sun and sky distribution corresponding to a given time and date.
2062     <li>
2063     <a NAME="Xform" HREF="../man_html/xform.1.html">
2064     <b>Xform</b>
2065     </a>
2066     is a program that transforms a scene description from one coordinate space to another.
2067     Xform does rotation, translation, scaling, and mirroring.
2068    
2069     </ul>
2070    
2071     <p>
2072     <hr>
2073    
2074     <h2>
2075     <a NAME="Image">3. Image Generation</a>
2076     </h2>
2077    
2078     Once the scene has been described in three-dimensions, it is possible to generate a two-dimensional image from a given perspective.
2079    
2080     <p>
2081     The image generating programs use an <a NAME="octree"><b>octree</b></a> to efficiently trace rays through the scene.
2082     An octree subdivides space into nested octants which contain sets of surfaces.
2083     In RADIANCE, an octree is created from a scene description by <a NAME="oconv1" HREF="../man_html/oconv.1.html"><b>oconv</b></a>.
2084     The details of this process are not important, but the octree will serve as input to the ray-tracing programs and
2085     directs the use of a scene description.
2086     <ul>
2087     <li>
2088 greg 1.30 <a NAME="rvu" HREF="../man_html/rvu.1.html"><b>Rvu</b></a> is ray-tracing program for viewing a scene interactively.
2089 greg 1.3 When the user specifies a new perspective, rvu quickly displays a rough image on the terminal,
2090 greg 1.1 then progressively increases the resolution as the user looks on.
2091     He can select a particular section of the image to improve, or move to a different view and start over.
2092     This mode of interaction is useful for debugging scenes as well as determining the best view for a final image.
2093    
2094     <li>
2095     <a NAME="rpict" HREF="../man_html/rpict.1.html"><b>Rpict</b></a> produces a high-resolution picture of a scene from a particular perspective.
2096     This program features adaptive sampling, crash recovery and progress reporting, all of which are important for time-consuming images.
2097     </ul>
2098     <p>
2099     A number of <a NAME="filters"><b>filters</b></a> are available for manipulating picture files:
2100     <ul>
2101     <li> <a HREF="../man_html/pfilt.1.html"><b>Pfilt</b></a>
2102     sets the exposure and performs antialiasing.
2103     <li> <a HREF="../man_html/pcompos.1.html"><b>Pcompos</b></a>
2104     composites (cuts and pastes) pictures.
2105     <li> <a HREF="../man_html/pcomb.1.html"><b>Pcomb</b></a>
2106     performs arbitrary math on one or more pictures.
2107     <li> <a HREF="../man_html/pcond.1.html"><b>Pcond</b></a>
2108     conditions a picture for a specific display device.
2109     <li> <a HREF="../man_html/protate.1.html"><b>Protate</b></a>
2110     rotates a picture 90 degrees clockwise.
2111     <li> <a HREF="../man_html/pflip.1.html"><b>Pflip</b></a>
2112     flips a picture horizontally, vertically, or both
2113     (180 degree rotation).
2114     <li> <a HREF="../man_html/pvalue.1.html"><b>Pvalue</b></a>
2115     converts a picture to and from simpler formats.
2116     </ul>
2117    
2118     <p>
2119     Pictures may be displayed directly under X11 using the program
2120     <a HREF="../man_html/ximage.1.html">ximage</a>,
2121     or converted a standard image format using one of the following
2122     <b>translators</b>:
2123     <ul>
2124 greg 1.30 <li> <a HREF="../man_html/ra_bmp.1.html"><b>Ra_bmp</b></a>
2125 greg 1.19 converts to and from BMP image format.
2126 greg 1.1 <li> <a HREF="../man_html/ra_ppm.1.html"><b>Ra_ppm</b></a>
2127     converts to and from Poskanzer Portable Pixmap formats.
2128     <li> <a HREF="../man_html/ra_ps.1.html"><b>Ra_ps</b></a>
2129     converts to PostScript color and greyscale formats.
2130     <li> <a HREF="../man_html/ra_rgbe.1.html"><b>Ra_rgbe</b></a>
2131     converts to and from Radiance uncompressed picture format.
