1 |
greg |
1.1 |
<html> |
2 |
greg |
1.40 |
<!-- RCSid $Id: ray.html,v 1.39 2024/12/09 19:21:38 greg Exp $ --> |
3 |
greg |
1.1 |
<head> |
4 |
|
|
<title> |
5 |
greg |
1.33 |
The RADIANCE 6.0 Synthetic Imaging System |
6 |
greg |
1.1 |
</title> |
7 |
|
|
</head> |
8 |
|
|
<body> |
9 |
|
|
|
10 |
|
|
<p> |
11 |
|
|
|
12 |
|
|
<h1> |
13 |
greg |
1.33 |
The RADIANCE 6.0 Synthetic Imaging System |
14 |
greg |
1.1 |
</h1> |
15 |
|
|
|
16 |
|
|
<p> |
17 |
|
|
|
18 |
greg |
1.4 |
Building Technologies Program<br> |
19 |
greg |
1.1 |
Lawrence Berkeley National Laboratory<br> |
20 |
|
|
1 Cyclotron Rd., 90-3111<br> |
21 |
|
|
Berkeley, CA 94720<br> |
22 |
|
|
<a HREF="http://radsite.lbl.gov/radiance"</a> |
23 |
|
|
http://radsite.lbl.gov/radiance<br> |
24 |
|
|
|
25 |
|
|
<p> |
26 |
|
|
<hr> |
27 |
|
|
|
28 |
|
|
<h2> |
29 |
|
|
<a NAME="Overview">Overview</a> |
30 |
|
|
</h2> |
31 |
|
|
<ol> |
32 |
|
|
<li><a HREF="#Intro">Introduction</a><!P> |
33 |
|
|
<li><a HREF="#Scene">Scene Description</a><!P> |
34 |
|
|
<ol> |
35 |
|
|
<li><a HREF="#Primitive"> Primitive Types</a> |
36 |
|
|
<ol> |
37 |
|
|
<li><a HREF="#Surfaces">Surfaces</a> |
38 |
|
|
<li><a HREF="#Materials">Materials</a> |
39 |
|
|
<li><a HREF="#Textures">Textures</a> |
40 |
|
|
<li><a HREF="#Patterns">Patterns</a> |
41 |
|
|
<li><a HREF="#Mixtures">Mixtures</a> |
42 |
|
|
</ol><!P> |
43 |
|
|
<li><a HREF="#Auxiliary">Auxiliary Files</a> |
44 |
|
|
<ol> |
45 |
|
|
<li><a HREF="#Function">Function Files</a> |
46 |
|
|
<li><a HREF="#Data">Data Files</a> |
47 |
|
|
<li><a HREF="#Font">Font Files</a> |
48 |
|
|
</ol><!P> |
49 |
|
|
<li><a HREF="#Generators">Generators</a> |
50 |
|
|
</ol><!P> |
51 |
|
|
<li><a HREF="#Image">Image Generation</a><!P> |
52 |
|
|
<li><a HREF="#License">License</a><!P> |
53 |
|
|
<li><a HREF="#Ack">Acknowledgements</a><!P> |
54 |
|
|
<li><a HREF="#Ref">References</a><!P> |
55 |
|
|
<li><a HREF="#Index">Types Index</a><!P> |
56 |
|
|
</ol> |
57 |
|
|
|
58 |
|
|
<p> |
59 |
|
|
<hr> |
60 |
|
|
|
61 |
|
|
<h2> |
62 |
|
|
<a NAME="Intro">1. Introduction</a> |
63 |
|
|
</h2> |
64 |
|
|
|
65 |
|
|
RADIANCE was developed as a research tool for predicting |
66 |
|
|
the distribution of visible radiation in illuminated spaces. |
67 |
|
|
It takes as input a three-dimensional geometric model |
68 |
|
|
of the physical environment, and produces a map of |
69 |
|
|
spectral radiance values in a color image. |
70 |
|
|
The technique of ray-tracing follows light backwards |
71 |
|
|
from the image plane to the source(s). |
72 |
|
|
Because it can produce realistic images from a |
73 |
|
|
simple description, RADIANCE has a wide range of applications |
74 |
|
|
in graphic arts, lighting design, |
75 |
|
|
computer-aided engineering and architecture. |
76 |
|
|
|
77 |
|
|
<p> |
78 |
|
|
<img SRC="diagram1.gif"> |
79 |
|
|
<p> |
80 |
|
|
Figure 1 |
81 |
|
|
<p> |
82 |
|
|
The diagram in Figure 1 shows the flow between programs (boxes) and data |
83 |
|
|
(ovals). |
84 |
|
|
The central program is <i>rpict</i>, which produces a picture from a scene |
85 |
|
|
description. |
86 |
greg |
1.30 |
<i>Rvu</i> is a variation of rpict that computes and displays images |
87 |
greg |
1.1 |
interactively, and rtrace computes single ray values. |
88 |
|
|
Other programs (not shown) connect many of these elements together, |
89 |
|
|
such as the executive programs |
90 |
|
|
<i>rad</i> |
91 |
|
|
and |
92 |
|
|
<i>ranimate</i>, |
93 |
|
|
the interactive rendering program |
94 |
|
|
<i>rholo</i>, |
95 |
|
|
and the animation program |
96 |
|
|
<i>ranimove</i>. |
97 |
|
|
The program |
98 |
|
|
<i>obj2mesh</i> |
99 |
|
|
acts as both a converter and scene compiler, converting a Wavefront .OBJ |
100 |
|
|
file into a compiled mesh octree for efficient rendering. |
101 |
|
|
|
102 |
|
|
<p> |
103 |
|
|
A scene description file lists the surfaces and materials |
104 |
|
|
that make up a specific environment. |
105 |
|
|
The current surface types are spheres, polygons, cones, and cylinders. |
106 |
|
|
There is also a composite surface type, called mesh, and a pseudosurface |
107 |
|
|
type, called instance, which facilitates very complex geometries. |
108 |
|
|
Surfaces can be made from materials such as plastic, metal, and glass. |
109 |
|
|
Light sources can be distant disks as well as local spheres, disks |
110 |
|
|
and polygons. |
111 |
|
|
|
112 |
|
|
<p> |
113 |
|
|
From a three-dimensional scene description and a specified view, |
114 |
|
|
<i>rpict</i> produces a two-dimensional image. |
115 |
|
|
A picture file is a compressed binary representation of the |
116 |
|
|
pixels in the image. |
117 |
|
|
This picture can be scaled in size and brightness, |
118 |
|
|
anti-aliased, and sent to a graphics output device. |
119 |
|
|
|
120 |
|
|
<p> |
121 |
|
|
A header in each picture file lists the program(s) |
122 |
|
|
and parameters that produced it. |
123 |
|
|
This is useful for identifying a picture without having to display it. |
124 |
|
|
The information can be read by the program <i>getinfo</i>. |
125 |
|
|
|
126 |
|
|
<p> |
127 |
|
|
<hr> |
128 |
|
|
|
129 |
|
|
<h2> |
130 |
|
|
<a name="Scene">2. Scene Description</a> |
131 |
|
|
</h2> |
132 |
|
|
|
133 |
|
|
A scene description file represents a three-dimensional physical environment in Cartesian (rectilinear) world coordinates. |
134 |
|
|
It is stored as ASCII text, with the following basic format: |
135 |
|
|
|
136 |
|
|
<pre> |
137 |
|
|
# comment |
138 |
|
|
|
139 |
|
|
modifier type identifier |
140 |
|
|
n S1 S2 "S 3" .. Sn |
141 |
|
|
0 |
142 |
|
|
m R1 R2 R3 .. Rm |
143 |
|
|
|
144 |
|
|
modifier alias identifier reference |
145 |
|
|
|
146 |
|
|
! command |
147 |
|
|
|
148 |
|
|
... |
149 |
|
|
</pre> |
150 |
|
|
|
151 |
greg |
1.40 |
<p> |
152 |
|
|
|
153 |
greg |
1.1 |
A comment line begins with a pound sign, `#'. |
154 |
|
|
|
155 |
|
|
<p> |
156 |
|
|
The <a NAME="scene_desc">scene description primitives</a> |
157 |
|
|
all have the same general format, and can be either surfaces or modifiers. |
158 |
|
|
A primitive has a modifier, a type, and an identifier. |
159 |
|
|
<p> |
160 |
|
|
A <a NAME="modifier"><b>modifier</b></a> is either the |
161 |
|
|
identifier of a previously defined primitive, or "void". |
162 |
|
|
<br> |
163 |
|
|
[ The most recent definition of a modifier is the |
164 |
|
|
one used, and later definitions do not cause relinking |
165 |
|
|
of loaded primitives. |
166 |
|
|
Thus, the same identifier may be used repeatedly, |
167 |
|
|
and each new definition will apply to the primitives following it. ] |
168 |
|
|
<p> |
169 |
|
|
An <a NAME="identifier"><b>identifier</b></a> can be any string |
170 |
|
|
(i.e., any sequence of non-white characters). |
171 |
|
|
<p> |
172 |
|
|
The arguments associated with a primitive can be strings or real numbers. |
173 |
|
|
<ul> |
174 |
|
|
<li> The first integer following the identifier is the number of <b>string arguments</b>, |
175 |
|
|
and it is followed by the arguments themselves (separated by white space or enclosed in quotes). |
176 |
|
|
<li> The next integer is the number of integer arguments, and is followed by the <b>integer arguments</b>. |
177 |
|
|
(There are currently no primitives that use them, however.) |
178 |
|
|
<li> The next integer is the real argument count, and it is followed by the <b>real arguments</b>. |
179 |
|
|
</ul> |
180 |
|
|
|
181 |
|
|
<p> |
182 |
|
|
An <a NAME="alias"><b>alias</b></a> gets its type and arguments from |
183 |
|
|
a previously defined primitive. |
184 |
|
|
This is useful when the same material is |
185 |
|
|
used with a different modifier, or as a convenient naming mechanism. |
186 |
|
|
The reserved modifier name "inherit" may be used to specificy that |
187 |
|
|
an alias will inherit its modifier from the original. |
188 |
|
|
Surfaces cannot be aliased. |
189 |
|
|
|
190 |
|
|
<p> |
191 |
|
|
A line beginning with an exclamation point, `!', |
192 |
|
|
is interpreted as a command. |
193 |
|
|
It is executed by the shell, and its output is read as input to the program. |
194 |
|
|
The command must not try to read from its standard input, or confusion |
195 |
|
|
will result. |
196 |
|
|
A command may be continued over multiple lines using a |
197 |
|
|
backslash, `\', to escape the newline. |
198 |
|
|
|
199 |
|
|
<p> |
200 |
|
|
White space is generally ignored, except as a separator. |
201 |
|
|
The exception is the newline character after a command or comment. |
202 |
|
|
Commands, comments and primitives may appear in any |
203 |
|
|
combination, so long as they are not intermingled. |
204 |
|
|
|
205 |
|
|
<p> |
206 |
|
|
<hr> |
207 |
|
|
|
208 |
|
|
<h3> |
209 |
|
|
