ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/ray.html
Revision: 1.40
Committed: Fri Dec 13 18:17:17 2024 UTC (4 months, 2 weeks ago) by greg
Content type: text/html
Branch: MAIN
CVS Tags: HEAD
Changes since 1.39: +56 -1 lines
Log Message:
docs: Added missing paragraph marks after preformatted block -- does it matter?

File Contents

# Content
1 <html>
2 <!-- RCSid $Id: ray.html,v 1.39 2024/12/09 19:21:38 greg Exp $ -->
3 <head>
4 <title>
5 The RADIANCE 6.0 Synthetic Imaging System
6 </title>
7 </head>
8 <body>
9
10 <p>
11
12 <h1>
13 The RADIANCE 6.0 Synthetic Imaging System
14 </h1>
15
16 <p>
17
18 Building Technologies Program<br>
19 Lawrence Berkeley National Laboratory<br>
20 1 Cyclotron Rd., 90-3111<br>
21 Berkeley, CA 94720<br>
22 <a HREF="http://radsite.lbl.gov/radiance"</a>
23 http://radsite.lbl.gov/radiance<br>
24
25 <p>
26 <hr>
27
28 <h2>
29 <a NAME="Overview">Overview</a>
30 </h2>
31 <ol>
32 <li><a HREF="#Intro">Introduction</a><!P>
33 <li><a HREF="#Scene">Scene Description</a><!P>
34 <ol>
35 <li><a HREF="#Primitive"> Primitive Types</a>
36 <ol>
37 <li><a HREF="#Surfaces">Surfaces</a>
38 <li><a HREF="#Materials">Materials</a>
39 <li><a HREF="#Textures">Textures</a>
40 <li><a HREF="#Patterns">Patterns</a>
41 <li><a HREF="#Mixtures">Mixtures</a>
42 </ol><!P>
43 <li><a HREF="#Auxiliary">Auxiliary Files</a>
44 <ol>
45 <li><a HREF="#Function">Function Files</a>
46 <li><a HREF="#Data">Data Files</a>
47 <li><a HREF="#Font">Font Files</a>
48 </ol><!P>
49 <li><a HREF="#Generators">Generators</a>
50 </ol><!P>
51 <li><a HREF="#Image">Image Generation</a><!P>
52 <li><a HREF="#License">License</a><!P>
53 <li><a HREF="#Ack">Acknowledgements</a><!P>
54 <li><a HREF="#Ref">References</a><!P>
55 <li><a HREF="#Index">Types Index</a><!P>
56 </ol>
57
58 <p>
59 <hr>
60
61 <h2>
62 <a NAME="Intro">1. Introduction</a>
63 </h2>
64
65 RADIANCE was developed as a research tool for predicting
66 the distribution of visible radiation in illuminated spaces.
67 It takes as input a three-dimensional geometric model
68 of the physical environment, and produces a map of
69 spectral radiance values in a color image.
70 The technique of ray-tracing follows light backwards
71 from the image plane to the source(s).
72 Because it can produce realistic images from a
73 simple description, RADIANCE has a wide range of applications
74 in graphic arts, lighting design,
75 computer-aided engineering and architecture.
76
77 <p>
78 <img SRC="diagram1.gif">
79 <p>
80 Figure 1
81 <p>
82 The diagram in Figure 1 shows the flow between programs (boxes) and data
83 (ovals).
84 The central program is <i>rpict</i>, which produces a picture from a scene
85 description.
86 <i>Rvu</i> is a variation of rpict that computes and displays images
87 interactively, and rtrace computes single ray values.
88 Other programs (not shown) connect many of these elements together,
89 such as the executive programs
90 <i>rad</i>
91 and
92 <i>ranimate</i>,
93 the interactive rendering program
94 <i>rholo</i>,
95 and the animation program
96 <i>ranimove</i>.
97 The program
98 <i>obj2mesh</i>
99 acts as both a converter and scene compiler, converting a Wavefront .OBJ
100 file into a compiled mesh octree for efficient rendering.
101
102 <p>
103 A scene description file lists the surfaces and materials
104 that make up a specific environment.
105 The current surface types are spheres, polygons, cones, and cylinders.
106 There is also a composite surface type, called mesh, and a pseudosurface
107 type, called instance, which facilitates very complex geometries.
108 Surfaces can be made from materials such as plastic, metal, and glass.
109 Light sources can be distant disks as well as local spheres, disks
110 and polygons.
111
112 <p>
113 From a three-dimensional scene description and a specified view,
114 <i>rpict</i> produces a two-dimensional image.
115 A picture file is a compressed binary representation of the
116 pixels in the image.
117 This picture can be scaled in size and brightness,
118 anti-aliased, and sent to a graphics output device.
119
120 <p>
121 A header in each picture file lists the program(s)
122 and parameters that produced it.
123 This is useful for identifying a picture without having to display it.
124 The information can be read by the program <i>getinfo</i>.
125
126 <p>
127 <hr>
128
129 <h2>
130 <a name="Scene">2. Scene Description</a>
131 </h2>
132
133 A scene description file represents a three-dimensional physical environment in Cartesian (rectilinear) world coordinates.
134 It is stored as ASCII text, with the following basic format:
135
136 <pre>
137 # comment
138
139 modifier type identifier
140 n S1 S2 &quot;S 3&quot; .. Sn
141 0
142 m R1 R2 R3 .. Rm
143
144 modifier alias identifier reference
145
146 ! command
147
148 ...
149 </pre>
150
151 <p>
152
153 A comment line begins with a pound sign, `#'.
154
155 <p>
156 The <a NAME="scene_desc">scene description primitives</a>
157 all have the same general format, and can be either surfaces or modifiers.
158 A primitive has a modifier, a type, and an identifier.
159 <p>
160 A <a NAME="modifier"><b>modifier</b></a> is either the
161 identifier of a previously defined primitive, or &quot;void&quot;.
162 <br>
163 [ The most recent definition of a modifier is the
164 one used, and later definitions do not cause relinking
165 of loaded primitives.
166 Thus, the same identifier may be used repeatedly,
167 and each new definition will apply to the primitives following it. ]
168 <p>
169 An <a NAME="identifier"><b>identifier</b></a> can be any string
170 (i.e., any sequence of non-white characters).
171 <p>
172 The arguments associated with a primitive can be strings or real numbers.
173 <ul>
174 <li> The first integer following the identifier is the number of <b>string arguments</b>,
175 and it is followed by the arguments themselves (separated by white space or enclosed in quotes).
176 <li> The next integer is the number of integer arguments, and is followed by the <b>integer arguments</b>.
177 (There are currently no primitives that use them, however.)
178 <li> The next integer is the real argument count, and it is followed by the <b>real arguments</b>.
179 </ul>
180
181 <p>
182 An <a NAME="alias"><b>alias</b></a> gets its type and arguments from
183 a previously defined primitive.
184 This is useful when the same material is
185 used with a different modifier, or as a convenient naming mechanism.
186 The reserved modifier name &quot;inherit&quot; may be used to specificy that
187 an alias will inherit its modifier from the original.
188 Surfaces cannot be aliased.
189
190 <p>
191 A line beginning with an exclamation point, `!',
192 is interpreted as a command.
193 It is executed by the shell, and its output is read as input to the program.
194 The command must not try to read from its standard input, or confusion
195 will result.
196 A command may be continued over multiple lines using a
197 backslash, `\', to escape the newline.
198
199 <p>
200 White space is generally ignored, except as a separator.
201 The exception is the newline character after a command or comment.
202 Commands, comments and primitives may appear in any
203 combination, so long as they are not intermingled.
204
205 <p>
206 <hr>
207
208 <h3>
209 <a NAME="Primitive">2.1. Primitive Types</a>
210 </h3>
211
212 Primitives can be <a HREF="#Surfaces">surfaces</a>,
213 <a HREF="#Materials">materials</a>,
214 <a HREF="#Textures">textures</a> or
215 <a HREF="#Patterns">patterns</a>.
216 Modifiers can be <a HREF="#Materials">materials</a>,
217 <a HREF="#Mixtures">mixtures</a>,
218 <a HREF="#Textures">textures</a> or <a HREF="#Patterns">patterns</a>.
219 Simple surfaces must have one material in their modifier list.
220
221 <p>
222 <hr>
223
224 <h4>
225 <a NAME="Surfaces">2.1.1. Surfaces</a>
226 </h4>
227 <dl>
228
229 A scene description will consist mostly of surfaces.
230 The basic types are given below.
231
232 <p>
233
234 <dt>
235 <a NAME="Source">
236 <b>Source </b>
237 </a>
238 <dd>
239 A source is not really a surface, but a solid angle.
240 It is used for specifying light sources that are very distant.
241 The direction to the center of the source and the number of degrees subtended by its disk are given as follows:
242
243 <pre>
244 mod source id
245 0
246 0
247 4 xdir ydir zdir angle
248 </pre>
249
250 <p>
251
252 <dt>
253 <a NAME="Sphere">
254 <b>Sphere</b>
255 </a>
256 <dd>
257 A sphere is given by its center and radius:
258
259 <pre>
260 mod sphere id
261 0
262 0
263 4 xcent ycent zcent radius
264 </pre>
265
266 <p>
267
268 <dt>
269 <a NAME="Bubble">
270 <b>Bubble</b>
271 </a>
272
273 <dd>
274 A bubble is simply a sphere whose surface normal points inward.
275
276 <p>
277
278 <dt>
279 <a NAME="Polygon">
280 <b>Polygon</b>
281 </a>
282 <dd>
283 A polygon is given by a list of three-dimensional vertices,
284 which are ordered counter-clockwise as viewed from the
285 front side (into the surface normal).
286 The last vertex is automatically connected to the first.
287 Holes are represented in polygons as interior vertices
288 connected to the outer perimeter by coincident edges (seams).
289
290 <pre>
291 mod polygon id
292 0
293 0
294 3n
295 x1 y1 z1
296 x2 y2 z2
297 ...
298 xn yn zn
299 </pre>
300
301 <p>
302
303 <dt>
304 <a NAME="Cone">
305 <b>Cone</b>
306 </a>
307 <dd>
308 A cone is a megaphone-shaped object.
309 It is truncated by two planes perpendicular to its axis,
310 and one of its ends may come to a point.
311 It is given as two axis endpoints, and the starting and ending radii:
312
313 <pre>
314 mod cone id
315 0
316 0
317 8
318 x0 y0 z0
319 x1 y1 z1
320 r0 r1
321 </pre>
322
323 <p>
324
325 <dt>
326 <a NAME="Cup">
327 <b>Cup</b>
328 </a>
329 <dd>
330 A cup is an inverted <a HREF="#Cone">cone</a> (i.e., has an
331 inward surface normal).