2132     <li> <a HREF="../man_html/ra_t16.1.html"><b>Ra_t16</b></a>
2133     converts to and from Targa 16 and 24-bit image formats.
2134     <li> <a HREF="../man_html/ra_t8.1.html"><b>Ra_t8</b></a>
2135     converts to and from Targa 8-bit image format.
2136     <li> <a HREF="../man_html/ra_tiff.1.html"><b>Ra_tiff</b></a>
2137     converts to and from TIFF.
2138     <li> <a HREF="../man_html/ra_xyze.1.html"><b>Ra_xyze</b></a>
2139     converts to and from Radiance CIE picture format.
2140     </ul>
2141    
2142     <p>
2143    
2144     <hr>
2145    
2146     <h2>
2147     <a NAME="License">4. License</a>
2148     </h2>
2149    
2150     <pre>
2151     The Radiance Software License, Version 1.0
2152    
2153 greg 1.30 Copyright (c) 1990 - 2021 The Regents of the University of California,
2154 greg 1.1 through Lawrence Berkeley National Laboratory. All rights reserved.
2155    
2156     Redistribution and use in source and binary forms, with or without
2157     modification, are permitted provided that the following conditions
2158     are met:
2159    
2160     1. Redistributions of source code must retain the above copyright
2161     notice, this list of conditions and the following disclaimer.
2162    
2163     2. Redistributions in binary form must reproduce the above copyright
2164     notice, this list of conditions and the following disclaimer in
2165     the documentation and/or other materials provided with the
2166     distribution.
2167    
2168     3. The end-user documentation included with the redistribution,
2169     if any, must include the following acknowledgment:
2170     &quot;This product includes Radiance software
2171     (<a HREF="http://radsite.lbl.gov/">http://radsite.lbl.gov/</a>)
2172     developed by the Lawrence Berkeley National Laboratory
2173     (<a HREF="http://www.lbl.gov/">http://www.lbl.gov/</a>).&quot;
2174     Alternately, this acknowledgment may appear in the software itself,
2175     if and wherever such third-party acknowledgments normally appear.
2176    
2177     4. The names &quot;Radiance,&quot; &quot;Lawrence Berkeley National Laboratory&quot;
2178     and &quot;The Regents of the University of California&quot; must
2179     not be used to endorse or promote products derived from this
2180     software without prior written permission. For written
2181     permission, please contact [email protected].
2182    
2183     5. Products derived from this software may not be called &quot;Radiance&quot;,
2184     nor may &quot;Radiance&quot; appear in their name, without prior written
2185     permission of Lawrence Berkeley National Laboratory.
2186    
2187 greg 1.15 THIS SOFTWARE IS PROVIDED ``AS IS&quot; AND ANY EXPRESSED OR IMPLIED
2188 greg 1.1 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
2189     OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
2190     DISCLAIMED. IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
2191     ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
2192     SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
2193     LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
2194     USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
2195     ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
2196     OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
2197     OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
2198     SUCH DAMAGE.
2199     </pre>
2200    
2201 greg 1.40 <p>
2202    
2203 greg 1.1 <hr>
2204    
2205     <h2>
2206     <a NAME="Ack">5. Acknowledgements</a>
2207     </h2>
2208    
2209     This work was supported by the Assistant Secretary of Conservation and Renewable Energy,
2210     Office of Building Energy Research and Development,
2211     Buildings Equipment Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
2212    
2213     <p>
2214     Additional work was sponsored by the Swiss federal government
2215     under the Swiss LUMEN Project and was carried out in the
2216     Laboratoire d'Energie Solaire (LESO Group) at the
2217     Ecole Polytechnique Federale de Lausanne (EPFL University) in Lausanne, Switzerland.
2218    
2219     <p>
2220    
2221     <hr>
2222    
2223     <h2>
2224     <a NAME="Ref">6.</a> References
2225     </h2>
2226     <p>
2227     <ul>
2228 greg 1.32 <li>Ward, Gregory J., Bruno Bueno, David Geisler-Moroder,
2229     Lars O. Grobe, Jacob C. Jonsson, Eleanor
2230     S. Lee, Taoning Wang, Helen Rose Wilson,
2231     &quot;<a href="https://doi.org/10.1016/j.enbuild.2022.111890">Daylight
2232     Simulation Workflows Incorporating Measured Bidirectional
2233     Scattering Distribution Functions</a>&quot;
2234     <em>Energy &amp; Buildings</em>, Vol. 259, No. 11890, 2022.