<a NAME="Primitive">2.1. Primitive Types</a> |
210 |
|
|
</h3> |
211 |
|
|
|
212 |
|
|
Primitives can be <a HREF="#Surfaces">surfaces</a>, |
213 |
|
|
<a HREF="#Materials">materials</a>, |
214 |
|
|
<a HREF="#Textures">textures</a> or |
215 |
|
|
<a HREF="#Patterns">patterns</a>. |
216 |
|
|
Modifiers can be <a HREF="#Materials">materials</a>, |
217 |
|
|
<a HREF="#Mixtures">mixtures</a>, |
218 |
|
|
<a HREF="#Textures">textures</a> or <a HREF="#Patterns">patterns</a>. |
219 |
|
|
Simple surfaces must have one material in their modifier list. |
220 |
|
|
|
221 |
|
|
<p> |
222 |
|
|
<hr> |
223 |
|
|
|
224 |
|
|
<h4> |
225 |
|
|
<a NAME="Surfaces">2.1.1. Surfaces</a> |
226 |
|
|
</h4> |
227 |
|
|
<dl> |
228 |
|
|
|
229 |
|
|
A scene description will consist mostly of surfaces. |
230 |
|
|
The basic types are given below. |
231 |
|
|
|
232 |
|
|
<p> |
233 |
|
|
|
234 |
|
|
<dt> |
235 |
|
|
<a NAME="Source"> |
236 |
|
|
<b>Source </b> |
237 |
|
|
</a> |
238 |
|
|
<dd> |
239 |
|
|
A source is not really a surface, but a solid angle. |
240 |
|
|
It is used for specifying light sources that are very distant. |
241 |
|
|
The direction to the center of the source and the number of degrees subtended by its disk are given as follows: |
242 |
|
|
|
243 |
|
|
<pre> |
244 |
|
|
mod source id |
245 |
|
|
0 |
246 |
|
|
0 |
247 |
|
|
4 xdir ydir zdir angle |
248 |
|
|
</pre> |
249 |
|
|
|
250 |
|
|
<p> |
251 |
|
|
|
252 |
|
|
<dt> |
253 |
|
|
<a NAME="Sphere"> |
254 |
|
|
<b>Sphere</b> |
255 |
|
|
</a> |
256 |
|
|
<dd> |
257 |
|
|
A sphere is given by its center and radius: |
258 |
|
|
|
259 |
|
|
<pre> |
260 |
|
|
mod sphere id |
261 |
|
|
0 |
262 |
|
|
0 |
263 |
|
|
4 xcent ycent zcent radius |
264 |
|
|
</pre> |
265 |
|
|
|
266 |
|
|
<p> |
267 |
|
|
|
268 |
|
|
<dt> |
269 |
|
|
<a NAME="Bubble"> |
270 |
|
|
<b>Bubble</b> |
271 |
|
|
</a> |
272 |
|
|
|
273 |
|
|
<dd> |
274 |
|
|
A bubble is simply a sphere whose surface normal points inward. |
275 |
|
|
|
276 |
|
|
<p> |
277 |
|
|
|
278 |
|
|
<dt> |
279 |
|
|
<a NAME="Polygon"> |
280 |
|
|
<b>Polygon</b> |
281 |
|
|
</a> |
282 |
|
|
<dd> |
283 |
|
|
A polygon is given by a list of three-dimensional vertices, |
284 |
|
|
which are ordered counter-clockwise as viewed from the |
285 |
|
|
front side (into the surface normal). |
286 |
|
|
The last vertex is automatically connected to the first. |
287 |
|
|
Holes are represented in polygons as interior vertices |
288 |
|
|
connected to the outer perimeter by coincident edges (seams). |
289 |
|
|
|
290 |
|
|
<pre> |
291 |
|
|
mod polygon id |
292 |
|
|
0 |
293 |
|
|
0 |
294 |
|
|
3n |
295 |
|
|
x1 y1 z1 |
296 |
|
|
x2 y2 z2 |
297 |
|
|
... |
298 |
|
|
xn yn zn |
299 |
|
|
</pre> |
300 |
|
|
|
301 |
|
|
<p> |
302 |
|
|
|
303 |
|
|
<dt> |
304 |
|
|
<a NAME="Cone"> |
305 |
|
|
<b>Cone</b> |
306 |
|
|
</a> |
307 |
|
|
<dd> |
308 |
|
|
A cone is a megaphone-shaped object. |
309 |
|
|
It is truncated by two planes perpendicular to its axis, |
310 |
|
|
and one of its ends may come to a point. |
311 |
|
|
It is given as two axis endpoints, and the starting and ending radii: |
312 |
|
|
|
313 |
|
|
<pre> |
314 |
|
|
mod cone id |
315 |
|
|
0 |
316 |
|
|
0 |
317 |
|
|
8 |
318 |
|
|
x0 y0 z0 |
319 |
|
|
x1 y1 z1 |
320 |
|
|
r0 r1 |
321 |
|
|
</pre> |
322 |
|
|
|
323 |
|
|
<p> |
324 |
|
|
|
325 |
|
|
<dt> |
326 |
|
|
<a NAME="Cup"> |
327 |
|
|
<b>Cup</b> |
328 |
|
|
</a> |
329 |
|
|
<dd> |
330 |
|
|
A cup is an inverted <a HREF="#Cone">cone</a> (i.e., has an |
331 |
|
|
inward surface normal). |
332 |
|
|
|
333 |
|
|
<p> |
334 |
|
|
|
335 |
|
|
<dt> |
336 |
|
|
<a NAME="Cylinder"> |
337 |
|
|
<b>Cylinder</b> |
338 |
|
|
</a> |
339 |
|
|
<dd> |
340 |
|
|
A cylinder is like a <a HREF="#Cone">cone</a>, but its |
341 |
|
|
starting and ending radii are equal. |
342 |
|
|
|
343 |
|
|
<pre> |
344 |
|
|
mod cylinder id |
345 |
|
|
0 |
346 |
|
|
0 |
347 |
|
|
7 |
348 |
|
|
x0 y0 z0 |
349 |
|
|
x1 y1 z1 |
350 |
|
|
rad |
351 |
|
|
</pre> |
352 |
|
|
|
353 |
|
|
<p> |
354 |
|
|
|
355 |
|
|
<dt> |
356 |
|
|
<a NAME="Tube"> |
357 |
|
|
<b>Tube</b> |
358 |
|
|
</a> |
359 |
|
|
<dd> |
360 |
|
|
A tube is an inverted <a HREF="#Cylinder">cylinder</a>. |
361 |
|
|
|
362 |
|
|
<p> |
363 |
|
|
|
364 |
|
|
<dt> |
365 |
|
|
<a NAME="Ring"> |
366 |
|
|
<b>Ring</b> |
367 |
|
|
</a> |
368 |
|
|
<dd> |
369 |
|
|
A ring is a circular disk given by its center, |
370 |
|
|
surface normal, and inner and outer radii: |
371 |
|
|
|
372 |
|
|
<pre> |
373 |
|
|
mod ring id |
374 |
|
|
0 |
375 |
|
|
0 |
376 |
|
|
8 |
377 |
|
|
xcent ycent zcent |
378 |
|
|
xdir ydir zdir |
379 |
|
|
r0 r1 |
380 |
|
|
</pre> |
381 |
|
|
|
382 |
|
|
<p> |
383 |
|
|
|
384 |
|
|
<dt> |
385 |
|
|
<a NAME="Instance"> |
386 |
|
|
<b>Instance</b> |
387 |
|
|
</a> |
388 |
|
|
<dd> |
389 |
|
|
An instance is a compound surface, given |
390 |
|
|
by the contents of an octree file (created by oconv). |
391 |
|
|
|
392 |
|
|
<pre> |
393 |
|
|
mod instance id |
394 |
|
|
1+ octree transform |
395 |
|
|
0 |
396 |
|
|
0 |
397 |
|
|
</pre> |
398 |
|
|
|
399 |
greg |
1.40 |
<p> |
400 |
greg |
1.1 |
If the modifier is "void", then surfaces will |
401 |
|
|
use the modifiers given in the original description. |
402 |
|
|
Otherwise, the modifier specified is used in their place. |
403 |
|
|
The transform moves the octree to the desired location in the scene. |
404 |
|
|
Multiple instances using the same octree take |
405 |
|
|
little extra memory, hence very complex |
406 |
|
|
descriptions can be rendered using this primitive. |
407 |
|
|
|
408 |
|
|
<p> |
409 |
|
|
There are a number of important limitations to be aware of |
410 |
|
|
when using instances. |
411 |
|
|
First, the scene description used to generate the octree must |
412 |
|
|
stand on its own, without referring to modifiers in the |
413 |
|
|
parent description. |
414 |
|
|
This is necessary for oconv to create the octree. |
415 |
|
|
Second, light sources in the octree will not be |
416 |
|
|
incorporated correctly in the calculation, |
417 |
|
|
and they are not recommended. |
418 |
|
|
Finally, there is no advantage (other than |
419 |
|
|
convenience) to using a single instance of an octree, |
420 |
|
|
or an octree containing only a few surfaces. |
421 |
|
|
An <a HREF="../man_html/xform.1.html">xform</a> command |
422 |
|
|
on the subordinate description is prefered in such cases. |
423 |
|
|
</dl> |
424 |
|
|
|
425 |
|
|
<p> |
426 |
|
|
|
427 |
|
|
<dt> |
428 |
|
|
<a NAME="Mesh"> |
429 |
|
|
<b>Mesh</b> |
430 |
|
|
</a> |
431 |
|
|
<dd> |
432 |
|
|
A mesh is a compound surface, made up of many triangles and |
433 |
|
|
an octree data structure to accelerate ray intersection. |
434 |
|
|
It is typically converted from a Wavefront .OBJ file using the |
435 |
|
|
<i>obj2mesh</i> program. |
436 |
|
|
|
437 |
|
|
<pre> |
438 |
|
|
mod mesh id |
439 |
|
|
1+ meshfile transform |
440 |
|
|
0 |
441 |
|
|
0 |
442 |
|
|
</pre> |
443 |
|
|
|
444 |
greg |
1.40 |
<p> |
445 |
|
|
|
446 |
greg |
1.1 |
If the modifier is "void", then surfaces will |
447 |
|
|
use the modifiers given in the original mesh description. |
448 |
|
|
Otherwise, the modifier specified is used in their place. |
449 |
|
|
The transform moves the mesh to the desired location in the scene. |
450 |
|
|
Multiple instances using the same meshfile take little extra memory, |
451 |
|
|
and the compiled mesh itself takes much less space than individual |
452 |
|
|
polygons would. |
453 |
|
|
In the case of an unsmoothed mesh, using the mesh primitive reduces |
454 |
|
|
memory requirements by a factor of 30 relative to individual triangles. |
455 |
|
|
If a mesh has smoothed surfaces, we save a factor of 50 or more, |
456 |
|
|
permitting very detailed geometries that would otherwise exhaust the |
457 |
|
|
available memory. |
458 |
|
|
In addition, the mesh primitive can have associated (u,v) coordinates |
459 |
|
|
for pattern and texture mapping. |
460 |
|
|
These are made available to function files via the Lu and Lv variables. |
461 |
|
|
|
462 |
|
|
</dl> |
463 |
|
|
|
464 |
|
|
<p> |
465 |
|
|
<hr> |
466 |
|
|
|
467 |
|
|
<h4> |
468 |
|
|
<a NAME="Materials">2.1.2. Materials</a> |
469 |
|
|
</h4> |
470 |
|
|
|
471 |
|
|
A material defines the way light interacts with a surface. The basic types are given below. |
472 |
|
|
|
473 |
|
|
<p> |
474 |
|
|
|
475 |
|
|
<dl> |
476 |
|
|
|
477 |
|
|
<dt> |
478 |
|
|
<a NAME="Light"> |
479 |
|
|
<b>Light</b> |
480 |
|
|
</a> |
481 |
|
|
<dd> |
482 |
|
|
Light is the basic material for self-luminous surfaces (i.e., |
483 |
|
|
light sources). |
484 |
|
|
In addition to the <a HREF="#Source">source</a> surface type, |
485 |
|
|
<a HREF="#Sphere">spheres</a>, |
486 |
|
|
