1 |
|
<html> |
2 |
+ |
<!-- RCSid $Id$ --> |
3 |
|
<head> |
4 |
|
<title> |
5 |
< |
The RADIANCE 4.2 Synthetic Imaging System |
5 |
> |
The RADIANCE 5.4 Synthetic Imaging System |
6 |
|
</title> |
7 |
|
</head> |
8 |
|
<body> |
10 |
|
<p> |
11 |
|
|
12 |
|
<h1> |
13 |
< |
The RADIANCE 4.2 Synthetic Imaging System |
13 |
> |
The RADIANCE 5.4 Synthetic Imaging System |
14 |
|
</h1> |
15 |
|
|
16 |
|
<p> |
798 |
|
|
799 |
|
<dd> |
800 |
|
Trans2 is the anisotropic version of <a HREF="#Trans">trans</a>. |
801 |
< |
The string arguments are the same as for plastic2, and the real arguments are the same as for trans but with an additional roughness value. |
801 |
> |
The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>, |
802 |
> |
and the real arguments are the same as for trans but with an additional roughness value. |
803 |
|
|
804 |
|
<pre> |
805 |
|
mod trans2 id |
811 |
|
<p> |
812 |
|
|
813 |
|
<dt> |
814 |
+ |
<a NAME="Ashik2"> |
815 |
+ |
<b>Ashik2</b> |
816 |
+ |
</a> |
817 |
+ |
|
818 |
+ |
<dd> |
819 |
+ |
Ashik2 is the anisotropic reflectance model by Ashikhmin & Shirley. |
820 |
+ |
The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>, but the real |
821 |
+ |
arguments have additional flexibility to specify the specular color. |
822 |
+ |
Also, rather than roughness, specular power is used, which has no |
823 |
+ |
physical meaning other than larger numbers are equivalent to a smoother |
824 |
+ |
surface. |
825 |
+ |
<pre> |
826 |
+ |
mod ashik2 id |
827 |
+ |
4+ ux uy uz funcfile transform |
828 |
+ |
0 |
829 |
+ |
8 dred dgrn dblu sred sgrn sblu u-power v-power |
830 |
+ |
</pre> |
831 |
+ |
|
832 |
+ |
<p> |
833 |
+ |
|
834 |
+ |
<dt> |
835 |
|
<a NAME="Dielectric"> |
836 |
|
<b>Dielectric</b> |
837 |
|
</a> |
1154 |
|
<p> |
1155 |
|
|
1156 |
|
<dt> |
1157 |
+ |
<a NAME="aBSDF"> |
1158 |
+ |
<b>aBSDF</b> |
1159 |
+ |
</a> |
1160 |
+ |
|
1161 |
+ |
<dd> |
1162 |
+ |
The aBSDF material is identical to the BSDF type with two |
1163 |
+ |
important differences. First, proxy geometry is not |
1164 |
+ |
supported, so there is no thickness parameter. Second, an |
1165 |
+ |
aBSDF is assumed to have some specular through component |
1166 |
+ |
(the ’a’ stands for "aperture"), |
1167 |
+ |
which is treated specially during the direct calculation |
1168 |
+ |
and when viewing the material. Based on the BSDF data, the |
1169 |
+ |
coefficient of specular transmission is determined and used |
1170 |
+ |
for modifying unscattered shadow and view rays. |
1171 |
+ |
|
1172 |
+ |
<pre> |
1173 |
+ |
mod aBSDF id |
1174 |
+ |
5+ BSDFfile ux uy uz funcfile transform |
1175 |
+ |
0 |
1176 |
+ |
0|3|6|9 |
1177 |
+ |
rfdif gfdif bfdif |
1178 |
+ |
rbdif gbdif bbdif |
1179 |
+ |
rtdif gtdif btdif |
1180 |
+ |
</pre> |
1181 |
+ |
|
1182 |
+ |
<p> |
1183 |
+ |
If a material has no specular transmitted component, it is |
1184 |
+ |
much better to use the BSDF type with a zero thickness |
1185 |
+ |
than to use aBSDF. |
1186 |
+ |
<p> |
1187 |
+ |
|
1188 |
+ |
<dt> |
1189 |
|
<a NAME="Antimatter"> |
1190 |
|
<b>Antimatter</b> |
1191 |
|
</a> |
1469 |
|
</h4> |
1470 |
|
|
1471 |
|
A mixture is a blend of one or more materials or textures and patterns. |
1472 |
+ |
Blended materials should not be light source types or virtual source types. |
1473 |
|
The basic types are given below. |
1474 |
|
|
1475 |
|
<p> |
1542 |
|
arguments, the red, green and blue values |
1543 |
|
corresponding to the pixel at (u,v). |
1544 |
|
|
1489 |
– |
</dl> |
1545 |
|
<p> |
1546 |
|
|
1547 |
|
<dt> |
1945 |
|
</h2> |
1946 |
|
<p> |
1947 |
|
<ul> |
1948 |
+ |
<li>Wang, Taoning, Gregory Ward, Eleanor Lee, |
1949 |
+ |
"<a href="https://authors.elsevier.com/a/1XQ0a1M7zGwT7v">Efficient |
1950 |
+ |
modeling of optically-complex, non-coplanar exterior shading: |
1951 |
+ |
Validation of matrix algebraic methods</a>" |
1952 |
+ |
<em>Energy & Buildings</em>, vol. 174, pp. 464-83, Sept. 2018. |
1953 |
+ |
<li>Lee, Eleanor S., David Geisler-Moroder, Gregory Ward, |
1954 |
+ |
"<a href="https://eta.lbl.gov/sites/default/files/publications/solar_energy.pdf">Modeling |
1955 |
+ |
the direct sun component in buildings using matrix |
1956 |
+ |
algebraic approaches: Methods and |
1957 |
+ |
validation</a>," <em>Solar Energy</em>, |
1958 |
+ |
vol. 160, 15 January 2018, pp 380-395. |
1959 |
+ |
<li>Narain, Rahul, Rachel A. Albert, Abdullah Bulbul, |
1960 |
+ |
Gregory J. Ward, Marty Banks, James F. O'Brien, |
1961 |
+ |
"<a href="http://graphics.berkeley.edu/papers/Narain-OPI-2015-08/index.html">Optimal |
1962 |
+ |
Presentation of Imagery with Focus |
1963 |
+ |
Cues on Multi-Plane Displays</a>," |
1964 |
+ |
<em>SIGGRAPH 2015</em>. |
1965 |
+ |
<li>Ward, Greg, Murat Kurt, and Nicolas Bonneel, |
1966 |
+ |
"<a href="papers/WMAM14_Tensor_Tree_Representation.pdf">Reducing |
1967 |
+ |
Anisotropic BSDF Measurement to Common Practice</a>," |
1968 |
+ |
<em>Workshop on Material Appearance Modeling</em>, 2014. |
1969 |
+ |
<li>Banks, Martin, Abdullah Bulbul, Rachel Albert, Rahul Narain, |
1970 |
+ |
James F. O'Brien, Gregory Ward, |
1971 |
+ |
"<a href="http://graphics.berkeley.edu/papers/Banks-TPO-2014-05/index.html">The |
1972 |
+ |
Perception of Surface Material from Disparity and Focus Cues</a>," |
1973 |
+ |
<em>VSS 2014</em>. |
1974 |
|
<li>McNeil, A., C.J. Jonsson, D. Appelfeld, G. Ward, E.S. Lee, |
1975 |
|
"<a href="http://gaia.lbl.gov/btech/papers/4414.pdf"> |
1976 |
|
A validation of a ray-tracing tool used to generate |