2235 greg 1.27 <li>Wang, Taoning, Gregory Ward, Eleanor Lee,
2236     &quot;<a href="https://authors.elsevier.com/a/1XQ0a1M7zGwT7v">Efficient
2237     modeling of optically-complex, non-coplanar exterior shading:
2238     Validation of matrix algebraic methods</a>&quot;
2239     <em>Energy & Buildings</em>, vol. 174, pp. 464-83, Sept. 2018.
2240     <li>Lee, Eleanor S., David Geisler-Moroder, Gregory Ward,
2241     &quot;<a href="https://eta.lbl.gov/sites/default/files/publications/solar_energy.pdf">Modeling
2242     the direct sun component in buildings using matrix
2243     algebraic approaches: Methods and
2244     validation</a>,&quot; <em>Solar Energy</em>,
2245     vol. 160, 15 January 2018, pp 380-395.
2246     <li>Narain, Rahul, Rachel A. Albert, Abdullah Bulbul,
2247     Gregory J. Ward, Marty Banks, James F. O'Brien,
2248     &quot;<a href="http://graphics.berkeley.edu/papers/Narain-OPI-2015-08/index.html">Optimal
2249     Presentation of Imagery with Focus
2250     Cues on Multi-Plane Displays</a>,&quot;
2251     <em>SIGGRAPH 2015</em>.
2252     <li>Ward, Greg, Murat Kurt, and Nicolas Bonneel,
2253     &quot;<a href="papers/WMAM14_Tensor_Tree_Representation.pdf">Reducing
2254     Anisotropic BSDF Measurement to Common Practice</a>,&quot;
2255     <em>Workshop on Material Appearance Modeling</em>, 2014.
2256     <li>Banks, Martin, Abdullah Bulbul, Rachel Albert, Rahul Narain,
2257     James F. O'Brien, Gregory Ward,
2258     &quot;<a href="http://graphics.berkeley.edu/papers/Banks-TPO-2014-05/index.html">The
2259     Perception of Surface Material from Disparity and Focus Cues</a>,&quot;
2260     <em>VSS 2014</em>.
2261 greg 1.19 <li>McNeil, A., C.J. Jonsson, D. Appelfeld, G. Ward, E.S. Lee,
2262     &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">
2263     A validation of a ray-tracing tool used to generate
2264     bi-directional scattering distribution functions for
2265     complex fenestration systems</a>,&quot;
2266     <em>Solar Energy</em>, 98, 404-14,
2267     November 2013.
2268 greg 1.15 <li>Ward, G., R. Mistrick, E.S. Lee, A. McNeil, J. Jonsson,
2269 greg 1.17 &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">Simulating
2270     the Daylight Performance of Complex Fenestration Systems
2271     Using Bidirectional Scattering Distribution Functions within
2272     Radiance</a>,&quot;
2273 greg 1.18 <em>Leukos</em>, 7(4)
2274 greg 1.15 April 2011.
2275 greg 1.7 <li>Cater, Kirsten, Alan Chalmers, Greg Ward,
2276 greg 1.9 &quot;<a href="http://www.anyhere.com/gward/papers/egsr2003.pdf">Detail to Attention:
2277 greg 1.7 Exploiting Visual Tasks for Selective Rendering</a>,&quot;
2278     <em>Eurographics Symposium
2279     on Rendering 2003</em>, June 2003.
2280 greg 1.1 <li>Ward, Greg, Elena Eydelberg-Vileshin,
2281 greg 1.15 &quot;<a HREF="http://www.anyhere.com/gward/papers/egwr02/index.html">Picture Perfect RGB
2282     Rendering Using Spectral Prefiltering and Sharp Color Primaries</a>,&quot;
2283 greg 1.1 Thirteenth Eurographics Workshop on Rendering (2002),
2284     P. Debevec and S. Gibson (Editors), June 2002.
2285     <li>Ward, Gregory,
2286 greg 1.15 &quot;<a HREF="http://www.anyhere.com/gward/papers/cic01.pdf">High Dynamic Range Imaging</a>,&quot;
2287 greg 1.1 Proceedings of the Ninth Color Imaging Conference, November 2001.