discs (<a HREF="#Ring">rings</a> with zero inner radius), |
487 |
|
|
<a HREF="#Cylinder">cylinders</a> (provided they are long enough), and <a HREF="#Polygon">polygons</a> can act as light sources. |
488 |
|
|
Polygons work best when they are rectangular. |
489 |
|
|
Cones cannot be used at this time. |
490 |
|
|
A pattern may be used to specify a light output distribution. |
491 |
|
|
Light is defined simply as a RGB radiance value (watts/steradian/m2): |
492 |
|
|
|
493 |
|
|
<pre> |
494 |
|
|
mod light id |
495 |
|
|
0 |
496 |
|
|
0 |
497 |
|
|
3 red green blue |
498 |
|
|
</pre> |
499 |
|
|
|
500 |
|
|
<p> |
501 |
|
|
|
502 |
|
|
<dt> |
503 |
|
|
<a NAME="Illum"> |
504 |
|
|
<b>Illum</b> |
505 |
|
|
</a> |
506 |
|
|
|
507 |
|
|
<dd> |
508 |
|
|
Illum is used for secondary light sources with broad distributions. |
509 |
|
|
A secondary light source is treated like any other light source, except when viewed directly. |
510 |
|
|
It then acts like it is made of a different material (indicated by |
511 |
|
|
the string argument), or becomes invisible (if no string argument is given, |
512 |
|
|
or the argument is "void"). |
513 |
|
|
Secondary sources are useful when modeling windows or brightly illuminated surfaces. |
514 |
|
|
|
515 |
|
|
<pre> |
516 |
|
|
mod illum id |
517 |
|
|
1 material |
518 |
|
|
0 |
519 |
|
|
3 red green blue |
520 |
|
|
</pre> |
521 |
|
|
|
522 |
|
|
<p> |
523 |
|
|
|
524 |
|
|
<dt> |
525 |
|
|
<a NAME="Glow"> |
526 |
|
|
<b>Glow</b> |
527 |
|
|
</a> |
528 |
|
|
|
529 |
|
|
<dd> |
530 |
|
|
Glow is used for surfaces that are self-luminous, but limited in their effect. |
531 |
|
|
In addition to the radiance value, a maximum radius for shadow testing is given: |
532 |
|
|
|
533 |
|
|
<pre> |
534 |
|
|
mod glow id |
535 |
|
|
0 |
536 |
|
|
0 |
537 |
|
|
4 red green blue maxrad |
538 |
|
|
</pre> |
539 |
|
|
|
540 |
greg |
1.40 |
<p> |
541 |
greg |
1.1 |
If maxrad is zero, then the surface will never be tested for shadow, although it may participate in an interreflection calculation. |
542 |
|
|
If maxrad is negative, then the surface will never contribute to scene illumination. |
543 |
|
|
Glow sources will never illuminate objects on the other side of an illum surface. |
544 |
|
|
This provides a convenient way to illuminate local light fixture geometry without overlighting nearby objects. |
545 |
|
|
|
546 |
|
|
<p> |
547 |
|
|
|
548 |
|
|
<dt> |
549 |
|
|
<a NAME="Spotlight"> |
550 |
|
|
<b>Spotlight</b> |
551 |
|
|
</a> |
552 |
|
|
|
553 |
|
|
<dd> |
554 |
|
|
Spotlight is used for self-luminous surfaces having directed output. |
555 |
|
|
As well as radiance, the full cone angle (in degrees) and orientation (output direction) vector are given. |
556 |
|
|
The length of the orientation vector is the distance of the effective |
557 |
|
|
focus behind the source center (i.e., the focal length). |
558 |
|
|
|
559 |
|
|
<pre> |
560 |
|
|
mod spotlight id |
561 |
|
|
0 |
562 |
|
|
0 |
563 |
|
|
7 red green blue angle xdir ydir zdir |
564 |
|
|
</pre> |
565 |
|
|
|
566 |
|
|
<p> |
567 |
|
|
|
568 |
|
|
<dt> |
569 |
|
|
<a NAME="Mirror"> |
570 |
|
|
<b>Mirror</b> |
571 |
|
|
</a> |
572 |
|
|
|
573 |
|
|
<dd> |
574 |
greg |
1.6 |
Mirror is used for planar surfaces that produce virtual source reflections. |
575 |
greg |
1.1 |
This material should be used sparingly, as it may cause the light source calculation to blow up if it is applied to many small surfaces. |
576 |
|
|
This material is only supported for flat surfaces such as <a HREF="#Polygon">polygons</a> and <a HREF="#Ring">rings</a>. |
577 |
|
|
The arguments are simply the RGB reflectance values, which should be between 0 and 1. |
578 |
|
|
An optional string argument may be used like the illum type to specify a different material to be used for shading non-source rays. |
579 |
|
|
If this alternate material is given as "void", then the mirror surface will be invisible. |
580 |
|
|
This is only appropriate if the surface hides other (more detailed) geometry with the same overall reflectance. |
581 |
|
|
|
582 |
|
|
<pre> |
583 |
|
|
mod mirror id |
584 |
|
|
1 material |
585 |
|
|
0 |
586 |
|
|
3 red green blue |
587 |
|
|
</pre> |
588 |
|
|
|
589 |
|
|
<p> |
590 |
|
|
|
591 |
|
|
<dt> |
592 |
|
|
<a NAME="Prism1"> |
593 |
|
|
<b>Prism1</b> |
594 |
|
|
</a> |
595 |
|
|
|
596 |
|
|
<dd> |
597 |
greg |
1.6 |
The prism1 material is for general light redirection from prismatic glazings, generating virtual light sources. |
598 |
greg |
1.1 |
It can only be used to modify a planar surface |
599 |
|
|
(i.e., a <a HREF="#Polygon">polygon</a> or <a HREF="#Ring">disk</a>) |
600 |
|
|
and should not result in either light concentration or scattering. |
601 |
|
|
The new direction of the ray can be on either side of the material, |
602 |
greg |
1.6 |
and the definitions must have the correct bidirectional properties to work properly with virtual light sources. |
603 |
greg |
1.1 |
The arguments give the coefficient for the redirected light and its direction. |
604 |
|
|
|
605 |
|
|
<pre> |
606 |
|
|
mod prism1 id |
607 |
|
|
5+ coef dx dy dz funcfile transform |
608 |
|
|
0 |
609 |
|
|
n A1 A2 .. An |
610 |
|
|
</pre> |
611 |
|
|
|
612 |
greg |
1.40 |
<p> |
613 |
|
|
|
614 |
greg |
1.1 |
The new direction variables dx, dy and dz need not produce a normalized vector. |
615 |
|
|
For convenience, the variables DxA, DyA and DzA are defined as the normalized direction to the target light source. |
616 |
|
|
See <a HREF="#Function">section 2.2.1</a> on function files for further information. |
617 |
|
|
|
618 |
|
|
<p> |
619 |
|
|
|
620 |
|
|
<dt> |
621 |
|
|
<a NAME="Prism2"> |
622 |
|
|
<b>Prism2</b> |
623 |
|
|
</a> |
624 |
|
|
|
625 |
|
|
<dd> |
626 |
|
|
The material prism2 is identical to <a HREF="#Prism1">prism1</a> except that it provides for two ray redirections rather than one. |
627 |
|
|
|
628 |
|
|
<pre> |
629 |
|
|
mod prism2 id |
630 |
|
|
9+ coef1 dx1 dy1 dz1 coef2 dx2 dy2 dz2 funcfile transform |
631 |
|
|
0 |
632 |
|
|
n A1 A2 .. An |
633 |
|
|
</pre> |
634 |
|
|
|
635 |
|
|
<p> |
636 |
|
|
|
637 |
|
|
<dt> |
638 |
|
|
<a NAME="Mist"> |
639 |
|
|
<b>Mist</b> |
640 |
|
|
</a> |
641 |
|
|
|
642 |
|
|
<dd> |
643 |
|
|
Mist is a virtual material used to delineate a volume |
644 |
|
|
of participating atmosphere. |
645 |
|
|
A list of important light sources may be given, along with an |
646 |
|
|
extinction coefficient, scattering albedo and scattering eccentricity |
647 |
|
|
parameter. |
648 |
|
|
The light sources named by the string argument list |
649 |
|
|
will be tested for scattering within the volume. |
650 |
|
|
Sources are identified by name, and virtual light sources may be indicated |
651 |
|
|
by giving the relaying object followed by '>' followed by the source, i.e: |
652 |
|
|
|
653 |
|
|
<pre> |
654 |
|
|
3 source1 mirror1>source10 mirror2>mirror1>source3 |
655 |
|
|
</pre> |
656 |
|
|
|
657 |
greg |
1.40 |
<p> |
658 |
greg |
1.1 |
Normally, only one source is given per mist material, and there is an |
659 |
|
|
upper limit of 32 to the total number of active scattering sources. |
660 |
|
|
The extinction coefficient, if given, is added the the global |
661 |
|
|
coefficient set on the command line. |
662 |
|
|
Extinction is in units of 1/distance (distance based on the world coordinates), |
663 |
|
|
and indicates the proportional loss of radiance over one unit distance. |
664 |
|
|
The scattering albedo, if present, will override the global setting within |
665 |
|
|
the volume. |
666 |
|
|
An albedo of 0 0 0 means a perfectly absorbing medium, and an albedo of |
667 |
|
|
1 1 1 means |
668 |
|
|
a perfectly scattering medium (no absorption). |
669 |
|
|
The scattering eccentricity parameter will likewise override the global |
670 |
|
|
setting if it is present. |
671 |
|
|
Scattering eccentricity indicates how much scattered light favors the |
672 |
greg |
1.8 |
forward direction, as fit by the Henyey-Greenstein function: |
673 |
greg |
1.1 |
|
674 |
|
|
<pre> |
675 |
|
|
P(theta) = (1 - g*g) / (1 + g*g - 2*g*cos(theta))^1.5 |
676 |
|
|
</pre> |
677 |
|
|
|
678 |
greg |
1.40 |
<p> |
679 |
|
|
|
680 |
greg |
1.1 |
A perfectly isotropic scattering medium has a g parameter of 0, and |
681 |
|
|
a highly directional material has a g parameter close to 1. |
682 |
|
|
Fits to the g parameter may be found along with typical extinction |
683 |
|
|
coefficients and scattering albedos for various atmospheres and |
684 |
|
|
cloud types in USGS meteorological tables. |
685 |
|
|
(A pattern will be applied to the extinction values.) |
686 |
|
|
|
687 |
|
|
<pre> |
688 |
|
|
mod mist id |
689 |
|
|
N src1 src2 .. srcN |
690 |
|
|
0 |
691 |
|
|