332
333 <p>
334
335 <dt>
336 <a NAME="Cylinder">
337 <b>Cylinder</b>
338 </a>
339 <dd>
340 A cylinder is like a <a HREF="#Cone">cone</a>, but its
341 starting and ending radii are equal.
342
343 <pre>
344 mod cylinder id
345 0
346 0
347 7
348 x0 y0 z0
349 x1 y1 z1
350 rad
351 </pre>
352
353 <p>
354
355 <dt>
356 <a NAME="Tube">
357 <b>Tube</b>
358 </a>
359 <dd>
360 A tube is an inverted <a HREF="#Cylinder">cylinder</a>.
361
362 <p>
363
364 <dt>
365 <a NAME="Ring">
366 <b>Ring</b>
367 </a>
368 <dd>
369 A ring is a circular disk given by its center,
370 surface normal, and inner and outer radii:
371
372 <pre>
373 mod ring id
374 0
375 0
376 8
377 xcent ycent zcent
378 xdir ydir zdir
379 r0 r1
380 </pre>
381
382 <p>
383
384 <dt>
385 <a NAME="Instance">
386 <b>Instance</b>
387 </a>
388 <dd>
389 An instance is a compound surface, given
390 by the contents of an octree file (created by oconv).
391
392 <pre>
393 mod instance id
394 1+ octree transform
395 0
396 0
397 </pre>
398
399 <p>
400 If the modifier is &quot;void&quot;, then surfaces will
401 use the modifiers given in the original description.
402 Otherwise, the modifier specified is used in their place.
403 The transform moves the octree to the desired location in the scene.
404 Multiple instances using the same octree take
405 little extra memory, hence very complex
406 descriptions can be rendered using this primitive.
407
408 <p>
409 There are a number of important limitations to be aware of
410 when using instances.
411 First, the scene description used to generate the octree must
412 stand on its own, without referring to modifiers in the
413 parent description.
414 This is necessary for oconv to create the octree.
415 Second, light sources in the octree will not be
416 incorporated correctly in the calculation,
417 and they are not recommended.
418 Finally, there is no advantage (other than
419 convenience) to using a single instance of an octree,
420 or an octree containing only a few surfaces.
421 An <a HREF="../man_html/xform.1.html">xform</a> command
422 on the subordinate description is prefered in such cases.
423 </dl>
424
425 <p>
426
427 <dt>
428 <a NAME="Mesh">
429 <b>Mesh</b>
430 </a>
431 <dd>
432 A mesh is a compound surface, made up of many triangles and
433 an octree data structure to accelerate ray intersection.
434 It is typically converted from a Wavefront .OBJ file using the
435 <i>obj2mesh</i> program.
436
437 <pre>
438 mod mesh id
439 1+ meshfile transform
440 0
441 0
442 </pre>
443
444 <p>
445
446 If the modifier is &quot;void&quot;, then surfaces will
447 use the modifiers given in the original mesh description.
448 Otherwise, the modifier specified is used in their place.
449 The transform moves the mesh to the desired location in the scene.
450 Multiple instances using the same meshfile take little extra memory,
451 and the compiled mesh itself takes much less space than individual
452 polygons would.
453 In the case of an unsmoothed mesh, using the mesh primitive reduces
454 memory requirements by a factor of 30 relative to individual triangles.
455 If a mesh has smoothed surfaces, we save a factor of 50 or more,
456 permitting very detailed geometries that would otherwise exhaust the
457 available memory.
458 In addition, the mesh primitive can have associated (u,v) coordinates
459 for pattern and texture mapping.
460 These are made available to function files via the Lu and Lv variables.
461
462 </dl>
463
464 <p>
465 <hr>
466
467 <h4>
468 <a NAME="Materials">2.1.2. Materials</a>
469 </h4>
470
471 A material defines the way light interacts with a surface. The basic types are given below.
472
473 <p>
474
475 <dl>
476
477 <dt>
478 <a NAME="Light">
479 <b>Light</b>
480 </a>
481 <dd>
482 Light is the basic material for self-luminous surfaces (i.e.,
483 light sources).
484 In addition to the <a HREF="#Source">source</a> surface type,
485 <a HREF="#Sphere">spheres</a>,
486 discs (<a HREF="#Ring">rings</a> with zero inner radius),
487 <a HREF="#Cylinder">cylinders</a> (provided they are long enough), and <a HREF="#Polygon">polygons</a> can act as light sources.
488 Polygons work best when they are rectangular.
489 Cones cannot be used at this time.
490 A pattern may be used to specify a light output distribution.
491 Light is defined simply as a RGB radiance value (watts/steradian/m2):
492
493 <pre>
494 mod light id
495 0
496 0
497 3 red green blue
498 </pre>
499
500 <p>
501
502 <dt>
503 <a NAME="Illum">
504 <b>Illum</b>
505 </a>
506
507 <dd>
508 Illum is used for secondary light sources with broad distributions.
509 A secondary light source is treated like any other light source, except when viewed directly.
510 It then acts like it is made of a different material (indicated by
511 the string argument), or becomes invisible (if no string argument is given,
512 or the argument is &quot;void&quot;).
513 Secondary sources are useful when modeling windows or brightly illuminated surfaces.
514
515 <pre>
516 mod illum id
517 1 material
518 0
519 3 red green blue
520 </pre>
521
522 <p>
523
524 <dt>
525 <a NAME="Glow">
526 <b>Glow</b>
527 </a>
528
529 <dd>
530 Glow is used for surfaces that are self-luminous, but limited in their effect.
531 In addition to the radiance value, a maximum radius for shadow testing is given:
532
533 <pre>
534 mod glow id
535 0
536 0
537 4 red green blue maxrad
538 </pre>
539
540 <p>
541 If maxrad is zero, then the surface will never be tested for shadow, although it may participate in an interreflection calculation.
542 If maxrad is negative, then the surface will never contribute to scene illumination.
543 Glow sources will never illuminate objects on the other side of an illum surface.
544 This provides a convenient way to illuminate local light fixture geometry without overlighting nearby objects.
545
546 <p>
547
548 <dt>
549 <a NAME="Spotlight">
550 <b>Spotlight</b>
551 </a>
552
553 <dd>
554 Spotlight is used for self-luminous surfaces having directed output.
555 As well as radiance, the full cone angle (in degrees) and orientation (output direction) vector are given.
556 The length of the orientation vector is the distance of the effective
557 focus behind the source center (i.e., the focal length).
558
559 <pre>
560 mod spotlight id
561 0
562 0
563 7 red green blue angle xdir ydir zdir
564 </pre>
565
566 <p>
567
568 <dt>
569 <a NAME="Mirror">
570 <b>Mirror</b>
571 </a>
572
573 <dd>
574 Mirror is used for planar surfaces that produce virtual source reflections.
575 This material should be used sparingly, as it may cause the light source calculation to blow up if it is applied to many small surfaces.
576 This material is only supported for flat surfaces such as <a HREF="#Polygon">polygons</a> and <a HREF="#Ring">rings</a>.
577 The arguments are simply the RGB reflectance values, which should be between 0 and 1.
578 An optional string argument may be used like the illum type to specify a different material to be used for shading non-source rays.
579 If this alternate material is given as &quot;void&quot;, then the mirror surface will be invisible.
580 This is only appropriate if the surface hides other (more detailed) geometry with the same overall reflectance.
581
582 <pre>
583 mod mirror id
584 1 material
585 0
586 3 red green blue
587 </pre>
588
589 <p>
590
591 <dt>
592 <a NAME="Prism1">
593 <b>Prism1</b>
594 </a>
595
596 <dd>
597 The prism1 material is for general light redirection from prismatic glazings, generating virtual light sources.
598 It can only be used to modify a planar surface
599 (i.e., a <a HREF="#Polygon">polygon</a> or <a HREF="#Ring">disk</a>)
600 and should not result in either light concentration or scattering.
601 The new direction of the ray can be on either side of the material,
602 and the definitions must have the correct bidirectional properties to work properly with virtual light sources.
603 The arguments give the coefficient for the redirected light and its direction.
604
605 <pre>
606 mod prism1 id
607 5+ coef dx dy dz funcfile transform
608 0
609 n A1 A2 .. An
610 </pre>
611
612 <p>
613
614 The new direction variables dx, dy and dz need not produce a normalized vector.
615 For convenience, the variables DxA, DyA and DzA are defined as the normalized direction to the target light source.
616 See <a HREF="#Function">section 2.2.1</a> on function files for further information.
617
618 <p>
619
620 <dt>
621 <a NAME="Prism2">
622 <b>Prism2</b>
623 </a>
624
625 <dd>
626 The material prism2 is identical to <a HREF="#Prism1">prism1</a> except that it provides for two ray redirections rather than one.
627
628 <pre>
629 mod prism2 id
630 9+ coef1 dx1 dy1 dz1 coef2 dx2 dy2 dz2 funcfile transform
631 0
632 n A1 A2 .. An
633 </pre>
634
635 <p>
636
637 <dt>
638 <a NAME="Mist">
639 <b>Mist</b>
640 </a>
641
642 <dd>
643 Mist is a virtual material used to delineate a volume
644 of participating atmosphere.
645 A list of important light sources may be given, along with an
646 extinction coefficient, scattering albedo and scattering eccentricity
647 parameter.
648 The light sources named by the string argument list
649 will be tested for scattering within the volume.
650 Sources are identified by name, and virtual light sources may be indicated
651 by giving the relaying object followed by '&gt;' followed by the source, i.e:
652
653 <pre>
654 3 source1 mirror1&gt;source10 mirror2&gt;mirror1&gt;source3
655 </pre>
656
657 <p>
658 Normally, only one source is given per mist material, and there is an
659 upper limit of 32 to the total number of active scattering sources.
660 The extinction coefficient, if given, is added the the global
661 coefficient set on the command line.
662 Extinction is in units of 1/distance (distance based on the world coordinates),
663 and indicates the proportional loss of radiance over one unit distance.
664 The scattering albedo, if present, will override the global setting within
665 the volume.
666 An albedo of 0 0 0 means a perfectly absorbing medium, and an albedo of
667 1 1 1 means
668 a perfectly scattering medium (no absorption).
669 The scattering eccentricity parameter will likewise override the global
670 setting if it is present.
671 Scattering eccentricity indicates how much scattered light favors the
672 forward direction, as fit by the Henyey-Greenstein function:
673
674 <pre>
675 P(theta) = (1 - g*g) / (1 + g*g - 2*g*cos(theta))^1.5
676 </pre>
677
678 <p>
679
680 A perfectly isotropic scattering medium has a g parameter of 0, and
681 a highly directional material has a g parameter close to 1.
682 Fits to the g parameter may be found along with typical extinction
683 coefficients and scattering albedos for various atmospheres and
684 cloud types in USGS meteorological tables.