2288     <li>Ward, Gregory and Maryann Simmons,
2289 greg 1.15 &quot;<a HREF="http://www.anyhere.com/gward/papers/tog99.pdf">
2290 greg 1.1 The Holodeck Ray Cache: An Interactive Rendering System for Global Illumination in Nondiffuse
2291 greg 1.15 Environments</a>,&quot; ACM Transactions on Graphics, 18(4):361-98, October 1999.
2292     <li>Larson, G.W., &quot;<a HREF="http://www.anyhere.com/gward/papers/ewp98.pdf">The Holodeck: A Parallel
2293     Ray-caching Rendering System</a>,&quot; Proceedings of the Second
2294 greg 1.1 Eurographics Workshop on Parallel Graphics and Visualisation,
2295     September 1998.
2296     <li>Larson, G.W. and R.A. Shakespeare,
2297 greg 1.2 <a HREF="http://radsite.lbl.gov/radiance/book/index.html"><em>Rendering with Radiance:
2298 greg 1.1 the Art and Science of Lighting Visualization</em></a>,
2299     Morgan Kaufmann Publishers, 1998.
2300     <li>Larson, G.W., H. Rushmeier, C. Piatko,
2301 greg 1.15 &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/lbnl39882/tonemap.pdf">A Visibility
2302 greg 1.1 Matching Tone Reproduction Operator for
2303 greg 1.15 High Dynamic Range Scenes</a>,&quot; LBNL Technical Report 39882,
2304 greg 1.1 January 1997.
2305 greg 1.15 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw95.1/paper.html">Making
2306     Global Illumination User-Friendly</a>,&quot; Sixth
2307 greg 1.1 Eurographics Workshop on Rendering, Springer-Verlag,
2308     Dublin, Ireland, June 1995.</li>
2309     <li>Rushmeier, H., G. Ward, C. Piatko, P. Sanders, B. Rust,
2310 greg 1.15 &quot;<a HREF="http://radsite.lbl.gov/mgf/compare.html">
2311 greg 1.1 Comparing Real and Synthetic Images: Some Ideas about
2312 greg 1.15 Metrics</a>,&quot; Sixth Eurographics Workshop on Rendering,
2313 greg 1.1 Springer-Verlag, Dublin, Ireland, June 1995.</li>
2314 greg 1.15 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.1/paper.html">The RADIANCE
2315     Lighting Simulation and Rendering System</a>,&quot; <em>Computer
2316 greg 1.1 Graphics</em>, July 1994.</li>
2317 greg 1.15 <li>Rushmeier, H., G. Ward, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.2/energy.html">Energy
2318     Preserving Non-Linear Filters</a>,&quot; <em>Computer
2319 greg 1.1 Graphics</em>, July 1994.</li>
2320 greg 1.15 <li>Ward, G., &quot;A Contrast-Based Scalefactor for Luminance
2321     Display,&quot; <em>Graphics Gems IV</em>, Edited by Paul Heckbert,
2322 greg 1.1 Academic Press 1994.</li>
2323 greg 1.15 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg92/paper.html">Measuring and
2324     Modeling Anisotropic Reflection</a>,&quot; <em>Computer
2325 greg 1.1 Graphics</em>, Vol. 26, No. 2, July 1992. </li>
2326 greg 1.15 <li>Ward, G., P. Heckbert, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw92/paper.html">Irradiance
2327     Gradients</a>,&quot; Third Annual Eurographics Workshop on
2328 greg 1.1 Rendering, Springer-Verlag, May 1992. </li>
2329 greg 1.15 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw91/erw91.html">Adaptive Shadow
2330     Testing for Ray Tracing</a>&quot; Photorealistic Rendering in
2331 greg 1.1 Computer Graphics, proceedings of 1991 Eurographics
2332     Rendering Workshop, edited by P. Brunet and F.W. Jansen,
2333     Springer-Verlag. </li>
2334 greg 1.15 <li>Ward, G., &quot;Visualization,&quot; <em>Lighting Design and
2335 greg 1.1 Application</em>, Vol. 20, No. 6, June 1990. </li>
2336 greg 1.15 <li>Ward, G., F. Rubinstein, R. Clear, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg88/paper.html">A Ray Tracing Solution for
2337     Diffuse Interreflection</a>,&quot; <em>Computer Graphics</em>,
2338 greg 1.1 Vol. 22, No. 4, August 1988. </li>
2339 greg 1.15 <li>Ward, G., F. Rubinstein, &quot;A New Technique for Computer
2340     Simulation of Illuminated Spaces,&quot; <em>Journal of the
2341 greg 1.1 Illuminating Engineering Society</em>, Vol. 17, No. 1,
2342     Winter 1988. </li>
2343     </ul>
2344     <p>
2345     See the <a HREF="index.html">RADIANCE Reference Materials</a> page
2346     for additional information.