0|3|6|7 [ rext gext bext [ ralb galb balb [ g ] ] ] |
692 |
|
|
</pre> |
693 |
|
|
|
694 |
greg |
1.40 |
<p> |
695 |
|
|
|
696 |
greg |
1.1 |
There are two usual uses of the mist type. |
697 |
|
|
One is to surround a beam from a spotlight or laser so that it is |
698 |
|
|
visible during rendering. |
699 |
|
|
For this application, it is important to use a <a HREF="#Cone">cone</a> |
700 |
|
|
(or <a HREF="#Cylinder">cylinder</a>) that |
701 |
|
|
is long enough and wide enough to contain the important visible portion. |
702 |
|
|
Light source photometry and intervening objects will have the desired |
703 |
|
|
effect, and crossing beams will result in additive scattering. |
704 |
|
|
For this application, it is best to leave off the real arguments, and |
705 |
|
|
use the global rendering parameters to control the atmosphere. |
706 |
|
|
The second application is to model clouds or other localized media. |
707 |
|
|
Complex boundary geometry may be used to give shape to a uniform medium, |
708 |
|
|
so long as the boundary encloses a proper volume. |
709 |
|
|
Alternatively, a pattern may be used to set the line integral value |
710 |
|
|
through the cloud for a ray entering or exiting a point in a given |
711 |
|
|
direction. |
712 |
|
|
For this application, it is best if cloud volumes do not overlap each other, |
713 |
|
|
and opaque objects contained within them may not be illuminated correctly |
714 |
|
|
unless the line integrals consider enclosed geometry. |
715 |
|
|
|
716 |
|
|
<dt> |
717 |
|
|
<a NAME="Plastic"> |
718 |
|
|
<b>Plastic</b> |
719 |
|
|
</a> |
720 |
|
|
|
721 |
|
|
<dd> |
722 |
|
|
Plastic is a material with uncolored highlights. |
723 |
|
|
It is given by its RGB reflectance, its fraction of specularity, and its roughness value. |
724 |
|
|
Roughness is specified as the rms slope of surface facets. |
725 |
|
|
A value of 0 corresponds to a perfectly smooth surface, and a value of 1 would be a very rough surface. |
726 |
|
|
Specularity fractions greater than 0.1 and roughness values greater than 0.2 are not very realistic. |
727 |
|
|
(A pattern modifying plastic will affect the material color.) |
728 |
|
|
|
729 |
|
|
<pre> |
730 |
|
|
mod plastic id |
731 |
|
|
0 |
732 |
|
|
0 |
733 |
|
|
5 red green blue spec rough |
734 |
|
|
</pre> |
735 |
|
|
|
736 |
|
|
<p> |
737 |
|
|
|
738 |
|
|
<dt> |
739 |
|
|
<a NAME="Metal"> |
740 |
|
|
<b>Metal</b> |
741 |
|
|
</a> |
742 |
|
|
|
743 |
|
|
<dd> |
744 |
|
|
Metal is similar to <a HREF="#Plastic">plastic</a>, but specular highlights are modified by the material color. |
745 |
|
|
Specularity of metals is usually .9 or greater. |
746 |
|
|
As for plastic, roughness values above .2 are uncommon. |
747 |
|
|
|
748 |
|
|
<p> |
749 |
|
|
|
750 |
|
|
<dt> |
751 |
|
|
<a NAME="Trans"> |
752 |
|
|
<b>Trans</b> |
753 |
|
|
</a> |
754 |
|
|
|
755 |
|
|
<dd> |
756 |
|
|
Trans is a translucent material, similar to <a HREF="#Plastic">plastic</a>. |
757 |
|
|
The transmissivity is the fraction of penetrating light that travels all the way through the material. |
758 |
|
|
The transmitted specular component is the fraction of transmitted light that is not diffusely scattered. |
759 |
|
|
Transmitted and diffusely reflected light is modified by the material color. |
760 |
|
|
Translucent objects are infinitely thin. |
761 |
|
|
|
762 |
|
|
<pre> |
763 |
|
|
mod trans id |
764 |
|
|
0 |
765 |
|
|
0 |
766 |
|
|
7 red green blue spec rough trans tspec |
767 |
|
|
</pre> |
768 |
|
|
|
769 |
|
|
<p> |
770 |
|
|
|
771 |
|
|
<dt> |
772 |
|
|
<a NAME="Plastic2"> |
773 |
|
|
<b>Plastic2</b> |
774 |
|
|
</a> |
775 |
|
|
|
776 |
|
|
<dd> |
777 |
|
|
Plastic2 is similar to <a HREF="#Plastic">plastic</a>, but with anisotropic roughness. |
778 |
|
|
This means that highlights in the surface will appear elliptical rather than round. |
779 |
|
|
The orientation of the anisotropy is determined by the unnormalized direction vector ux uy uz. |
780 |
|
|
These three expressions (separated by white space) are evaluated in the context of the function file funcfile. |
781 |
|
|
If no function file is required (i.e., no special variables or functions are required), a period (`.') may be given in its place. |
782 |
|
|
(See the discussion of <a HREF="#Function">Function Files</a> in the Auxiliary Files section). |
783 |
|
|
The urough value defines the roughness along the u vector given projected onto the surface. |
784 |
|
|
The vrough value defines the roughness perpendicular to this vector. |
785 |
|
|
Note that the highlight will be narrower in the direction of the smaller roughness value. |
786 |
|
|
Roughness values of zero are not allowed for efficiency reasons since the behavior would be the same as regular plastic in that case. |
787 |
|
|
|
788 |
|
|
<pre> |
789 |
|
|
mod plastic2 id |
790 |
|
|
4+ ux uy uz funcfile transform |
791 |
|
|
0 |
792 |
|
|
6 red green blue spec urough vrough |
793 |
|
|
</pre> |
794 |
|
|
|
795 |
|
|
<p> |
796 |
|
|
|
797 |
|
|
<dt> |
798 |
|
|
<a NAME="Metal2"> |
799 |
|
|
<b>Metal2</b> |
800 |
|
|
</a> |
801 |
|
|
|
802 |
|
|
<dd> |
803 |
|
|
Metal2 is the same as <a HREF="#Plastic2">plastic2</a>, except that the highlights are modified by the material color. |
804 |
|
|
|
805 |
|
|
<p> |
806 |
|
|
|
807 |
|
|
<dt> |
808 |
|
|
<a NAME="Trans2"> |
809 |
|
|
<b>Trans2</b> |
810 |
|
|
</a> |
811 |
|
|
|
812 |
|
|
<dd> |
813 |
|
|
Trans2 is the anisotropic version of <a HREF="#Trans">trans</a>. |
814 |
greg |
1.23 |
The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>, |
815 |
|
|
and the real arguments are the same as for trans but with an additional roughness value. |
816 |
greg |
1.1 |
|
817 |
|
|
<pre> |
818 |
|
|
mod trans2 id |
819 |
|
|
4+ ux uy uz funcfile transform |
820 |
|
|
0 |
821 |
|
|
8 red green blue spec urough vrough trans tspec |
822 |
|
|
</pre> |
823 |
|
|
|
824 |
|
|
<p> |
825 |
|
|
|
826 |
|
|
<dt> |
827 |
greg |
1.23 |
<a NAME="Ashik2"> |
828 |
|
|
<b>Ashik2</b> |
829 |
|
|
</a> |
830 |
|
|
|
831 |
|
|
<dd> |
832 |
|
|
Ashik2 is the anisotropic reflectance model by Ashikhmin & Shirley. |
833 |
|
|
The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>, but the real |
834 |
|
|
arguments have additional flexibility to specify the specular color. |
835 |
|
|
Also, rather than roughness, specular power is used, which has no |
836 |
|
|
physical meaning other than larger numbers are equivalent to a smoother |
837 |
|
|
surface. |
838 |
greg |
1.31 |
Unlike other material types, total reflectance is the sum of |
839 |
|
|
diffuse and specular colors, and should be adjusted accordingly. |
840 |
greg |
1.23 |
<pre> |
841 |
|
|
mod ashik2 id |
842 |
|
|
4+ ux uy uz funcfile transform |
843 |
|
|
0 |
844 |
|
|
8 dred dgrn dblu sred sgrn sblu u-power v-power |
845 |
|
|
</pre> |
846 |
|
|
|
847 |
|
|
<p> |
848 |
|
|
|
849 |
|
|
<dt> |
850 |
greg |
1.39 |
<a NAME="WGMDfunc"> |
851 |
|
|
<b>WGMDfunc</b> |
852 |
|
|
</a> |
853 |
|
|
|
854 |
|
|
<dd> |
855 |
|
|
WGMDfunc is a more programmable version of <a HREF="#Trans2">trans2</a>, |
856 |
|
|
with separate modifier paths and variables to control each component. |
857 |
|
|
(WGMD stands for Ward-Geisler-Moroder-Duer, which is the basis for |
858 |
|
|
this empirical model, similar to previous ones beside Ashik2.) |
859 |
|
|
The specification of this material is given below. |
860 |
|
|
<pre> |
861 |
|
|
mod WGMDfunc id |
862 |
|
|
13+ rs_mod rs rs_urough rs_vrough |
863 |
|
|
ts_mod ts ts_urough ts_vrough |
864 |
|
|
td_mod |
865 |
|
|
ux uy uz funcfile transform |
866 |
|
|
0 |
867 |
|
|
9+ rfdif gfdif bfdif |
868 |
|
|
rbdif gbdif bbdif |
869 |
|
|
rtdif gtdif btdif |
870 |
|
|
A10 .. |
871 |
|
|
</pre> |
872 |
|
|
|
873 |
greg |
1.40 |
<p> |
874 |
|
|
|
875 |
greg |
1.39 |
The sum of specular reflectance (<I>rs</I>), specular transmittance (<I>ts</I>), |
876 |
|
|
diffuse reflectance (<I>rfdif gfdif bfdif</I> for front and <I>rbdif gbdif bbdif</I> for back) |
877 |
|
|
and diffuse transmittance (<I>rtdif gtdif btdif</I>) should be less than 1 for each |
878 |
|
|
channel. |
879 |
|
|
|
880 |
|
|
<p> |
881 |
|
|
|
882 |
|
|
Unique to this material, separate modifier channels are |
883 |
|
|
provided for each component. |
884 |
|
|
The main modifier is used on the diffuse reflectance, both |
885 |
|
|
front and back. |
886 |
|
|
The <I>rs_mod</I> modifier is used for specular reflectance. |
887 |
|
|
If "void" is given for <I>rs_mod</I>, |
888 |
|
|
then the specular reflection color will be white. |
889 |
|
|
The special "inherit" keyword may also be given, in which case |
890 |
|
|
specular reflectance will share the main modifier. |
891 |
|
|
This behavior is replicated for the specular transmittance modifier |