685 (A pattern will be applied to the extinction values.)
686
687 <pre>
688 mod mist id
689 N src1 src2 .. srcN
690 0
691 0|3|6|7 [ rext gext bext [ ralb galb balb [ g ] ] ]
692 </pre>
693
694 <p>
695
696 There are two usual uses of the mist type.
697 One is to surround a beam from a spotlight or laser so that it is
698 visible during rendering.
699 For this application, it is important to use a <a HREF="#Cone">cone</a>
700 (or <a HREF="#Cylinder">cylinder</a>) that
701 is long enough and wide enough to contain the important visible portion.
702 Light source photometry and intervening objects will have the desired
703 effect, and crossing beams will result in additive scattering.
704 For this application, it is best to leave off the real arguments, and
705 use the global rendering parameters to control the atmosphere.
706 The second application is to model clouds or other localized media.
707 Complex boundary geometry may be used to give shape to a uniform medium,
708 so long as the boundary encloses a proper volume.
709 Alternatively, a pattern may be used to set the line integral value
710 through the cloud for a ray entering or exiting a point in a given
711 direction.
712 For this application, it is best if cloud volumes do not overlap each other,
713 and opaque objects contained within them may not be illuminated correctly
714 unless the line integrals consider enclosed geometry.
715
716 <dt>
717 <a NAME="Plastic">
718 <b>Plastic</b>
719 </a>
720
721 <dd>
722 Plastic is a material with uncolored highlights.
723 It is given by its RGB reflectance, its fraction of specularity, and its roughness value.
724 Roughness is specified as the rms slope of surface facets.
725 A value of 0 corresponds to a perfectly smooth surface, and a value of 1 would be a very rough surface.
726 Specularity fractions greater than 0.1 and roughness values greater than 0.2 are not very realistic.
727 (A pattern modifying plastic will affect the material color.)
728
729 <pre>
730 mod plastic id
731 0
732 0
733 5 red green blue spec rough
734 </pre>
735
736 <p>
737
738 <dt>
739 <a NAME="Metal">
740 <b>Metal</b>
741 </a>
742
743 <dd>
744 Metal is similar to <a HREF="#Plastic">plastic</a>, but specular highlights are modified by the material color.
745 Specularity of metals is usually .9 or greater.
746 As for plastic, roughness values above .2 are uncommon.
747
748 <p>
749
750 <dt>
751 <a NAME="Trans">
752 <b>Trans</b>
753 </a>
754
755 <dd>
756 Trans is a translucent material, similar to <a HREF="#Plastic">plastic</a>.
757 The transmissivity is the fraction of penetrating light that travels all the way through the material.
758 The transmitted specular component is the fraction of transmitted light that is not diffusely scattered.
759 Transmitted and diffusely reflected light is modified by the material color.
760 Translucent objects are infinitely thin.
761
762 <pre>
763 mod trans id
764 0
765 0
766 7 red green blue spec rough trans tspec
767 </pre>
768
769 <p>
770
771 <dt>
772 <a NAME="Plastic2">
773 <b>Plastic2</b>
774 </a>
775
776 <dd>
777 Plastic2 is similar to <a HREF="#Plastic">plastic</a>, but with anisotropic roughness.
778 This means that highlights in the surface will appear elliptical rather than round.
779 The orientation of the anisotropy is determined by the unnormalized direction vector ux uy uz.
780 These three expressions (separated by white space) are evaluated in the context of the function file funcfile.
781 If no function file is required (i.e., no special variables or functions are required), a period (`.') may be given in its place.
782 (See the discussion of <a HREF="#Function">Function Files</a> in the Auxiliary Files section).
783 The urough value defines the roughness along the u vector given projected onto the surface.
784 The vrough value defines the roughness perpendicular to this vector.
785 Note that the highlight will be narrower in the direction of the smaller roughness value.
786 Roughness values of zero are not allowed for efficiency reasons since the behavior would be the same as regular plastic in that case.
787
788 <pre>
789 mod plastic2 id
790 4+ ux uy uz funcfile transform
791 0
792 6 red green blue spec urough vrough
793 </pre>
794
795 <p>
796
797 <dt>
798 <a NAME="Metal2">
799 <b>Metal2</b>
800 </a>
801
802 <dd>
803 Metal2 is the same as <a HREF="#Plastic2">plastic2</a>, except that the highlights are modified by the material color.
804
805 <p>
806
807 <dt>
808 <a NAME="Trans2">
809 <b>Trans2</b>
810 </a>
811
812 <dd>
813 Trans2 is the anisotropic version of <a HREF="#Trans">trans</a>.
814 The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>,
815 and the real arguments are the same as for trans but with an additional roughness value.
816
817 <pre>
818 mod trans2 id
819 4+ ux uy uz funcfile transform
820 0
821 8 red green blue spec urough vrough trans tspec
822 </pre>
823
824 <p>
825
826 <dt>
827 <a NAME="Ashik2">
828 <b>Ashik2</b>
829 </a>
830
831 <dd>
832 Ashik2 is the anisotropic reflectance model by Ashikhmin & Shirley.
833 The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>, but the real
834 arguments have additional flexibility to specify the specular color.
835 Also, rather than roughness, specular power is used, which has no
836 physical meaning other than larger numbers are equivalent to a smoother
837 surface.
838 Unlike other material types, total reflectance is the sum of
839 diffuse and specular colors, and should be adjusted accordingly.
840 <pre>
841 mod ashik2 id
842 4+ ux uy uz funcfile transform
843 0
844 8 dred dgrn dblu sred sgrn sblu u-power v-power
845 </pre>
846
847 <p>
848
849 <dt>
850 <a NAME="WGMDfunc">
851 <b>WGMDfunc</b>
852 </a>
853
854 <dd>
855 WGMDfunc is a more programmable version of <a HREF="#Trans2">trans2</a>,
856 with separate modifier paths and variables to control each component.
857 (WGMD stands for Ward-Geisler-Moroder-Duer, which is the basis for
858 this empirical model, similar to previous ones beside Ashik2.)
859 The specification of this material is given below.
860 <pre>
861 mod WGMDfunc id
862 13+ rs_mod rs rs_urough rs_vrough
863 ts_mod ts ts_urough ts_vrough
864 td_mod
865 ux uy uz funcfile transform
866 0
867 9+ rfdif gfdif bfdif
868 rbdif gbdif bbdif
869 rtdif gtdif btdif
870 A10 ..
871 </pre>
872
873 <p>
874
875 The sum of specular reflectance (<I>rs</I>), specular transmittance (<I>ts</I>),
876 diffuse reflectance (<I>rfdif gfdif bfdif</I> for front and <I>rbdif gbdif bbdif</I> for back)
877 and diffuse transmittance (<I>rtdif gtdif btdif</I>) should be less than 1 for each
878 channel.
879
880 <p>
881
882 Unique to this material, separate modifier channels are
883 provided for each component.
884 The main modifier is used on the diffuse reflectance, both
885 front and back.
886 The <I>rs_mod</I> modifier is used for specular reflectance.
887 If "void" is given for <I>rs_mod</I>,
888 then the specular reflection color will be white.
889 The special "inherit" keyword may also be given, in which case
890 specular reflectance will share the main modifier.
891 This behavior is replicated for the specular transmittance modifier
892 <I>ts_mod</I>, which also has its own independent roughness expressions.
893 Finally, the diffuse transmittance modifier is given as
894 <I>td_mod</I>, which may also be "void" or "inherit".
895 Note that any spectra or color for specular components must be
896 carried by the named modifier(s).
897
898 <p>
899
900 The main advantage to this material over
901 <a HREF="#BRTDfunc">BRTDfunc</a> and
902 other programmable types described below is that the specular sampling is
903 well-defined, so that all components are fully computed.
904
905 <p>
906
907 <dt>
908 <a NAME="Dielectric">
909 <b>Dielectric</b>
910 </a>
911
912 <dd>
913 A dielectric material is transparent, and it refracts light as well as reflecting it.
914 Its behavior is determined by the index of refraction and transmission coefficient in each wavelength band per unit length.
915 Common glass has a index of refraction (n) around 1.5, and a transmission coefficient of roughly 0.92 over an inch.
916 An additional number, the Hartmann constant, describes how the index of refraction changes as a function of wavelength.
917 It is usually zero. (A <a HREF="#Patterns">pattern</a> modifies only the refracted value.)
918
919 <pre>
920 mod dielectric id
921 0
922 0
923 5 rtn gtn btn n hc
924 </pre>
925
926 <p>
927
928 <dt>
929 <a NAME="Interface">
930 <b>Interface</b>
931 </a>
932
933 <dd>
934 An interface is a boundary between two dielectrics.
935 The first transmission coefficient and refractive index are for the inside; the second ones are for the outside.
936 Ordinary dielectrics are surrounded by a vacuum (1 1 1 1).
937
938 <pre>
939 mod interface id
940 0
941 0
942 8 rtn1 gtn1 btn1 n1 rtn2 gtn2 btn2 n2
943 </pre>
944
945 <p>
946
947 <dt>
948 <a NAME="Glass">
949 <b>Glass</b>
950 </a>
951
952 <dd>
953 Glass is similar to <a HREF="#Dielectric">dielectric</a>, but it is optimized for thin glass surfaces (n = 1.52).
954 One transmitted ray and one reflected ray is produced.
955 By using a single surface is in place of two, internal reflections are avoided.
956 The surface orientation is irrelevant, as it is for <a HREF="#Plastic">plastic</a>, <a HREF="#Metal">metal</a>, and <a HREF="#Trans">trans</a>.
957 The only specification required is the transmissivity at normal incidence.
958 (Transmissivity is the amount of light not absorbed in one traversal
959 of the material.
960 Transmittance -- the value usually measured -- is the total light
961 transmitted through the pane including multiple reflections.)
962 To compute transmissivity (tn) from transmittance (Tn) use:
963
964 <pre>
965 tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn
966 </pre>
967
968 <p>
969
970 Standard 88% transmittance glass has a transmissivity of 0.96.
971 (A <a HREF="#Patterns">pattern</a> modifying glass will affect the transmissivity.)
972 If a fourth real argument is given, it is interpreted as the index of refraction to use instead of 1.52.
973
974 <pre>
975 mod glass id
976 0
977 0
978 3 rtn gtn btn
979 </pre>
980
981 <p>
982
983 <dt>
984 <a NAME="Plasfunc">
985 <b>Plasfunc</b>
986 </a>
987
988 <dd>
989 Plasfunc in used for the procedural definition of plastic-like materials
990 with arbitrary bidirectional reflectance distribution functions (BRDF's).
991 The arguments to this material include the color and specularity,
992 as well as the function defining the specular distribution and the auxiliary file where it may be found.
993
994 <pre>
995 mod plasfunc id
996 2+ refl funcfile transform
997 0
998 4+ red green blue spec A5 ..