2347     <hr>
2348    
2349     <a NAME="Index"><h2>7. Types Index</h2></a>
2350    
2351     <pre>
2352     <h4>
2353     SURFACES MATERIALS TEXTURES PATTERNS MIXTURES</h4>
2354     <a HREF="#Source">Source</a> <a HREF="#Light">Light</a> <a HREF="#Texfunc">Texfunc</a> <a HREF="#Colorfunc">Colorfunc</a> <a HREF="#Mixfunc">Mixfunc</a>
2355     <a HREF="#Sphere">Sphere</a> <a HREF="#Illum">Illum</a> <a HREF="#Texdata">Texdata</a> <a HREF="#Brightfunc">Brightfunc</a> <a HREF="#Mixdata">Mixdata</a>
2356     <a HREF="#Bubble">Bubble</a> <a HREF="#Glow">Glow</a> <a HREF="#Colordata">Colordata</a> <a HREF="#Mixtext">Mixtext</a>
2357     <a HREF="#Polygon">Polygon</a> <a HREF="#Spotlight">Spotlight</a> <a HREF="#Brightdata">Brightdata</a>
2358     <a HREF="#Cone">Cone</a> <a HREF="#Mirror">Mirror</a> <a HREF="#Colorpict">Colorpict</a>
2359     <a HREF="#Cup">Cup</a> <a HREF="#Prism1">Prism1</a> <a HREF="#Colortext">Colortext</a>
2360     <a HREF="#Cylinder">Cylinder</a> <a HREF="#Prism2">Prism2</a> <a HREF="#Brighttext">Brighttext</a>
2361     <a HREF="#Tube">Tube</a> <a HREF="#Plastic">Plastic</a>
2362     <a HREF="#Ring">Ring</a> <a HREF="#Metal">Metal</a>
2363     <a HREF="#Instance">Instance</a> <a HREF="#Trans">Trans</a>
2364     <a HREF="#Mesh">Mesh</a> <a HREF="#Plastic2">Plastic2</a>
2365     <a HREF="#Metal2">Metal2</a>
2366     <a HREF="#Trans2">Trans2</a>
2367     <a HREF="#Mist">Mist</a>
2368     <a HREF="#Dielectric">Dielectric</a>
2369     <a HREF="#Interface">Interface</a>
2370     <a HREF="#Glass">Glass</a>
2371     <a HREF="#Plasfunc">Plasfunc</a>
2372     <a HREF="#Metfunc">Metfunc</a>
2373     <a HREF="#Transfunc">Transfunc</a>
2374     <a HREF="#BRTDfunc">BRTDfunc</a>
2375     <a HREF="#Plasdata">Plasdata</a>
2376     <a HREF="#Metdata">Metdata</a>
2377     <a HREF="#Transdata">Transdata</a>
2378 greg 1.10 <a HREF="#BSDF">BSDF</a>
2379 greg 1.1 <a HREF="#Antimatter">Antimatter</a>
2380    
2381     </pre>
2382    
2383     <p>
2384    
2385    
2386     <hr>
2387     <center>Last Update: October 22, 1997</center>
2388     </body>
2389     </html>
2390