892 |
|
|
<I>ts_mod</I>, which also has its own independent roughness expressions. |
893 |
|
|
Finally, the diffuse transmittance modifier is given as |
894 |
|
|
<I>td_mod</I>, which may also be "void" or "inherit". |
895 |
|
|
Note that any spectra or color for specular components must be |
896 |
|
|
carried by the named modifier(s). |
897 |
|
|
|
898 |
|
|
<p> |
899 |
|
|
|
900 |
|
|
The main advantage to this material over |
901 |
|
|
<a HREF="#BRTDfunc">BRTDfunc</a> and |
902 |
|
|
other programmable types described below is that the specular sampling is |
903 |
|
|
well-defined, so that all components are fully computed. |
904 |
|
|
|
905 |
|
|
<p> |
906 |
|
|
|
907 |
|
|
<dt> |
908 |
greg |
1.1 |
<a NAME="Dielectric"> |
909 |
|
|
<b>Dielectric</b> |
910 |
|
|
</a> |
911 |
|
|
|
912 |
|
|
<dd> |
913 |
|
|
A dielectric material is transparent, and it refracts light as well as reflecting it. |
914 |
|
|
Its behavior is determined by the index of refraction and transmission coefficient in each wavelength band per unit length. |
915 |
|
|
Common glass has a index of refraction (n) around 1.5, and a transmission coefficient of roughly 0.92 over an inch. |
916 |
|
|
An additional number, the Hartmann constant, describes how the index of refraction changes as a function of wavelength. |
917 |
|
|
It is usually zero. (A <a HREF="#Patterns">pattern</a> modifies only the refracted value.) |
918 |
|
|
|
919 |
|
|
<pre> |
920 |
|
|
mod dielectric id |
921 |
|
|
0 |
922 |
|
|
0 |
923 |
|
|
5 rtn gtn btn n hc |
924 |
|
|
</pre> |
925 |
|
|
|
926 |
|
|
<p> |
927 |
|
|
|
928 |
|
|
<dt> |
929 |
|
|
<a NAME="Interface"> |
930 |
|
|
<b>Interface</b> |
931 |
|
|
</a> |
932 |
|
|
|
933 |
|
|
<dd> |
934 |
|
|
An interface is a boundary between two dielectrics. |
935 |
|
|
The first transmission coefficient and refractive index are for the inside; the second ones are for the outside. |
936 |
|
|
Ordinary dielectrics are surrounded by a vacuum (1 1 1 1). |
937 |
|
|
|
938 |
|
|
<pre> |
939 |
|
|
mod interface id |
940 |
|
|
0 |
941 |
|
|
0 |
942 |
|
|
8 rtn1 gtn1 btn1 n1 rtn2 gtn2 btn2 n2 |
943 |
|
|
</pre> |
944 |
|
|
|
945 |
|
|
<p> |
946 |
|
|
|
947 |
|
|
<dt> |
948 |
|
|
<a NAME="Glass"> |
949 |
|
|
<b>Glass</b> |
950 |
|
|
</a> |
951 |
|
|
|
952 |
|
|
<dd> |
953 |
|
|
Glass is similar to <a HREF="#Dielectric">dielectric</a>, but it is optimized for thin glass surfaces (n = 1.52). |
954 |
|
|
One transmitted ray and one reflected ray is produced. |
955 |
|
|
By using a single surface is in place of two, internal reflections are avoided. |
956 |
|
|
The surface orientation is irrelevant, as it is for <a HREF="#Plastic">plastic</a>, <a HREF="#Metal">metal</a>, and <a HREF="#Trans">trans</a>. |
957 |
|
|
The only specification required is the transmissivity at normal incidence. |
958 |
|
|
(Transmissivity is the amount of light not absorbed in one traversal |
959 |
|
|
of the material. |
960 |
|
|
Transmittance -- the value usually measured -- is the total light |
961 |
|
|
transmitted through the pane including multiple reflections.) |
962 |
|
|
To compute transmissivity (tn) from transmittance (Tn) use: |
963 |
|
|
|
964 |
|
|
<pre> |
965 |
|
|
tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn |
966 |
|
|
</pre> |
967 |
|
|
|
968 |
greg |
1.40 |
<p> |
969 |
|
|
|
970 |
greg |
1.1 |
Standard 88% transmittance glass has a transmissivity of 0.96. |
971 |
|
|
(A <a HREF="#Patterns">pattern</a> modifying glass will affect the transmissivity.) |
972 |
|
|
If a fourth real argument is given, it is interpreted as the index of refraction to use instead of 1.52. |
973 |
|
|
|
974 |
|
|
<pre> |
975 |
|
|
mod glass id |
976 |
|
|
0 |
977 |
|
|
0 |
978 |
|
|
3 rtn gtn btn |
979 |
|
|
</pre> |
980 |
|
|
|
981 |
|
|
<p> |
982 |
|
|
|
983 |
|
|
<dt> |
984 |
|
|
<a NAME="Plasfunc"> |
985 |
|
|
<b>Plasfunc</b> |
986 |
|
|
</a> |
987 |
|
|
|
988 |
|
|
<dd> |
989 |
|
|
Plasfunc in used for the procedural definition of plastic-like materials |
990 |
|
|
with arbitrary bidirectional reflectance distribution functions (BRDF's). |
991 |
|
|
The arguments to this material include the color and specularity, |
992 |
|
|
as well as the function defining the specular distribution and the auxiliary file where it may be found. |
993 |
|
|
|
994 |
|
|
<pre> |
995 |
|
|
mod plasfunc id |
996 |
|
|
2+ refl funcfile transform |
997 |
|
|
0 |
998 |
|
|
4+ red green blue spec A5 .. |
999 |
|
|
</pre> |
1000 |
|
|
|
1001 |
greg |
1.40 |
<p> |
1002 |
|
|
|
1003 |
greg |
1.1 |
The function refl takes four arguments, the x, y and z |
1004 |
|
|
direction towards the incident light, and the solid angle |
1005 |
|
|
subtended by the source. |
1006 |
|
|
The solid angle is provided to facilitate averaging, and is usually |
1007 |
|
|
ignored. |
1008 |
|
|
The refl function should integrate to 1 over |
1009 |
|
|
the projected hemisphere to maintain energy balance. |
1010 |
|
|
At least four real arguments must be given, and these are made available along with any additional values to the reflectance function. |
1011 |
|
|
Currently, only the contribution from direct light sources is considered in the specular calculation. |
1012 |
|
|
As in most material types, the surface normal is always altered to face the incoming ray. |
1013 |
|
|
|
1014 |
|
|
<p> |
1015 |
|
|
|
1016 |
|
|
<dt> |
1017 |
|
|
<a NAME="Metfunc"> |
1018 |
|
|
<b>Metfunc</b> |
1019 |
|
|
</a> |
1020 |
|
|
|
1021 |
|
|
<dd> |
1022 |
|
|
Metfunc is identical to <a HREF="#Plasfunc">plasfunc</a> and takes the same arguments, |
1023 |
|
|
but the specular component is multiplied also by the material color. |
1024 |
|
|
|
1025 |
|
|
<p> |
1026 |
|
|
|
1027 |
|
|
<dt> |
1028 |
|
|
<a NAME="Transfunc"> |
1029 |
|
|
<b>Transfunc</b> |
1030 |
|
|
</a> |
1031 |
|
|
|
1032 |
|
|
<dd> |
1033 |
|
|
Transfunc is similar to <a HREF="#Plasfunc">plasfunc</a> but with an arbitrary bidirectional transmittance distribution |
1034 |
|
|
as well as a reflectance distribution. |
1035 |
|
|
Both reflectance and transmittance are specified with the same function. |
1036 |
|
|
|
1037 |
|
|
<pre> |
1038 |
|
|
mod transfunc id |
1039 |
|
|
2+ brtd funcfile transform |
1040 |
|
|
0 |
1041 |
|
|
6+ red green blue rspec trans tspec A7 .. |
1042 |
|
|
</pre> |
1043 |
|
|
|
1044 |
greg |
1.40 |
<p> |
1045 |
|
|
|
1046 |
greg |
1.1 |
Where trans is the total light transmitted and tspec is the non-Lambertian fraction of transmitted light. |
1047 |
|
|
The function brtd should integrate to 1 over each projected hemisphere. |
1048 |
|
|
|
1049 |
|
|
<p> |
1050 |
|
|
|
1051 |
|
|
<dt> |
1052 |
|
|
<a NAME="BRTDfunc"> |
1053 |
|
|
<b>BRTDfunc</b> |
1054 |
|
|
</a> |
1055 |
|
|
|
1056 |
|
|
<dd> |
1057 |
|
|
The material BRTDfunc gives the maximum flexibility over surface reflectance and transmittance, |
1058 |
|
|
providing for spectrally-dependent specular rays and reflectance and transmittance distribution functions. |
1059 |
|
|
|
1060 |
|
|
<pre> |
1061 |
|
|
mod BRTDfunc id |
1062 |
|
|
10+ rrefl grefl brefl |
1063 |
|
|
rtrns gtrns btrns |
1064 |
|
|
rbrtd gbrtd bbrtd |
1065 |
|
|
funcfile transform |
1066 |
|
|
0 |
1067 |
|
|
9+ rfdif gfdif bfdif |
1068 |
|
|
rbdif gbdif bbdif |
1069 |
|
|
rtdif gtdif btdif |
1070 |
|
|
A10 .. |
1071 |
|
|
</pre> |
1072 |
|
|
|
1073 |
greg |
1.40 |
<p> |
1074 |
|
|
|
1075 |
greg |
1.1 |
The variables rrefl, grefl and brefl specify the color coefficients for the ideal specular (mirror) reflection of the surface. |
1076 |
|
|
The variables rtrns, gtrns and btrns specify the color coefficients for the ideal specular transmission. |
1077 |
|
|
The functions rbrtd, gbrtd and bbrtd take the direction to the incident light (and its solid angle) and |
1078 |
|
|
compute the color coefficients for the directional diffuse part of reflection and transmission. |
1079 |
|
|
As a special case, three identical values of '0' may be given in place of these function names to indicate no directional diffuse component. |
1080 |
|
|
|
1081 |
|
|
<p> |
1082 |
|
|
Unlike most other material types, the surface normal is not altered to face the incoming ray. |
1083 |
|
|
Thus, functions and variables must pay attention to the orientation of the surface and make adjustments appropriately. |
1084 |
|
|
However, the special variables for the perturbed dot product and surface normal, RdotP, NxP, NyP and NzP are reoriented |
1085 |
|
|
as if the ray hit the front surface for convenience. |
1086 |
|
|
|
1087 |
|
|
<p> |
1088 |
|
|
A diffuse reflection component may be given for the front side with rfdif, gfdif and bfdif for the front side of the surface |
1089 |
|
|
or rbdif, gbdif and bbdif for the back side. |
1090 |
|
|