999 </pre>
1000
1001 <p>
1002
1003 The function refl takes four arguments, the x, y and z
1004 direction towards the incident light, and the solid angle
1005 subtended by the source.
1006 The solid angle is provided to facilitate averaging, and is usually
1007 ignored.
1008 The refl function should integrate to 1 over
1009 the projected hemisphere to maintain energy balance.
1010 At least four real arguments must be given, and these are made available along with any additional values to the reflectance function.
1011 Currently, only the contribution from direct light sources is considered in the specular calculation.
1012 As in most material types, the surface normal is always altered to face the incoming ray.
1013
1014 <p>
1015
1016 <dt>
1017 <a NAME="Metfunc">
1018 <b>Metfunc</b>
1019 </a>
1020
1021 <dd>
1022 Metfunc is identical to <a HREF="#Plasfunc">plasfunc</a> and takes the same arguments,
1023 but the specular component is multiplied also by the material color.
1024
1025 <p>
1026
1027 <dt>
1028 <a NAME="Transfunc">
1029 <b>Transfunc</b>
1030 </a>
1031
1032 <dd>
1033 Transfunc is similar to <a HREF="#Plasfunc">plasfunc</a> but with an arbitrary bidirectional transmittance distribution
1034 as well as a reflectance distribution.
1035 Both reflectance and transmittance are specified with the same function.
1036
1037 <pre>
1038 mod transfunc id
1039 2+ brtd funcfile transform
1040 0
1041 6+ red green blue rspec trans tspec A7 ..
1042 </pre>
1043
1044 <p>
1045
1046 Where trans is the total light transmitted and tspec is the non-Lambertian fraction of transmitted light.
1047 The function brtd should integrate to 1 over each projected hemisphere.
1048
1049 <p>
1050
1051 <dt>
1052 <a NAME="BRTDfunc">
1053 <b>BRTDfunc</b>
1054 </a>
1055
1056 <dd>
1057 The material BRTDfunc gives the maximum flexibility over surface reflectance and transmittance,
1058 providing for spectrally-dependent specular rays and reflectance and transmittance distribution functions.
1059
1060 <pre>
1061 mod BRTDfunc id
1062 10+ rrefl grefl brefl
1063 rtrns gtrns btrns
1064 rbrtd gbrtd bbrtd
1065 funcfile transform
1066 0
1067 9+ rfdif gfdif bfdif
1068 rbdif gbdif bbdif
1069 rtdif gtdif btdif
1070 A10 ..
1071 </pre>
1072
1073 <p>
1074
1075 The variables rrefl, grefl and brefl specify the color coefficients for the ideal specular (mirror) reflection of the surface.
1076 The variables rtrns, gtrns and btrns specify the color coefficients for the ideal specular transmission.
1077 The functions rbrtd, gbrtd and bbrtd take the direction to the incident light (and its solid angle) and
1078 compute the color coefficients for the directional diffuse part of reflection and transmission.
1079 As a special case, three identical values of '0' may be given in place of these function names to indicate no directional diffuse component.
1080
1081 <p>
1082 Unlike most other material types, the surface normal is not altered to face the incoming ray.
1083 Thus, functions and variables must pay attention to the orientation of the surface and make adjustments appropriately.
1084 However, the special variables for the perturbed dot product and surface normal, RdotP, NxP, NyP and NzP are reoriented
1085 as if the ray hit the front surface for convenience.
1086
1087 <p>
1088 A diffuse reflection component may be given for the front side with rfdif, gfdif and bfdif for the front side of the surface
1089 or rbdif, gbdif and bbdif for the back side.
1090 The diffuse transmittance (must be the same for both sides by physical law) is given by rtdif, gtdif and btdif.
1091 A pattern will modify these diffuse scattering values, and will be available through the special variables CrP, CgP and CbP.
1092
1093 <p>
1094 Care must be taken when using this material type to produce a physically valid reflection model.
1095 The reflectance functions should be bidirectional, and under no circumstances should the sum of reflected diffuse,
1096 transmitted diffuse, reflected specular, transmitted specular and the integrated directional diffuse component be greater than one.
1097
1098 <p>
1099
1100 <dt>
1101 <a NAME="Plasdata">
1102 <b>Plasdata</b>
1103 </a>
1104
1105 <dd>
1106 Plasdata is used for arbitrary BRDF's that are most conveniently given as interpolated data.
1107 The arguments to this material are the <a HREF="#Data">data file</a> and coordinate index functions,
1108 as well as a function to optionally modify the data values.
1109
1110 <pre>
1111 mod plasdata id
1112 3+n+
1113 func datafile
1114 funcfile x1 x2 .. xn transform
1115 0
1116 4+ red green blue spec A5 ..
1117 </pre>
1118
1119 <p>
1120
1121 The coordinate indices (x1, x2, etc.) are themselves functions of the x, y and z direction to the incident light, plus the solid angle
1122 subtended by the light source (usually ignored).
1123 The data function (func) takes five variables, the
1124 interpolated value from the n-dimensional data file, followed by the
1125 x, y and z direction to the incident light and the solid angle of the source.
1126 The light source direction and size may of course be ignored by the function.
1127
1128 <p>
1129
1130 <dt>
1131 <a NAME="Metdata">
1132 <b>Metdata</b>
1133 </a>
1134
1135 <dd>
1136 As metfunc is to plasfunc, metdata is to <a HREF="#Plasdata">plasdata</a>.
1137 Metdata takes the same arguments as plasdata, but the specular component is modified by the given material color.
1138
1139 <p>
1140
1141 <dt>
1142 <a NAME="Transdata">
1143 <b>Transdata</b>
1144 </a>
1145
1146 <dd>
1147 Transdata is like <a HREF="#Plasdata">plasdata</a> but the specification includes transmittance as well as reflectance.
1148 The parameters are as follows.
1149
1150 <pre>
1151 mod transdata id
1152 3+n+
1153 func datafile
1154 funcfile x1 x2 .. xn transform
1155 0
1156 6+ red green blue rspec trans tspec A7 ..
1157 </pre>
1158
1159 <p>
1160
1161 <dt>
1162 <a NAME="BSDF">
1163 <b>BSDF</b>
1164 </a>
1165
1166 <dd>
1167 The BSDF material type loads an XML (eXtensible Markup Language)
1168 file describing a bidirectional scattering distribution function.
1169 Real arguments to this material may define additional
1170 diffuse components that augment the BSDF data.
1171 String arguments are used to define thickness for proxied
1172 surfaces and the &quot;up&quot; orientation for the material.
1173
1174 <pre>
1175 mod BSDF id
1176 6+ thick BSDFfile ux uy uz funcfile transform
1177 0
1178 0|3|6|9
1179 rfdif gfdif bfdif
1180 rbdif gbdif bbdif
1181 rtdif gtdif btdif
1182 </pre>
1183
1184 <p>
1185 The first string argument is a &quot;thickness&quot; parameter that may be used
1186 to hide detail geometry being proxied by an aggregate BSDF material.
1187 If a view or shadow ray hits a BSDF proxy with non-zero thickness,
1188 it will pass directly through as if the surface were not there.
1189 Similar to the illum type, this permits direct viewing and
1190 shadow testing of complex geometry.
1191 The BSDF is used when a scattered (indirect) ray hits the surface,
1192 and any transmitted sample rays will be offset by the thickness amount
1193 to avoid the hidden geometry and gather samples from the other side.
1194 In this manner, BSDF surfaces can improve the results for indirect
1195 scattering from complex systems without sacrificing appearance or
1196 shadow accuracy.
1197 If the BSDF has transmission and back-side reflection data,
1198 a parallel BSDF surface may be
1199 placed slightly less than the given thickness away from the front surface
1200 to enclose the complex geometry on both sides.
1201 The sign of the thickness is important, as it indicates
1202 whether the proxied geometry is behind the BSDF
1203 surface (when thickness is positive) or in front (when
1204 thickness is negative).
1205 <p>
1206 The second string argument is the name of the BSDF file,
1207 which is found in the usual auxiliary locations. The
1208 following three string parameters name variables for an
1209 &quot;up&quot; vector, which together with the surface
1210 normal, define the local coordinate system that orients the
1211 BSDF. These variables, along with the thickness, are defined
1212 in a function file given as the next string argument. An
1213 optional transform is used to scale the thickness and
1214 reorient the up vector.
1215 <p>
1216 If no real arguments are given, the BSDF is used by itself
1217 to determine reflection and transmission. If there are at
1218 least 3 real arguments, the first triplet is an additional
1219 diffuse reflectance for the front side. At least 6 real
1220 arguments adds diffuse reflectance to the rear side of the
1221 surface. If there are 9 real arguments, the final triplet
1222 will be taken as an additional diffuse transmittance. All
1223 diffuse components as well as the non-diffuse transmission
1224 are modified by patterns applied to this material. The
1225 non-diffuse reflection from either side are unaffected.
1226 Textures perturb the effective surface normal in the usual
1227 way.
1228 <p>
1229 The surface normal of this type is not altered to face the
1230 incoming ray, so the front and back BSDF reflections may
1231 differ. (Transmission is identical front-to-back by physical
1232 law.) If back visibility is turned off during rendering and
1233 there is no transmission or back-side reflection, only then
1234 the surface will be invisible from behind. Unlike other
1235 data-driven material types, the BSDF type is fully supported
1236 and all parts of the distribution are properly sampled.
1237 <p>
1238
1239 <dt>
1240 <a NAME="aBSDF">
1241 <b>aBSDF</b>
1242 </a>
1243
1244 <dd>
1245 The aBSDF material is identical to the BSDF type with two
1246 important differences. First, proxy geometry is not
1247 supported, so there is no thickness parameter. Second, an
1248 aBSDF is assumed to have some specular through component
1249 (the &rsquo;a&rsquo; stands for &quot;aperture&quot;),
1250 which is treated specially during the direct calculation
1251 and when viewing the material. Based on the BSDF data, the
1252 coefficient of specular transmission is determined and used
1253 for modifying unscattered shadow and view rays.
1254
1255 <pre>
1256 mod aBSDF id
1257 5+ BSDFfile ux uy uz funcfile transform
1258 0
1259 0|3|6|9
1260 rfdif gfdif bfdif
1261 rbdif gbdif bbdif
1262 rtdif gtdif btdif
1263 </pre>
1264
1265 <p>
1266 If a material has no specular transmitted component, it is
1267 much better to use the BSDF type with a zero thickness
1268 than to use aBSDF.