The diffuse transmittance (must be the same for both sides by physical law) is given by rtdif, gtdif and btdif. |
1091 |
|
|
A pattern will modify these diffuse scattering values, and will be available through the special variables CrP, CgP and CbP. |
1092 |
|
|
|
1093 |
|
|
<p> |
1094 |
|
|
Care must be taken when using this material type to produce a physically valid reflection model. |
1095 |
|
|
The reflectance functions should be bidirectional, and under no circumstances should the sum of reflected diffuse, |
1096 |
|
|
transmitted diffuse, reflected specular, transmitted specular and the integrated directional diffuse component be greater than one. |
1097 |
|
|
|
1098 |
|
|
<p> |
1099 |
|
|
|
1100 |
|
|
<dt> |
1101 |
|
|
<a NAME="Plasdata"> |
1102 |
|
|
<b>Plasdata</b> |
1103 |
|
|
</a> |
1104 |
|
|
|
1105 |
|
|
<dd> |
1106 |
|
|
Plasdata is used for arbitrary BRDF's that are most conveniently given as interpolated data. |
1107 |
|
|
The arguments to this material are the <a HREF="#Data">data file</a> and coordinate index functions, |
1108 |
|
|
as well as a function to optionally modify the data values. |
1109 |
|
|
|
1110 |
|
|
<pre> |
1111 |
|
|
mod plasdata id |
1112 |
|
|
3+n+ |
1113 |
|
|
func datafile |
1114 |
|
|
funcfile x1 x2 .. xn transform |
1115 |
|
|
0 |
1116 |
|
|
4+ red green blue spec A5 .. |
1117 |
|
|
</pre> |
1118 |
|
|
|
1119 |
greg |
1.40 |
<p> |
1120 |
|
|
|
1121 |
greg |
1.1 |
The coordinate indices (x1, x2, etc.) are themselves functions of the x, y and z direction to the incident light, plus the solid angle |
1122 |
|
|
subtended by the light source (usually ignored). |
1123 |
|
|
The data function (func) takes five variables, the |
1124 |
|
|
interpolated value from the n-dimensional data file, followed by the |
1125 |
|
|
x, y and z direction to the incident light and the solid angle of the source. |
1126 |
|
|
The light source direction and size may of course be ignored by the function. |
1127 |
|
|
|
1128 |
|
|
<p> |
1129 |
|
|
|
1130 |
|
|
<dt> |
1131 |
|
|
<a NAME="Metdata"> |
1132 |
|
|
<b>Metdata</b> |
1133 |
|
|
</a> |
1134 |
|
|
|
1135 |
|
|
<dd> |
1136 |
|
|
As metfunc is to plasfunc, metdata is to <a HREF="#Plasdata">plasdata</a>. |
1137 |
|
|
Metdata takes the same arguments as plasdata, but the specular component is modified by the given material color. |
1138 |
|
|
|
1139 |
|
|
<p> |
1140 |
|
|
|
1141 |
|
|
<dt> |
1142 |
|
|
<a NAME="Transdata"> |
1143 |
|
|
<b>Transdata</b> |
1144 |
|
|
</a> |
1145 |
|
|
|
1146 |
|
|
<dd> |
1147 |
|
|
Transdata is like <a HREF="#Plasdata">plasdata</a> but the specification includes transmittance as well as reflectance. |
1148 |
|
|
The parameters are as follows. |
1149 |
|
|
|
1150 |
|
|
<pre> |
1151 |
|
|
mod transdata id |
1152 |
|
|
3+n+ |
1153 |
|
|
func datafile |
1154 |
|
|
funcfile x1 x2 .. xn transform |
1155 |
|
|
0 |
1156 |
|
|
6+ red green blue rspec trans tspec A7 .. |
1157 |
|
|
</pre> |
1158 |
|
|
|
1159 |
|
|
<p> |
1160 |
|
|
|
1161 |
|
|
<dt> |
1162 |
greg |
1.10 |
<a NAME="BSDF"> |
1163 |
|
|
<b>BSDF</b> |
1164 |
|
|
</a> |
1165 |
|
|
|
1166 |
|
|
<dd> |
1167 |
|
|
The BSDF material type loads an XML (eXtensible Markup Language) |
1168 |
|
|
file describing a bidirectional scattering distribution function. |
1169 |
|
|
Real arguments to this material may define additional |
1170 |
|
|
diffuse components that augment the BSDF data. |
1171 |
|
|
String arguments are used to define thickness for proxied |
1172 |
greg |
1.11 |
surfaces and the "up" orientation for the material. |
1173 |
greg |
1.10 |
|
1174 |
|
|
<pre> |
1175 |
|
|
mod BSDF id |
1176 |
|
|
6+ thick BSDFfile ux uy uz funcfile transform |
1177 |
|
|
0 |
1178 |
|
|
0|3|6|9 |
1179 |
|
|
rfdif gfdif bfdif |
1180 |
|
|
rbdif gbdif bbdif |
1181 |
|
|
rtdif gtdif btdif |
1182 |
|
|
</pre> |
1183 |
|
|
|
1184 |
|
|
<p> |
1185 |
greg |
1.11 |
The first string argument is a "thickness" parameter that may be used |
1186 |
greg |
1.10 |
to hide detail geometry being proxied by an aggregate BSDF material. |
1187 |
|
|
If a view or shadow ray hits a BSDF proxy with non-zero thickness, |
1188 |
|
|
it will pass directly through as if the surface were not there. |
1189 |
|
|
Similar to the illum type, this permits direct viewing and |
1190 |
|
|
shadow testing of complex geometry. |
1191 |
|
|
The BSDF is used when a scattered (indirect) ray hits the surface, |
1192 |
|
|
and any transmitted sample rays will be offset by the thickness amount |
1193 |
|
|
to avoid the hidden geometry and gather samples from the other side. |
1194 |
|
|
In this manner, BSDF surfaces can improve the results for indirect |
1195 |
|
|
scattering from complex systems without sacrificing appearance or |
1196 |
|
|
shadow accuracy. |
1197 |
|
|
If the BSDF has transmission and back-side reflection data, |
1198 |
|
|
a parallel BSDF surface may be |
1199 |
|
|
placed slightly less than the given thickness away from the front surface |
1200 |
|
|
to enclose the complex geometry on both sides. |
1201 |
greg |
1.12 |
The sign of the thickness is important, as it indicates |
1202 |
greg |
1.14 |
whether the proxied geometry is behind the BSDF |
1203 |
greg |
1.12 |
surface (when thickness is positive) or in front (when |
1204 |
|
|
thickness is negative). |
1205 |
|
|
<p> |
1206 |
|
|
The second string argument is the name of the BSDF file, |
1207 |
|
|
which is found in the usual auxiliary locations. The |
1208 |
|
|
following three string parameters name variables for an |
1209 |
|
|
"up" vector, which together with the surface |
1210 |
|
|
normal, define the local coordinate system that orients the |
1211 |
|
|
BSDF. These variables, along with the thickness, are defined |
1212 |
|
|
in a function file given as the next string argument. An |
1213 |
|
|
optional transform is used to scale the thickness and |
1214 |
|
|
reorient the up vector. |
1215 |
|
|
<p> |
1216 |
|
|
If no real arguments are given, the BSDF is used by itself |
1217 |
|
|
to determine reflection and transmission. If there are at |
1218 |
|
|
least 3 real arguments, the first triplet is an additional |
1219 |
|
|
diffuse reflectance for the front side. At least 6 real |
1220 |
|
|
arguments adds diffuse reflectance to the rear side of the |
1221 |
|
|
surface. If there are 9 real arguments, the final triplet |
1222 |
|
|
will be taken as an additional diffuse transmittance. All |
1223 |
|
|
diffuse components as well as the non-diffuse transmission |
1224 |
|
|
are modified by patterns applied to this material. The |
1225 |
|
|
non-diffuse reflection from either side are unaffected. |
1226 |
|
|
Textures perturb the effective surface normal in the usual |
1227 |
|
|
way. |
1228 |
|
|
<p> |
1229 |
|
|
The surface normal of this type is not altered to face the |
1230 |
|
|
incoming ray, so the front and back BSDF reflections may |
1231 |
|
|
differ. (Transmission is identical front-to-back by physical |
1232 |
|
|
law.) If back visibility is turned off during rendering and |
1233 |
|
|
there is no transmission or back-side reflection, only then |
1234 |
|
|
the surface will be invisible from behind. Unlike other |
1235 |
|
|
data-driven material types, the BSDF type is fully supported |
1236 |
|
|
and all parts of the distribution are properly sampled. |
1237 |
greg |
1.10 |
<p> |
1238 |
|
|
|
1239 |
|
|
<dt> |
1240 |
greg |
1.26 |
<a NAME="aBSDF"> |
1241 |
|
|
<b>aBSDF</b> |
1242 |
greg |
1.25 |
</a> |
1243 |
|
|
|
1244 |
|
|
<dd> |
1245 |
greg |
1.26 |
The aBSDF material is identical to the BSDF type with two |
1246 |
greg |
1.25 |
important differences. First, proxy geometry is not |
1247 |
|
|
supported, so there is no thickness parameter. Second, an |
1248 |
greg |
1.26 |
aBSDF is assumed to have some specular through component |
1249 |
|
|
(the ’a’ stands for "aperture"), |
1250 |
greg |
1.25 |
which is treated specially during the direct calculation |
1251 |
|
|
and when viewing the material. Based on the BSDF data, the |
1252 |
|
|
coefficient of specular transmission is determined and used |
1253 |
|
|
for modifying unscattered shadow and view rays. |
1254 |
|
|
|
1255 |
|
|
<pre> |
1256 |
greg |
1.26 |
mod aBSDF id |
1257 |
greg |
1.25 |
5+ BSDFfile ux uy uz funcfile transform |
1258 |
|
|
0 |
1259 |
|
|
0|3|6|9 |
1260 |
|
|
rfdif gfdif bfdif |
1261 |
|
|
rbdif gbdif bbdif |
1262 |
|
|
rtdif gtdif btdif |
1263 |
|
|
</pre> |
1264 |
|
|
|
1265 |
|
|
<p> |
1266 |
|
|
If a material has no specular transmitted component, it is |
1267 |
|
|
much better to use the BSDF type with a zero thickness |
1268 |
greg |
1.26 |
than to use aBSDF. |
1269 |
greg |
1.25 |
<p> |
1270 |
|
|
|
1271 |
|
|
<dt> |
1272 |
greg |
1.1 |
<a NAME="Antimatter"> |
1273 |
|
|
<b>Antimatter</b> |
1274 |
|
|
</a> |
1275 |
|
|
|
1276 |
|
|
<dd> |
1277 |
|
|
Antimatter is a material that can "subtract" volumes from other volumes. |
1278 |
|
|
A ray passing into an antimatter object becomes blind to all the specified modifiers: |
1279 |
|
|
|
1280 |
|
|
<pre> |
1281 |
|
|
mod antimatter id |
1282 |
|
|
N mod1 mod2 .. modN |
1283 |
|
|
0 |
1284 |
|
|
0 |
1285 |
|
|
</pre> |
1286 |
|
|
|
1287 |
greg |
1.40 |
<p> |
1288 |
|
|
|
1289 |
greg |
1.1 |
The first modifier will also be used to shade the area leaving the antimatter volume and entering the regular volume. |
1290 |
|
|
If mod1 is void, the antimatter volume is completely invisible. |
1291 |
|
|
Antimatter does not work properly with the material type <a HREF="#Trans">"trans"</a>, |
1292 |
|
|
and multiple antimatter surfaces should be disjoint. |
1293 |
|
|
The viewpoint must be outside all volumes concerned for a correct rendering. |
1294 |
|
|
|
1295 |
|
|
</dl> |
1296 |
|
|
|
1297 |
|
|
<p> |
1298 |
|
|
<hr> |
1299 |
|
|
|
1300 |
|
|
<h4> |
1301 |
|
|
<a NAME="Textures">2.1.3. Textures</a> |
1302 |
|
|
</h4> |
1303 |
|
|
|
1304 |
|
|
A texture is a perturbation of the surface normal, and is given by either a function or data. |
1305 |
|
|
|
1306 |
|
|
<p> |
1307 |
|
|
|
1308 |
|
|
<dl> |
1309 |
|
|
|
1310 |
|
|
<dt> |
1311 |
|
|
<a NAME="Texfunc"> |
1312 |
|
|
<b>Texfunc</b> |
1313 |
|
|
</a> |
1314 |
|
|
|
1315 |
|
|
<dd> |
1316 |
|
|
A texfunc uses an auxiliary function file to specify a procedural texture: |
1317 |
|
|
|
1318 |
|
|
<pre> |
1319 |
|
|
mod texfunc id |
1320 |
|
|
4+ xpert ypert zpert funcfile transform |
1321 |
|
|
0 |
1322 |
|
|
n A1 A2 .. An |
1323 |
|
|
</pre> |
1324 |
|
|
|
1325 |
|
|
<p> |
1326 |
|
|
|
1327 |
|
|
<dt> |
1328 |
|
|
<a NAME="Texdata"> |
1329 |
|
|
<b>Texdata</b> |
1330 |
|
|
</a> |
1331 |
|
|
|
1332 |
|
|
<dd> |
1333 |
|
|
A texdata texture uses three data files to get the surface normal perturbations. |
1334 |
|
|
The variables xfunc, yfunc and zfunc take three arguments each from the interpolated values in xdfname, ydfname and zdfname. |
1335 |
|
|
|
1336 |
|
|
<pre> |
1337 |
|
|
mod texdata id |
1338 |
|
|
8+ xfunc yfunc zfunc xdfname ydfname zdfname vfname x0 x1 .. xf |
1339 |
|
|
0 |
1340 |
|
|
n A1 A2 .. An |
1341 |
|
|
</pre> |
1342 |
|
|
|
1343 |
greg |
1.40 |
<p> |
1344 |
|
|
|
1345 |
greg |
1.1 |
</dl> |
1346 |
|
|
|
1347 |
|
|
<p> |
1348 |
|
|
<hr> |
1349 |
|
|
|
1350 |
|
|
<h4> |
1351 |
|
|
<a NAME="Patterns">2.1.4. Patterns</a> |
1352 |
|
|
</h4> |
1353 |
|
|
|
1354 |
|
|
Patterns are used to modify the reflectance of materials. The basic types are given below. |
1355 |
|
|
|
1356 |
|
|
<p> |
1357 |
|
|
|
1358 |
|
|
<dl> |
1359 |
|
|
|
1360 |
|
|
<dt> |
1361 |
|
|
<a NAME="Colorfunc"> |
1362 |
|
|
<b>Colorfunc</b> |
1363 |
|
|
</a> |
1364 |
|
|
|
1365 |
|
|
<dd> |
1366 |
|
|
A colorfunc is a procedurally defined color pattern. It is specified as follows: |
1367 |
|
|
|
1368 |
|
|
<pre> |
1369 |
|
|
mod colorfunc id |
1370 |
|
|
4+ red green blue funcfile transform |
1371 |
|
|
0 |
1372 |
|
|
n A1 A2 .. An |
1373 |
|
|
</pre> |
1374 |
|
|
|
1375 |
|
|
<p> |
1376 |
|
|
|
1377 |
|
|
<dt> |
1378 |
|
|
<a NAME="Brightfunc"> |
1379 |
|
|
<b>Brightfunc</b> |
1380 |
|
|
</a> |
1381 |
|
|
|
1382 |
|
|
<dd> |
1383 |
|
|
A brightfunc is the same as a colorfunc, except it is monochromatic. |
1384 |
|
|
|
1385 |
|
|
<pre> |
1386 |
|
|
mod brightfunc id |
1387 |
|
|
2+ refl funcfile transform |
1388 |
|
|
0 |
1389 |
|
|
n A1 A2 .. An |
1390 |
|
|
</pre> |
1391 |
|
|
|
1392 |
|
|
<p> |
1393 |
|
|
|
1394 |
|
|
<dt> |
1395 |
|
|
<a NAME="Colordata"> |
1396 |
|
|
<b>Colordata</b> |
1397 |
|
|
</a> |
1398 |
|
|
|
1399 |
|
|
<dd> |
1400 |
|
|
Colordata uses an interpolated data map to modify a material's color. |
1401 |
|
|
The map is n-dimensional, and is stored in three auxiliary files, one for each color. |
1402 |
|
|
The coordinates used to look up and interpolate the data are defined in another auxiliary file. |
1403 |
|
|
The interpolated data values are modified by functions of one or three variables. |
1404 |
|
|
If the functions are of one variable, then they are passed the corresponding color component (red or green or blue). |
1405 |
|
|
If the functions are of three variables, then they are passed the original red, green, and blue values as parameters. |
1406 |
|
|
|
1407 |
|
|
<pre> |
1408 |
|
|
mod colordata id |
1409 |
|
|
7+n+ |
1410 |
|
|
rfunc gfunc bfunc rdatafile gdatafile bdatafile |
1411 |
|
|
funcfile x1 x2 .. xn transform |
1412 |
|
|
0 |
1413 |
|
|
m A1 A2 .. Am |
1414 |
|
|
</pre> |
1415 |
|
|
|
1416 |
|
|
<p> |
1417 |
|
|
|
1418 |
|
|
<dt> |
1419 |
|
|
<a NAME="Brightdata"> |
1420 |
|
|
<b>Brightdata</b> |
1421 |
|
|
</a> |
1422 |
|
|
|
1423 |
|
|
<dd> |
1424 |
|
|
Brightdata is like colordata, except monochromatic. |
1425 |
|
|
|
1426 |
|
|
<pre> |
1427 |
|
|
mod brightdata id |
1428 |
|
|
3+n+ |
1429 |
|
|
func datafile |
1430 |
|
|
funcfile x1 x2 .. xn transform |
1431 |
|
|
0 |
1432 |
|
|
m A1 A2 .. Am |
1433 |
|
|
</pre> |
1434 |
|
|
|
1435 |
|
|
<p> |
1436 |
|
|
|
1437 |
|
|
<dt> |
1438 |
|
|
<a NAME="Colorpict"> |
1439 |
|
|
<b>Colorpict</b> |
1440 |
|
|
</a> |
1441 |
|
|
|
1442 |
|
|
<dd> |
1443 |
|
|
Colorpict is a special case of colordata, where the pattern is a two-dimensional image stored in the RADIANCE picture format. |
1444 |
|
|
The dimensions of the image data are determined by the picture such that the smaller dimension is always 1, |
1445 |
|
|
and the other is the ratio between the larger and the smaller. |
1446 |
|
|
For example, a 500x338 picture would have coordinates (u,v) in the rectangle between (0,0) and (1.48,1). |
1447 |
|
|
|
1448 |
|
|
<pre> |
1449 |
|
|
mod colorpict id |
1450 |
|
|
7+ |
1451 |
|
|
rfunc gfunc bfunc pictfile |
1452 |
|
|
funcfile u v transform |
1453 |
|
|
0 |
1454 |
|
|
m A1 A2 .. Am |
1455 |
|
|
</pre> |
1456 |
|
|
|
1457 |
|
|
<p> |
1458 |
|
|
|
1459 |
|
|
<dt> |
1460 |
|
|
<a NAME="Colortext"> |
1461 |
|
|
<b>Colortext</b> |
1462 |
|
|
</a> |
1463 |
|
|
|
1464 |
|
|
<dd> |
1465 |
|
|
Colortext is dichromatic writing in a polygonal font. |
1466 |
|
|
The font is defined in an auxiliary file, such as helvet.fnt. |
1467 |
|
|
The text itself is also specified in a separate file, or can be part of the material arguments. |
1468 |
|
|
The character size, orientation, aspect ratio and slant is determined by right and down motion vectors. |
1469 |
|
|
The upper left origin for the text block as well as the foreground and background colors must also be given. |
1470 |
|
|
|
1471 |
|
|
<pre> |
1472 |
|
|
mod colortext id |
1473 |
|
|
2 fontfile textfile |
1474 |
|
|
0 |
1475 |
|
|
15+ |
1476 |
|
|
Ox Oy Oz |
1477 |
|
|
Rx Ry Rz |
1478 |
|
|
Dx Dy Dz |
1479 |
|
|
rfore gfore bfore |
1480 |
|
|
rback gback bback |
1481 |
|
|
[spacing] |
1482 |
|
|
</pre> |
1483 |
|
|
|
1484 |
greg |
1.40 |
<p> |
1485 |
|
|
|
1486 |
greg |
1.1 |
or: |
1487 |
|
|
|
1488 |
|
|
<pre> |
1489 |
|
|
mod colortext id |
1490 |
|
|
2+N fontfile . This is a line with N words ... |
1491 |
|
|
0 |
1492 |
|
|
15+ |
1493 |
|
|
Ox Oy Oz |
1494 |
|
|
Rx Ry Rz |
1495 |
|
|
Dx Dy Dz |
1496 |
|
|
rfore gfore bfore |
1497 |
|
|
rback gback bback |
1498 |
|
|
[spacing] |
1499 |
|
|
</pre> |
1500 |
|
|
|
1501 |
|
|
<p> |
1502 |
|
|
|
1503 |
|
|
<dt> |
1504 |
|
|
<a NAME="Brighttext"> |
1505 |
|
|
<b>Brighttext</b> |
1506 |
|
|
</a> |
1507 |
|
|
|
1508 |
|
|
<dd> |
1509 |
|
|
Brighttext is like colortext, but the writing is monochromatic. |
1510 |
|
|
|
1511 |
|
|
<pre> |
1512 |
|
|
mod brighttext id |
1513 |
|
|
2 fontfile textfile |
1514 |
|
|
0 |
1515 |
|
|
11+ |
1516 |
|
|
Ox Oy Oz |
1517 |
|
|
Rx Ry Rz |
1518 |
|
|
Dx Dy Dz |
1519 |
|
|
foreground background |
1520 |
|
|
[spacing] |
1521 |
|
|
</pre> |
1522 |
|
|
|
1523 |
greg |
1.40 |
<p> |
1524 |
|
|
|
1525 |
greg |
1.1 |
or: |
1526 |
|
|
|
1527 |
|
|
<pre> |
1528 |
|
|
mod brighttext id |
1529 |
|
|
2+N fontfile . This is a line with N words ... |
1530 |
|
|
0 |
1531 |
|
|
11+ |
1532 |
|
|
Ox Oy Oz |
1533 |
|
|
Rx Ry Rz |
1534 |
|
|
Dx Dy Dz |
1535 |
|
|
foreground background |
1536 |
|
|
[spacing] |
1537 |
|
|
</pre> |
1538 |
|
|
|
1539 |
|
|
<p> |
1540 |
|
|
|
1541 |
|
|
By default, a uniform spacing algorithm is used that guarantees every character will appear in a precisely determined position. |
1542 |
|
|
Unfortunately, such a scheme results in rather unattractive and difficult to read text with most fonts. |
1543 |
|
|
The optional spacing value defines the distance between characters for proportional spacing. |
1544 |
|
|
A positive value selects a spacing algorithm that preserves right margins and indentation, |
1545 |
|
|