1269 <p>
1270
1271 <dt>
1272 <a NAME="Antimatter">
1273 <b>Antimatter</b>
1274 </a>
1275
1276 <dd>
1277 Antimatter is a material that can &quot;subtract&quot; volumes from other volumes.
1278 A ray passing into an antimatter object becomes blind to all the specified modifiers:
1279
1280 <pre>
1281 mod antimatter id
1282 N mod1 mod2 .. modN
1283 0
1284 0
1285 </pre>
1286
1287 <p>
1288
1289 The first modifier will also be used to shade the area leaving the antimatter volume and entering the regular volume.
1290 If mod1 is void, the antimatter volume is completely invisible.
1291 Antimatter does not work properly with the material type <a HREF="#Trans">&quot;trans&quot;</a>,
1292 and multiple antimatter surfaces should be disjoint.
1293 The viewpoint must be outside all volumes concerned for a correct rendering.
1294
1295 </dl>
1296
1297 <p>
1298 <hr>
1299
1300 <h4>
1301 <a NAME="Textures">2.1.3. Textures</a>
1302 </h4>
1303
1304 A texture is a perturbation of the surface normal, and is given by either a function or data.
1305
1306 <p>
1307
1308 <dl>
1309
1310 <dt>
1311 <a NAME="Texfunc">
1312 <b>Texfunc</b>
1313 </a>
1314
1315 <dd>
1316 A texfunc uses an auxiliary function file to specify a procedural texture:
1317
1318 <pre>
1319 mod texfunc id
1320 4+ xpert ypert zpert funcfile transform
1321 0
1322 n A1 A2 .. An
1323 </pre>
1324
1325 <p>
1326
1327 <dt>
1328 <a NAME="Texdata">
1329 <b>Texdata</b>
1330 </a>
1331
1332 <dd>
1333 A texdata texture uses three data files to get the surface normal perturbations.
1334 The variables xfunc, yfunc and zfunc take three arguments each from the interpolated values in xdfname, ydfname and zdfname.
1335
1336 <pre>
1337 mod texdata id
1338 8+ xfunc yfunc zfunc xdfname ydfname zdfname vfname x0 x1 .. xf
1339 0
1340 n A1 A2 .. An
1341 </pre>
1342
1343 <p>
1344
1345 </dl>
1346
1347 <p>
1348 <hr>
1349
1350 <h4>
1351 <a NAME="Patterns">2.1.4. Patterns</a>
1352 </h4>
1353
1354 Patterns are used to modify the reflectance of materials. The basic types are given below.
1355
1356 <p>
1357
1358 <dl>
1359
1360 <dt>
1361 <a NAME="Colorfunc">
1362 <b>Colorfunc</b>
1363 </a>
1364
1365 <dd>
1366 A colorfunc is a procedurally defined color pattern. It is specified as follows:
1367
1368 <pre>
1369 mod colorfunc id
1370 4+ red green blue funcfile transform
1371 0
1372 n A1 A2 .. An
1373 </pre>
1374
1375 <p>
1376
1377 <dt>
1378 <a NAME="Brightfunc">
1379 <b>Brightfunc</b>
1380 </a>
1381
1382 <dd>
1383 A brightfunc is the same as a colorfunc, except it is monochromatic.
1384
1385 <pre>
1386 mod brightfunc id
1387 2+ refl funcfile transform
1388 0
1389 n A1 A2 .. An
1390 </pre>
1391
1392 <p>
1393
1394 <dt>
1395 <a NAME="Colordata">
1396 <b>Colordata</b>
1397 </a>
1398
1399 <dd>
1400 Colordata uses an interpolated data map to modify a material's color.
1401 The map is n-dimensional, and is stored in three auxiliary files, one for each color.
1402 The coordinates used to look up and interpolate the data are defined in another auxiliary file.
1403 The interpolated data values are modified by functions of one or three variables.
1404 If the functions are of one variable, then they are passed the corresponding color component (red or green or blue).
1405 If the functions are of three variables, then they are passed the original red, green, and blue values as parameters.
1406
1407 <pre>
1408 mod colordata id
1409 7+n+
1410 rfunc gfunc bfunc rdatafile gdatafile bdatafile
1411 funcfile x1 x2 .. xn transform
1412 0
1413 m A1 A2 .. Am
1414 </pre>
1415
1416 <p>
1417
1418 <dt>
1419 <a NAME="Brightdata">
1420 <b>Brightdata</b>
1421 </a>
1422
1423 <dd>
1424 Brightdata is like colordata, except monochromatic.
1425
1426 <pre>
1427 mod brightdata id
1428 3+n+
1429 func datafile
1430 funcfile x1 x2 .. xn transform
1431 0
1432 m A1 A2 .. Am
1433 </pre>
1434
1435 <p>
1436
1437 <dt>
1438 <a NAME="Colorpict">
1439 <b>Colorpict</b>
1440 </a>
1441
1442 <dd>
1443 Colorpict is a special case of colordata, where the pattern is a two-dimensional image stored in the RADIANCE picture format.
1444 The dimensions of the image data are determined by the picture such that the smaller dimension is always 1,
1445 and the other is the ratio between the larger and the smaller.
1446 For example, a 500x338 picture would have coordinates (u,v) in the rectangle between (0,0) and (1.48,1).
1447
1448 <pre>
1449 mod colorpict id
1450 7+
1451 rfunc gfunc bfunc pictfile
1452 funcfile u v transform
1453 0
1454 m A1 A2 .. Am
1455 </pre>
1456
1457 <p>
1458
1459 <dt>
1460 <a NAME="Colortext">
1461 <b>Colortext</b>
1462 </a>
1463
1464 <dd>
1465 Colortext is dichromatic writing in a polygonal font.
1466 The font is defined in an auxiliary file, such as helvet.fnt.
1467 The text itself is also specified in a separate file, or can be part of the material arguments.
1468 The character size, orientation, aspect ratio and slant is determined by right and down motion vectors.
1469 The upper left origin for the text block as well as the foreground and background colors must also be given.
1470
1471 <pre>
1472 mod colortext id
1473 2 fontfile textfile
1474 0
1475 15+
1476 Ox Oy Oz
1477 Rx Ry Rz
1478 Dx Dy Dz
1479 rfore gfore bfore
1480 rback gback bback
1481 [spacing]
1482 </pre>
1483
1484 <p>
1485
1486 or:
1487
1488 <pre>
1489 mod colortext id
1490 2+N fontfile . This is a line with N words ...
1491 0
1492 15+
1493 Ox Oy Oz
1494 Rx Ry Rz
1495 Dx Dy Dz
1496 rfore gfore bfore
1497 rback gback bback
1498 [spacing]
1499 </pre>
1500
1501 <p>
1502
1503 <dt>
1504 <a NAME="Brighttext">
1505 <b>Brighttext</b>
1506 </a>
1507
1508 <dd>
1509 Brighttext is like colortext, but the writing is monochromatic.
1510
1511 <pre>
1512 mod brighttext id
1513 2 fontfile textfile
1514 0
1515 11+
1516 Ox Oy Oz
1517 Rx Ry Rz
1518 Dx Dy Dz
1519 foreground background
1520 [spacing]
1521 </pre>
1522
1523 <p>
1524
1525 or:
1526
1527 <pre>
1528 mod brighttext id
1529 2+N fontfile . This is a line with N words ...
1530 0
1531 11+
1532 Ox Oy Oz
1533 Rx Ry Rz
1534 Dx Dy Dz
1535 foreground background
1536 [spacing]
1537 </pre>
1538
1539 <p>
1540
1541 By default, a uniform spacing algorithm is used that guarantees every character will appear in a precisely determined position.
1542 Unfortunately, such a scheme results in rather unattractive and difficult to read text with most fonts.
1543 The optional spacing value defines the distance between characters for proportional spacing.
1544 A positive value selects a spacing algorithm that preserves right margins and indentation,
1545 but does not provide the ultimate in proportionally spaced text.
1546 A negative value insures that characters are properly spaced, but the placement of words then varies unpredictably.
1547 The choice depends on the relative importance of spacing versus formatting.
1548 When presenting a section of formatted text, a positive spacing value is usually preferred.
1549 A single line of text will often be accompanied by a negative spacing value.
1550 A section of text meant to depict a picture, perhaps using a special purpose font such as hexbit4x1.fnt, calls for uniform spacing.
1551 Reasonable magnitudes for proportional spacing are between 0.1 (for tightly spaced characters) and 0.3 (for wide spacing).
1552
1553 <p>
1554
1555 <dt>
1556 <a NAME="Spectrum">
1557 <b>Spectrum</b>
1558 </a>
1559
1560 <dd>
1561 The spectrum primitive is the most basic type for introducing spectral
1562 color to a material.
1563 Since materials only provide RGB parameters, spectral patterns
1564 are the only way to superimpose wavelength-dependent behavior.
1565
1566 <pre>
1567 mod spectrum id
1568 0
1569 0
1570 5+ nmA nmB s1 s2 .. sN
1571 </pre>
1572
1573 <p>
1574 The first two real arguments indicate the extrema of the
1575 spectral range in nanometers.
1576 Subsequent real values correspond to multipliers at each wavelength.
1577 The nmA wavelength may be greater or less than nmB,
1578 but they may not be equal, and their ordering matches
1579 the order of the spectral values.
1580 A minimum of 3 values must be given, which would act
1581 more or less the same as a constant RGB multiplier.
1582 As with RGB values, spectral quantities normally range between 0
1583 and 1 at each wavelength, or average to 1.0 against a standard
1584 sensitivity functions such as V(lambda).
1585 The best results obtain when the spectral range and number
1586 of samples match rendering options, though resampling will handle
1587 any differences, zero-filling wavelenths outside the nmA to nmB
1588 range.
1589 A warning will be issued if the given wavelength range does not
1590 adequately cover the visible spectrum.
1591
1592 <p>
1593
1594 <dt>
1595 <a NAME="Specfile">
1596 <b>Specfile</b>
1597 </a>
1598
1599 <dd>
1600 The specfile primitive is equivalent to the spectrum type, but
1601 the wavelength range and values are contained in a 1-dimensional
1602 data file.
1603 This may be a more convenient way to specify a spectral color,
1604 especially one corresponding to a standard illuminant such as D65
1605 or a library of measured spectra.
1606
1607 <pre>
1608 mod specfile id
1609 1 datafile
1610 0
1611 0
1612 </pre>
1613
1614 <p>
1615 As with the spectrum type, rendering wavelengths outside the defined
1616 range will be zero-filled.
1617 Unlike the spectrum type, the file may contain non-uniform samples.
1618
1619 <p>
1620
1621 <dt>
1622 <a NAME="Specfunc">
1623 <b>Specfunc</b>
1624 </a>
1625
1626 <dd>
1627 The specfunc primitive offers dynamic control over a spectral
1628 pattern, similar to the colorfunc type.
1629
1630 <pre>
1631 mod specfunc id
1632 2+ sfunc funcfile transform
1633 0
1634 2+ nmA nmB A3 ..
1635 </pre>
1636
1637 <p>
1638 Like the spectrum primitive, the wavelength range is specified
1639 in the first two real arguments, and additional real values are
1640 set in the evaluation context.
1641 This function is fed a wavelenth sample
1642 between nmA and nmB as its only argument,
1643 and it returns the corresponding spectral intensity.
1644
1645 <dt>
1646 <a NAME="Specdata">
1647 <b>Specdata</b>
1648 </a>
1649
1650 <dd>
1651 Specdata is like brightdata and colordata, but with more
1652 than 3 specular samples.
1653
1654 <pre>
1655 mod specdata id
1656 3+n+
1657 func datafile
1658 funcfile x1 x2 .. xn transform
1659 0
1660 m A1 A2 .. Am
1661 </pre>
1662
1663 <p>
1664 The data file must have one more dimension than the coordinate
1665 variable count, as this final dimension corresponds to the covered
1666 spectrum.
1667 The starting and ending wavelengths are specified in "datafile"
1668 as well as the number of spectral samples.
1669 The function "func" will be called with two parameters, the
1670 interpolated spectral value for the current coordinate and the
1671 associated wavelength.
1672 If the spectrum is broken into 12 components, then 12 calls
1673 will be made to "func" for the relevant ray evaluation.
1674
1675 <dt>
1676 <a NAME="Specpict">
1677 <b>Specpict</b>
1678 </a>
1679
1680 <dd>
1681 Specpict is a special case of specdata, where the pattern is
1682 a hyperspectral image stored in the common-exponent file format.
1683 The dimensions of the image data are determined by the picture
1684 just as with the colorpict primitive.
1685
1686 <pre>
1687 mod specpict id
1688 5+
1689 func specfile
1690 funcfile u v transform
1691 0
1692 m A1 A2 .. Am
1693 </pre>
1694
1695 <p>
1696 The function "func" is called with the interpolated pixel value
1697 and the wavelength sample in nanometers, the same as specdata,
1698 with as many calls made as there are components in "specfile".
1699
1700 </dl>
1701
1702 <p>
1703 <hr>
1704
1705 <h4>
1706 <a NAME="Mixtures">2.1.5. Mixtures</a>
1707 </h4>
1708
1709 A mixture is a blend of one or more materials or textures and patterns.
1710 Blended materials should not be light source types or virtual source types.
1711 The basic types are given below.
1712
1713 <p>
1714
1715 <dl>
1716
1717 <dt>
1718 <a NAME="Mixfunc">
1719 <b>Mixfunc</b>
1720 </a>
1721
1722 <dd>
1723 A mixfunc mixes two modifiers procedurally. It is specified as follows:
1724
1725 <pre>
1726 mod mixfunc id
1727 4+ foreground background vname funcfile transform
1728 0
1729 n A1 A2 .. An
1730 </pre>
1731
1732 <p>
1733
1734 Foreground and background are modifier names that must be
1735 defined earlier in the scene description.
1736 If one of these is a material, then
1737 the modifier of the mixfunc must be &quot;void&quot;.
1738 (Either the foreground or background modifier may be &quot;void&quot;,
1739 which serves as a form of opacity control when used with a material.)
1740 Vname is the coefficient defined in funcfile that determines the influence of foreground.
1741 The background coefficient is always (1-vname).
1742
1743 <p>
1744
1745 <dt>
1746 <a NAME="Mixdata">
1747 <b>Mixdata</b>
1748 </a>
1749
1750 <dd>
1751 Mixdata combines two modifiers using an auxiliary data file:
1752
1753 <pre>
1754 mod mixdata id
1755 5+n+
1756 foreground background func datafile
1757 funcfile x1 x2 .. xn transform
1758 0
1759 m A1 A2 .. Am
1760 </pre>
1761
1762 <p>
1763
1764 <dt>
1765 <a NAME="Mixpict">
1766 <b>Mixpict</b>
1767 </a>
1768
1769 <dd>
1770 Mixpict combines two modifiers based on a picture:
1771
1772 <pre>
1773 mod mixpict id
1774 7+
1775 foreground background func pictfile
1776 funcfile u v transform
1777 0
1778 m A1 A2 .. Am
1779 </pre>
1780
1781 <p>
1782
1783 The mixing coefficient function &quot;func&quot; takes three
1784 arguments, the red, green and blue values
1785 corresponding to the pixel at (u,v).
1786
1787 <p>
1788
1789 <dt>
1790 <a NAME="Mixtext">
1791 <b>Mixtext</b>
1792 </a>
1793
1794 <dd>
1795 Mixtext uses one modifier for the text foreground, and one for the background:
1796
1797 <pre>
1798 mod mixtext id
1799 4 foreground background fontfile textfile
1800 0
1801 9+
1802 Ox Oy Oz
1803 Rx Ry Rz
1804 Dx Dy Dz
1805 [spacing]
1806 </pre>
1807
1808 <p>
1809
1810 or:
1811
1812 <pre>
1813 mod mixtext id
1814 4+N
1815 foreground background fontfile .
1816 This is a line with N words ...
1817 0
1818 9+
1819 Ox Oy Oz
1820 Rx Ry Rz
1821 Dx Dy Dz
1822 [spacing]
1823 </pre>
1824
1825 <p>
1826
1827 </dl>
1828
1829 <p>
1830 <hr>
1831
1832 <h3>
1833 <a NAME="Auxiliary">2.2. Auxiliary Files</a>
1834 </h3>
1835
1836 Auxiliary files used in <a HREF="#Textures">textures</a> and <a HREF="#Patterns">patterns</a>
1837 are accessed by the programs during image generation.
1838 These files may be located in the working directory, or in a library directory.
1839 The environment variable RAYPATH can be assigned an alternate set of search directories.
1840 Following is a brief description of some common file types.
1841
1842 <p>
1843
1844 <h4>
1845 <a NAME="Function">12.2.1. Function Files</a>
1846 </h4>
1847
1848 A function file contains the definitions of variables, functions and constants used by a primitive.
1849 The transformation that accompanies the file name contains the necessary rotations, translations and scalings
1850 to bring the coordinates of the function file into agreement with the world coordinates.
1851 The transformation specification is the same as for the <a HREF="#Generators">xform</a> command.
1852 An example function file is given below:
1853
1854 <pre>
1855 {
1856 This is a comment, enclosed in curly braces.
1857 {Comments can be nested.}
1858 }
1859 { standard expressions use +,-,*,/,^,(,) }
1860 vname = Ny * func(A1) ;
1861 { constants are defined with a colon }
1862 const : sqrt(PI/2) ;
1863 { user-defined functions add to library }
1864 func(x) = 5 + A1*sin(x/3) ;
1865 { functions may be passed and recursive }
1866 rfunc(f,x) = if(x,f(x),f(-x)*rfunc(f,x+1)) ;
1867 { constant functions may also be defined }
1868 cfunc(x) : 10*x / sqrt(x) ;
1869 </pre>
1870
1871 <p>
1872
1873 Many variables and functions are already defined by the program, and they are listed in the file rayinit.cal.
1874 The following variables are particularly important:
1875
1876 <pre>
1877 Dx, Dy, Dz - incident ray direction
1878 Nx, Ny, Nz - surface normal at intersection point
1879 Px, Py, Pz - intersection point
1880 T - distance from start
1881 Ts - single ray (shadow) distance
1882 Rdot - cosine between ray and normal
1883 arg(0) - number of real arguments
1884 arg(i) - i'th real argument
1885 </pre>
1886
1887 <p>
1888
1889 For mesh objects, the local surface coordinates are available:
1890
1891 <pre>
1892 Lu, Lv - local (u,v) coordinates
1893 </pre>
1894
1895 <p>
1896
1897 For BRDF types, the following variables are defined as well:
1898
1899 <pre>
1900 NxP, NyP, NzP - perturbed surface normal
1901 RdotP - perturbed dot product
1902 CrP, CgP, CbP - perturbed material color
1903 </pre>
1904
1905 <p>
1906
1907 A unique context is set up for each file so
1908 that the same variable may appear in different
1909 function files without conflict.
1910 The variables listed above and any others defined in
1911 rayinit.cal are available globally.
1912 If no file is needed by a given primitive because all
1913 the required variables are global,
1914 a period (`.') can be given in place of the file name.
1915 It is also possible to give an expression instead
1916 of a straight variable name in a scene file.
1917 Functions (requiring parameters) must be given
1918 as names and not as expressions.
1919
1920 <p>
1921 Constant expressions are used as an optimization in function files.
1922 They are replaced wherever they occur in an expression by their value.
1923 Constant expressions are evaluated only once, so they must not contain any variables or values that can change,
1924 such as the ray variables Px and Ny or the primitive argument function arg().
1925 All the math library functions such as sqrt() and cos() have the constant attribute,
1926 so they will be replaced by immediate values whenever they are given constant arguments.
1927 Thus, the subexpression cos(PI*sqrt(2)) is immediately replaced by its value, -.266255342,
1928 and does not cause any additional overhead in the calculation.
1929
1930 <p>
1931 It is generally a good idea to define constants and variables before they are referred to in a function file.
1932 Although evaluation does not take place until later, the interpreter does variable scoping and
1933 constant subexpression evaluation based on what it has compiled already.
1934 For example, a variable that is defined globally in rayinit.cal
1935 then referenced in the local context of a function file
1936 cannot subsequently be redefined in the same file
1937 because the compiler has already determined the scope of the referenced variable as global.
1938 To avoid such conflicts, one can state the scope of a variable explicitly by
1939 preceding the variable name with a context mark (a back-quote) for a local variable,
1940 or following the name with a context mark for a global variable.
1941
1942 <p>
1943
1944 <h4>
1945 <a NAME="Data">2.2.2. Data Files</a>
1946 </h4>
1947
1948 Data files contain n-dimensional arrays of real numbers used for interpolation.
1949 Typically, definitions in a function file determine how to index and use interpolated data values.
1950 The basic data file format is as follows:
1951
1952 <pre>
1953 N
1954 beg1 end1 m1
1955 0 0 m2 x2.1 x2.2 x2.3 x2.4 .. x2.m2
1956 ...
1957 begN endN mN
1958 DATA, later dimensions changing faster.
1959 </pre>
1960
1961 <p>
1962
1963 N is the number of dimensions.
1964 For each dimension, the beginning and ending coordinate values and the dimension size is given.
1965 Alternatively, individual coordinate values can be given when the points are not evenly spaced.
1966 These values must either be increasing or decreasing monotonically.
1967 The data is m1*m2*...*mN real numbers in ASCII form.
1968 Comments may appear anywhere in the file, beginning with a pound
1969 sign ('#') and continuing to the end of line.
1970
1971 <p>
1972
1973 <h4>
1974 <a NAME="Font">2.2.3. Font Files</a>
1975 </h4>
1976
1977 A font file lists the polygons which make up a character set.
1978 Comments may appear anywhere in the file, beginning with a pound
1979 sign ('#') and continuing to the end of line.
1980 All numbers are decimal integers:
1981
1982 <pre>
1983 code n
1984 x0 y0
1985 x1 y1
1986 ...
1987 xn yn
1988 ...
1989 </pre>
1990
1991 <p>
1992
1993 The ASCII codes can appear in any order. N is the number of vertices, and the last is automatically connected to the first.
1994 Separate polygonal sections are joined by coincident sides.
1995 The character coordinate system is a square with lower left corner at (0,0), lower right at (255,0) and upper right at (255,255).
1996
1997 <p>
1998
1999 <hr>
2000
2001 <h3>
2002 <a NAME="Generators">2.3. Generators</a>
2003 </h3>
2004
2005 A generator is any program that produces a scene description as its output.
2006 They usually appear as commands in a scene description file.
2007 An example of a simple generator is genbox.
2008
2009 <ul>
2010
2011 <li>
2012 <a NAME="Genbox" HREF="../man_html/genbox.1.html">
2013 <b>Genbox</b>
2014 </a>
2015 takes the arguments of width, height and depth to produce a parallelepiped description.
2016 <li>
2017 <a NAME="Genprism" HREF="../man_html/genprism.1.html">
2018 <b>Genprism</b>
2019 </a>
2020 takes a list of 2-dimensional coordinates and extrudes them along a vector to
2021 produce a 3-dimensional prism.
2022 <li>
2023 <a NAME="Genrev" HREF="../man_html/genrev.1.html">
2024 <b>Genrev</b>
2025 </a>
2026 is a more sophisticated generator that produces an object of rotation from parametric functions for radius and axis position.
2027 <li>
2028 <a NAME="Gensurf" HREF="../man_html/gensurf.1.html">
2029 <b>Gensurf</b>
2030 </a>
2031 tessellates a surface defined by the parametric functions x(s,t), y(s,t), and z(s,t).
2032 <li>
2033 <a NAME="Genworm" HREF="../man_html/genworm.1.html">
2034 <b>Genworm</b>
2035 </a>
2036 links cylinders and spheres along a curve.
2037 <li>
2038 <a NAME="Gensky" HREF="../man_html/gensky.1.html">
2039 <b>Gensky</b>
2040 </a>
2041 produces a sun and sky distribution corresponding to a given time and date.
2042 <li>
2043 <a NAME="Xform" HREF="../man_html/xform.1.html">
2044 <b>Xform</b>
2045 </a>
2046 is a program that transforms a scene description from one coordinate space to another.
2047 Xform does rotation, translation, scaling, and mirroring.
2048
2049 </ul>
2050
2051 <p>
2052 <hr>
2053
2054 <h2>
2055 <a NAME="Image">3. Image Generation</a>
2056 </h2>
2057
2058 Once the scene has been described in three-dimensions, it is possible to generate a two-dimensional image from a given perspective.
2059
2060 <p>
2061 The image generating programs use an <a NAME="octree"><b>octree</b></a> to efficiently trace rays through the scene.
2062 An octree subdivides space into nested octants which contain sets of surfaces.
2063 In RADIANCE, an octree is created from a scene description by <a NAME="oconv1" HREF="../man_html/oconv.1.html"><b>oconv</b></a>.
2064 The details of this process are not important, but the octree will serve as input to the ray-tracing programs and
2065 directs the use of a scene description.
2066 <ul>
2067 <li>
2068 <a NAME="rvu" HREF="../man_html/rvu.1.html"><b>Rvu</b></a> is ray-tracing program for viewing a scene interactively.
2069 When the user specifies a new perspective, rvu quickly displays a rough image on the terminal,
2070 then progressively increases the resolution as the user looks on.
2071 He can select a particular section of the image to improve, or move to a different view and start over.
2072 This mode of interaction is useful for debugging scenes as well as determining the best view for a final image.
2073
2074 <li>
2075 <a NAME="rpict" HREF="../man_html/rpict.1.html"><b>Rpict</b></a> produces a high-resolution picture of a scene from a particular perspective.
2076 This program features adaptive sampling, crash recovery and progress reporting, all of which are important for time-consuming images.
2077 </ul>
2078 <p>
2079 A number of <a NAME="filters"><b>filters</b></a> are available for manipulating picture files:
2080 <ul>
2081 <li> <a HREF="../man_html/pfilt.1.html"><b>Pfilt</b></a>
2082 sets the exposure and performs antialiasing.
2083 <li> <a HREF="../man_html/pcompos.1.html"><b>Pcompos</b></a>
2084 composites (cuts and pastes) pictures.
2085 <li> <a HREF="../man_html/pcomb.1.html"><b>Pcomb</b></a>
2086 performs arbitrary math on one or more pictures.
2087 <li> <a HREF="../man_html/pcond.1.html"><b>Pcond</b></a>
2088 conditions a picture for a specific display device.
2089 <li> <a HREF="../man_html/protate.1.html"><b>Protate</b></a>
2090 rotates a picture 90 degrees clockwise.
2091 <li> <a HREF="../man_html/pflip.1.html"><b>Pflip</b></a>
2092 flips a picture horizontally, vertically, or both
2093 (180 degree rotation).
2094 <li> <a HREF="../man_html/pvalue.1.html"><b>Pvalue</b></a>
2095 converts a picture to and from simpler formats.
2096 </ul>
2097
2098 <p>
2099 Pictures may be displayed directly under X11 using the program
2100 <a HREF="../man_html/ximage.1.html">ximage</a>,
2101 or converted a standard image format using one of the following
2102 <b>translators</b>:
2103 <ul>
2104 <li> <a HREF="../man_html/ra_bmp.1.html"><b>Ra_bmp</b></a>
2105 converts to and from BMP image format.
2106 <li> <a HREF="../man_html/ra_ppm.1.html"><b>Ra_ppm</b></a>
2107 converts to and from Poskanzer Portable Pixmap formats.
2108 <li> <a HREF="../man_html/ra_ps.1.html"><b>Ra_ps</b></a>
2109 converts to PostScript color and greyscale formats.
2110 <li> <a HREF="../man_html/ra_rgbe.1.html"><b>Ra_rgbe</b></a>
2111 converts to and from Radiance uncompressed picture format.
2112 <li> <a HREF="../man_html/ra_t16.1.html"><b>Ra_t16</b></a>
2113 converts to and from Targa 16 and 24-bit image formats.
2114 <li> <a HREF="../man_html/ra_t8.1.html"><b>Ra_t8</b></a>
2115 converts to and from Targa 8-bit image format.
2116 <li> <a HREF="../man_html/ra_tiff.1.html"><b>Ra_tiff</b></a>
2117 converts to and from TIFF.
2118 <li> <a HREF="../man_html/ra_xyze.1.html"><b>Ra_xyze</b></a>
2119 converts to and from Radiance CIE picture format.
2120 </ul>
2121
2122 <p>
2123
2124 <hr>
2125
2126 <h2>
2127 <a NAME="License">4. License</a>
2128 </h2>
2129
2130 <pre>
2131 The Radiance Software License, Version 1.0
2132
2133 Copyright (c) 1990 - 2021 The Regents of the University of California,
2134 through Lawrence Berkeley National Laboratory. All rights reserved.
2135
2136 Redistribution and use in source and binary forms, with or without
2137 modification, are permitted provided that the following conditions
2138 are met:
2139
2140 1. Redistributions of source code must retain the above copyright
2141 notice, this list of conditions and the following disclaimer.
2142
2143 2. Redistributions in binary form must reproduce the above copyright
2144 notice, this list of conditions and the following disclaimer in
2145 the documentation and/or other materials provided with the
2146 distribution.
2147
2148 3. The end-user documentation included with the redistribution,
2149 if any, must include the following acknowledgment:
2150 &quot;This product includes Radiance software
2151 (<a HREF="http://radsite.lbl.gov/">http://radsite.lbl.gov/</a>)
2152 developed by the Lawrence Berkeley National Laboratory
2153 (<a HREF="http://www.lbl.gov/">http://www.lbl.gov/</a>).&quot;
2154 Alternately, this acknowledgment may appear in the software itself,
2155 if and wherever such third-party acknowledgments normally appear.
2156
2157 4. The names &quot;Radiance,&quot; &quot;Lawrence Berkeley National Laboratory&quot;
2158 and &quot;The Regents of the University of California&quot; must
2159 not be used to endorse or promote products derived from this
2160 software without prior written permission. For written
2161 permission, please contact [email protected].
2162
2163 5. Products derived from this software may not be called &quot;Radiance&quot;,
2164 nor may &quot;Radiance&quot; appear in their name, without prior written
2165 permission of Lawrence Berkeley National Laboratory.
2166
2167 THIS SOFTWARE IS PROVIDED ``AS IS&quot; AND ANY EXPRESSED OR IMPLIED
2168 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
2169 OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
2170 DISCLAIMED. IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
2171 ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
2172 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
2173 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
2174 USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
2175 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
2176 OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
2177 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
2178 SUCH DAMAGE.
2179 </pre>
2180
2181 <p>
2182
2183 <hr>
2184
2185 <h2>
2186 <a NAME="Ack">5. Acknowledgements</a>
2187 </h2>
2188
2189 This work was supported by the Assistant Secretary of Conservation and Renewable Energy,
2190 Office of Building Energy Research and Development,
2191 Buildings Equipment Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
2192
2193 <p>
2194 Additional work was sponsored by the Swiss federal government
2195 under the Swiss LUMEN Project and was carried out in the
2196 Laboratoire d'Energie Solaire (LESO Group) at the
2197 Ecole Polytechnique Federale de Lausanne (EPFL University) in Lausanne, Switzerland.
2198
2199 <p>
2200
2201 <hr>
2202
2203 <h2>
2204 <a NAME="Ref">6.</a> References
2205 </h2>
2206 <p>
2207 <ul>
2208 <li>Ward, Gregory J., Bruno Bueno, David Geisler-Moroder,
2209 Lars O. Grobe, Jacob C. Jonsson, Eleanor
2210 S. Lee, Taoning Wang, Helen Rose Wilson,
2211 &quot;<a href="https://doi.org/10.1016/j.enbuild.2022.111890">Daylight
2212 Simulation Workflows Incorporating Measured Bidirectional
2213 Scattering Distribution Functions</a>&quot;
2214 <em>Energy &amp; Buildings</em>, Vol. 259, No. 11890, 2022.
2215 <li>Wang, Taoning, Gregory Ward, Eleanor Lee,
2216 &quot;<a href="https://authors.elsevier.com/a/1XQ0a1M7zGwT7v">Efficient
2217 modeling of optically-complex, non-coplanar exterior shading:
2218 Validation of matrix algebraic methods</a>&quot;
2219 <em>Energy & Buildings</em>, vol. 174, pp. 464-83, Sept. 2018.
2220 <li>Lee, Eleanor S., David Geisler-Moroder, Gregory Ward,
2221 &quot;<a href="https://eta.lbl.gov/sites/default/files/publications/solar_energy.pdf">Modeling
2222 the direct sun component in buildings using matrix
2223 algebraic approaches: Methods and
2224 validation</a>,&quot; <em>Solar Energy</em>,
2225 vol. 160, 15 January 2018, pp 380-395.
2226 <li>Narain, Rahul, Rachel A. Albert, Abdullah Bulbul,
2227 Gregory J. Ward, Marty Banks, James F. O'Brien,
2228 &quot;<a href="http://graphics.berkeley.edu/papers/Narain-OPI-2015-08/index.html">Optimal
2229 Presentation of Imagery with Focus
2230 Cues on Multi-Plane Displays</a>,&quot;
2231 <em>SIGGRAPH 2015</em>.
2232 <li>Ward, Greg, Murat Kurt, and Nicolas Bonneel,
2233 &quot;<a href="papers/WMAM14_Tensor_Tree_Representation.pdf">Reducing
2234 Anisotropic BSDF Measurement to Common Practice</a>,&quot;
2235 <em>Workshop on Material Appearance Modeling</em>, 2014.
2236 <li>Banks, Martin, Abdullah Bulbul, Rachel Albert, Rahul Narain,
2237 James F. O'Brien, Gregory Ward,
2238 &quot;<a href="http://graphics.berkeley.edu/papers/Banks-TPO-2014-05/index.html">The
2239 Perception of Surface Material from Disparity and Focus Cues</a>,&quot;
2240 <em>VSS 2014</em>.
2241 <li>McNeil, A., C.J. Jonsson, D. Appelfeld, G. Ward, E.S. Lee,
2242 &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">
2243 A validation of a ray-tracing tool used to generate
2244 bi-directional scattering distribution functions for
2245 complex fenestration systems</a>,&quot;
2246 <em>Solar Energy</em>, 98, 404-14,
2247 November 2013.
2248 <li>Ward, G., R. Mistrick, E.S. Lee, A. McNeil, J. Jonsson,
2249 &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">Simulating
2250 the Daylight Performance of Complex Fenestration Systems
2251 Using Bidirectional Scattering Distribution Functions within
2252 Radiance</a>,&quot;
2253 <em>Leukos</em>, 7(4)
2254 April 2011.
2255 <li>Cater, Kirsten, Alan Chalmers, Greg Ward,
2256 &quot;<a href="http://www.anyhere.com/gward/papers/egsr2003.pdf">Detail to Attention:
2257 Exploiting Visual Tasks for Selective Rendering</a>,&quot;
2258 <em>Eurographics Symposium
2259 on Rendering 2003</em>, June 2003.
2260 <li>Ward, Greg, Elena Eydelberg-Vileshin,
2261 &quot;<a HREF="http://www.anyhere.com/gward/papers/egwr02/index.html">Picture Perfect RGB
2262 Rendering Using Spectral Prefiltering and Sharp Color Primaries</a>,&quot;
2263 Thirteenth Eurographics Workshop on Rendering (2002),
2264 P. Debevec and S. Gibson (Editors), June 2002.
2265 <li>Ward, Gregory,
2266 &quot;<a HREF="http://www.anyhere.com/gward/papers/cic01.pdf">High Dynamic Range Imaging</a>,&quot;
2267 Proceedings of the Ninth Color Imaging Conference, November 2001.
2268 <li>Ward, Gregory and Maryann Simmons,
2269 &quot;<a HREF="http://www.anyhere.com/gward/papers/tog99.pdf">
2270 The Holodeck Ray Cache: An Interactive Rendering System for Global Illumination in Nondiffuse
2271 Environments</a>,&quot; ACM Transactions on Graphics, 18(4):361-98, October 1999.
2272 <li>Larson, G.W., &quot;<a HREF="http://www.anyhere.com/gward/papers/ewp98.pdf">The Holodeck: A Parallel
2273 Ray-caching Rendering System</a>,&quot; Proceedings of the Second
2274 Eurographics Workshop on Parallel Graphics and Visualisation,
2275 September 1998.
2276 <li>Larson, G.W. and R.A. Shakespeare,
2277 <a HREF="http://radsite.lbl.gov/radiance/book/index.html"><em>Rendering with Radiance:
2278 the Art and Science of Lighting Visualization</em></a>,
2279 Morgan Kaufmann Publishers, 1998.
2280 <li>Larson, G.W., H. Rushmeier, C. Piatko,
2281 &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/lbnl39882/tonemap.pdf">A Visibility
2282 Matching Tone Reproduction Operator for
2283 High Dynamic Range Scenes</a>,&quot; LBNL Technical Report 39882,
2284 January 1997.
2285 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw95.1/paper.html">Making
2286 Global Illumination User-Friendly</a>,&quot; Sixth
2287 Eurographics Workshop on Rendering, Springer-Verlag,
2288 Dublin, Ireland, June 1995.</li>
2289 <li>Rushmeier, H., G. Ward, C. Piatko, P. Sanders, B. Rust,
2290 &quot;<a HREF="http://radsite.lbl.gov/mgf/compare.html">
2291 Comparing Real and Synthetic Images: Some Ideas about
2292 Metrics</a>,&quot; Sixth Eurographics Workshop on Rendering,
2293 Springer-Verlag, Dublin, Ireland, June 1995.</li>
2294 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.1/paper.html">The RADIANCE
2295 Lighting Simulation and Rendering System</a>,&quot; <em>Computer
2296 Graphics</em>, July 1994.</li>
2297 <li>Rushmeier, H., G. Ward, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.2/energy.html">Energy
2298 Preserving Non-Linear Filters</a>,&quot; <em>Computer
2299 Graphics</em>, July 1994.</li>
2300 <li>Ward, G., &quot;A Contrast-Based Scalefactor for Luminance
2301 Display,&quot; <em>Graphics Gems IV</em>, Edited by Paul Heckbert,
2302 Academic Press 1994.</li>
2303 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg92/paper.html">Measuring and
2304 Modeling Anisotropic Reflection</a>,&quot; <em>Computer
2305 Graphics</em>, Vol. 26, No. 2, July 1992. </li>
2306 <li>Ward, G., P. Heckbert, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw92/paper.html">Irradiance
2307 Gradients</a>,&quot; Third Annual Eurographics Workshop on
2308 Rendering, Springer-Verlag, May 1992. </li>
2309 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw91/erw91.html">Adaptive Shadow
2310 Testing for Ray Tracing</a>&quot; Photorealistic Rendering in
2311 Computer Graphics, proceedings of 1991 Eurographics
2312 Rendering Workshop, edited by P. Brunet and F.W. Jansen,
2313 Springer-Verlag. </li>
2314 <li>Ward, G., &quot;Visualization,&quot; <em>Lighting Design and
2315 Application</em>, Vol. 20, No. 6, June 1990. </li>
2316 <li>Ward, G., F. Rubinstein, R. Clear, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg88/paper.html">A Ray Tracing Solution for
2317 Diffuse Interreflection</a>,&quot; <em>Computer Graphics</em>,
2318 Vol. 22, No. 4, August 1988. </li>
2319 <li>Ward, G., F. Rubinstein, &quot;A New Technique for Computer
2320 Simulation of Illuminated Spaces,&quot; <em>Journal of the
2321 Illuminating Engineering Society</em>, Vol. 17, No. 1,
2322 Winter 1988. </li>
2323 </ul>
2324 <p>
2325 See the <a HREF="index.html">RADIANCE Reference Materials</a> page
2326 for additional information.
2327 <hr>
2328
2329 <a NAME="Index"><h2>7. Types Index</h2></a>
2330
2331 <pre>
2332 <h4>
2333 SURFACES MATERIALS TEXTURES PATTERNS MIXTURES</h4>
2334 <a HREF="#Source">Source</a> <a HREF="#Light">Light</a> <a HREF="#Texfunc">Texfunc</a> <a HREF="#Colorfunc">Colorfunc</a> <a HREF="#Mixfunc">Mixfunc</a>
2335 <a HREF="#Sphere">Sphere</a> <a HREF="#Illum">Illum</a> <a HREF="#Texdata">Texdata</a> <a HREF="#Brightfunc">Brightfunc</a> <a HREF="#Mixdata">Mixdata</a>
2336 <a HREF="#Bubble">Bubble</a> <a HREF="#Glow">Glow</a> <a HREF="#Colordata">Colordata</a> <a HREF="#Mixtext">Mixtext</a>
2337 <a HREF="#Polygon">Polygon</a> <a HREF="#Spotlight">Spotlight</a> <a HREF="#Brightdata">Brightdata</a>
2338 <a HREF="#Cone">Cone</a> <a HREF="#Mirror">Mirror</a> <a HREF="#Colorpict">Colorpict</a>
2339 <a HREF="#Cup">Cup</a> <a HREF="#Prism1">Prism1</a> <a HREF="#Colortext">Colortext</a>
2340 <a HREF="#Cylinder">Cylinder</a> <a HREF="#Prism2">Prism2</a> <a HREF="#Brighttext">Brighttext</a>
2341 <a HREF="#Tube">Tube</a> <a HREF="#Plastic">Plastic</a>
2342 <a HREF="#Ring">Ring</a> <a HREF="#Metal">Metal</a>
2343 <a HREF="#Instance">Instance</a> <a HREF="#Trans">Trans</a>
2344 <a HREF="#Mesh">Mesh</a> <a HREF="#Plastic2">Plastic2</a>
2345 <a HREF="#Metal2">Metal2</a>
2346 <a HREF="#Trans2">Trans2</a>
2347 <a HREF="#Mist">Mist</a>
2348 <a HREF="#Dielectric">Dielectric</a>
2349 <a HREF="#Interface">Interface</a>
2350 <a HREF="#Glass">Glass</a>
2351 <a HREF="#Plasfunc">Plasfunc</a>
2352 <a HREF="#Metfunc">Metfunc</a>
2353 <a HREF="#Transfunc">Transfunc</a>
2354 <a HREF="#BRTDfunc">BRTDfunc</a>
2355 <a HREF="#Plasdata">Plasdata</a>
2356 <a HREF="#Metdata">Metdata</a>
2357 <a HREF="#Transdata">Transdata</a>
2358 <a HREF="#BSDF">BSDF</a>
2359 <a HREF="#Antimatter">Antimatter</a>
2360
2361 </pre>
2362
2363 <p>
2364
2365
2366 <hr>
2367 <center>Last Update: October 22, 1997</center>
2368 </body>
2369 </html>
2370