but does not provide the ultimate in proportionally spaced text. |
1546 |
|
|
A negative value insures that characters are properly spaced, but the placement of words then varies unpredictably. |
1547 |
|
|
The choice depends on the relative importance of spacing versus formatting. |
1548 |
|
|
When presenting a section of formatted text, a positive spacing value is usually preferred. |
1549 |
|
|
A single line of text will often be accompanied by a negative spacing value. |
1550 |
|
|
A section of text meant to depict a picture, perhaps using a special purpose font such as hexbit4x1.fnt, calls for uniform spacing. |
1551 |
|
|
Reasonable magnitudes for proportional spacing are between 0.1 (for tightly spaced characters) and 0.3 (for wide spacing). |
1552 |
|
|
|
1553 |
greg |
1.33 |
<p> |
1554 |
|
|
|
1555 |
|
|
<dt> |
1556 |
|
|
<a NAME="Spectrum"> |
1557 |
|
|
<b>Spectrum</b> |
1558 |
|
|
</a> |
1559 |
|
|
|
1560 |
|
|
<dd> |
1561 |
|
|
The spectrum primitive is the most basic type for introducing spectral |
1562 |
|
|
color to a material. |
1563 |
|
|
Since materials only provide RGB parameters, spectral patterns |
1564 |
|
|
are the only way to superimpose wavelength-dependent behavior. |
1565 |
|
|
|
1566 |
|
|
<pre> |
1567 |
|
|
mod spectrum id |
1568 |
|
|
0 |
1569 |
|
|
0 |
1570 |
|
|
5+ nmA nmB s1 s2 .. sN |
1571 |
|
|
</pre> |
1572 |
|
|
|
1573 |
|
|
<p> |
1574 |
greg |
1.35 |
The first two real arguments indicate the extrema of the |
1575 |
greg |
1.33 |
spectral range in nanometers. |
1576 |
greg |
1.36 |
Subsequent real values correspond to multipliers at each wavelength. |
1577 |
greg |
1.34 |
The nmA wavelength may be greater or less than nmB, |
1578 |
|
|
but they may not be equal, and their ordering matches |
1579 |
|
|
the order of the spectral values. |
1580 |
greg |
1.33 |
A minimum of 3 values must be given, which would act |
1581 |
|
|
more or less the same as a constant RGB multiplier. |
1582 |
|
|
As with RGB values, spectral quantities normally range between 0 |
1583 |
|
|
and 1 at each wavelength, or average to 1.0 against a standard |
1584 |
|
|
sensitivity functions such as V(lambda). |
1585 |
|
|
The best results obtain when the spectral range and number |
1586 |
|
|
of samples match rendering options, though resampling will handle |
1587 |
|
|
any differences, zero-filling wavelenths outside the nmA to nmB |
1588 |
|
|
range. |
1589 |
|
|
A warning will be issued if the given wavelength range does not |
1590 |
|
|
adequately cover the visible spectrum. |
1591 |
|
|
|
1592 |
|
|
<p> |
1593 |
|
|
|
1594 |
|
|
<dt> |
1595 |
|
|
<a NAME="Specfile"> |
1596 |
|
|
<b>Specfile</b> |
1597 |
|
|
</a> |
1598 |
|
|
|
1599 |
|
|
<dd> |
1600 |
|
|
The specfile primitive is equivalent to the spectrum type, but |
1601 |
|
|
the wavelength range and values are contained in a 1-dimensional |
1602 |
|
|
data file. |
1603 |
|
|
This may be a more convenient way to specify a spectral color, |
1604 |
|
|
especially one corresponding to a standard illuminant such as D65 |
1605 |
|
|
or a library of measured spectra. |
1606 |
|
|
|
1607 |
|
|
<pre> |
1608 |
|
|
mod specfile id |
1609 |
|
|
1 datafile |
1610 |
|
|
0 |
1611 |
|
|
0 |
1612 |
|
|
</pre> |
1613 |
|
|
|
1614 |
|
|
<p> |
1615 |
|
|
As with the spectrum type, rendering wavelengths outside the defined |
1616 |
|
|
range will be zero-filled. |
1617 |
|
|
Unlike the spectrum type, the file may contain non-uniform samples. |
1618 |
|
|
|
1619 |
|
|
<p> |
1620 |
|
|
|
1621 |
|
|
<dt> |
1622 |
|
|
<a NAME="Specfunc"> |
1623 |
|
|
<b>Specfunc</b> |
1624 |
|
|
</a> |
1625 |
|
|
|
1626 |
|
|
<dd> |
1627 |
|
|
The specfunc primitive offers dynamic control over a spectral |
1628 |
|
|
pattern, similar to the colorfunc type. |
1629 |
|
|
|
1630 |
|
|
<pre> |
1631 |
|
|
mod specfunc id |
1632 |
greg |
1.37 |
2+ sfunc funcfile transform |
1633 |
greg |
1.33 |
0 |
1634 |
|
|
2+ nmA nmB A3 .. |
1635 |
|
|
</pre> |
1636 |
|
|
|
1637 |
|
|
<p> |
1638 |
|
|
Like the spectrum primitive, the wavelength range is specified |
1639 |
|
|
in the first two real arguments, and additional real values are |
1640 |
greg |
1.36 |
set in the evaluation context. |
1641 |
greg |
1.33 |
This function is fed a wavelenth sample |
1642 |
|
|
between nmA and nmB as its only argument, |
1643 |
|
|
and it returns the corresponding spectral intensity. |
1644 |
|
|
|
1645 |
greg |
1.38 |
<dt> |
1646 |
|
|
<a NAME="Specdata"> |
1647 |
|
|
<b>Specdata</b> |
1648 |
|
|
</a> |
1649 |
|
|
|
1650 |
|
|
<dd> |
1651 |
|
|
Specdata is like brightdata and colordata, but with more |
1652 |
|
|
than 3 specular samples. |
1653 |
|
|
|
1654 |
|
|
<pre> |
1655 |
|
|
mod specdata id |
1656 |
|
|
3+n+ |
1657 |
|
|
func datafile |
1658 |
|
|
funcfile x1 x2 .. xn transform |
1659 |
|
|
0 |
1660 |
|
|
m A1 A2 .. Am |
1661 |
|
|
</pre> |
1662 |
|
|
|
1663 |
|
|
<p> |
1664 |
|
|
The data file must have one more dimension than the coordinate |
1665 |
|
|
variable count, as this final dimension corresponds to the covered |
1666 |
|
|
spectrum. |
1667 |
|
|
The starting and ending wavelengths are specified in "datafile" |
1668 |
|
|
as well as the number of spectral samples. |
1669 |
|
|
The function "func" will be called with two parameters, the |
1670 |
|
|
interpolated spectral value for the current coordinate and the |
1671 |
|
|
associated wavelength. |
1672 |
|
|
If the spectrum is broken into 12 components, then 12 calls |
1673 |
|
|
will be made to "func" for the relevant ray evaluation. |
1674 |
|
|
|
1675 |
|
|
<dt> |
1676 |
|
|
<a NAME="Specpict"> |
1677 |
|
|
<b>Specpict</b> |
1678 |
|
|
</a> |
1679 |
|
|
|
1680 |
|
|
<dd> |
1681 |
|
|
Specpict is a special case of specdata, where the pattern is |
1682 |
|
|
a hyperspectral image stored in the common-exponent file format. |
1683 |
|
|
The dimensions of the image data are determined by the picture |
1684 |
|
|
just as with the colorpict primitive. |
1685 |
|
|
|
1686 |
|
|
<pre> |
1687 |
|
|
mod specpict id |
1688 |
|
|
5+ |
1689 |
|
|
func specfile |
1690 |
|
|
funcfile u v transform |
1691 |
|
|
0 |
1692 |
|
|
m A1 A2 .. Am |
1693 |
|
|
</pre> |
1694 |
|
|
|
1695 |
|
|
<p> |
1696 |
|
|
The function "func" is called with the interpolated pixel value |
1697 |
|
|
and the wavelength sample in nanometers, the same as specdata, |
1698 |
|
|
with as many calls made as there are components in "specfile". |
1699 |
|
|
|
1700 |
greg |
1.1 |
</dl> |
1701 |
|
|
|
1702 |
|
|
<p> |
1703 |
|
|
<hr> |
1704 |
|
|
|
1705 |
|
|
<h4> |
1706 |
|
|
<a NAME="Mixtures">2.1.5. Mixtures</a> |
1707 |
|
|
</h4> |
1708 |
|
|
|
1709 |
|
|
A mixture is a blend of one or more materials or textures and patterns. |
1710 |
greg |
1.22 |
Blended materials should not be light source types or virtual source types. |
1711 |
greg |
1.1 |
The basic types are given below. |
1712 |
|
|
|
1713 |
|
|
<p> |
1714 |
|
|
|
1715 |
|
|
<dl> |
1716 |
|
|
|
1717 |
|
|
<dt> |
1718 |
|
|
<a NAME="Mixfunc"> |
1719 |
|
|
<b>Mixfunc</b> |
1720 |
|
|
</a> |
1721 |
|
|
|
1722 |
|
|
<dd> |
1723 |
|
|
A mixfunc mixes two modifiers procedurally. It is specified as follows: |
1724 |
|
|
|
1725 |
|
|
<pre> |
1726 |
|
|
mod mixfunc id |
1727 |
|
|
4+ foreground background vname funcfile transform |
1728 |
|
|
0 |
1729 |
|
|
n A1 A2 .. An |
1730 |
|
|
</pre> |
1731 |
|
|
|
1732 |
greg |
1.40 |
<p> |
1733 |
|
|
|
1734 |
greg |
1.1 |
Foreground and background are modifier names that must be |
1735 |
|
|
defined earlier in the scene description. |
1736 |
|
|
If one of these is a material, then |
1737 |
|
|
the modifier of the mixfunc must be "void". |
1738 |
|
|
(Either the foreground or background modifier may be "void", |
1739 |
|
|
which serves as a form of opacity control when used with a material.) |
1740 |
|
|
Vname is the coefficient defined in funcfile that determines the influence of foreground. |
1741 |
|
|
The background coefficient is always (1-vname). |
1742 |
|
|
|
1743 |
|
|
<p> |
1744 |
|
|
|
1745 |
|
|
<dt> |
1746 |
|
|
<a NAME="Mixdata"> |
1747 |
|
|
<b>Mixdata</b> |
1748 |
|
|
</a> |
1749 |
|
|
|
1750 |
|
|
<dd> |
1751 |
|
|
Mixdata combines two modifiers using an auxiliary data file: |
1752 |
|
|
|
1753 |
|
|
<pre> |
1754 |
|
|
mod mixdata id |
1755 |
|
|
5+n+ |
1756 |
|
|
foreground background func datafile |
1757 |
|
|
funcfile x1 x2 .. xn transform |
1758 |
|
|
0 |
1759 |
|
|
m A1 A2 .. Am |
1760 |
|
|
</pre> |
1761 |
|
|
|
1762 |
greg |
1.40 |
<p> |
1763 |
|
|
|
1764 |
greg |
1.1 |
<dt> |
1765 |
|
|
<a NAME="Mixpict"> |
1766 |
|
|
<b>Mixpict</b> |
1767 |
|
|
</a> |
1768 |
|
|
|
1769 |
|
|
<dd> |
1770 |
|
|
Mixpict combines two modifiers based on a picture: |
1771 |
|
|
|
1772 |
|
|
<pre> |
1773 |
|
|
mod mixpict id |
1774 |
|
|
7+ |
1775 |
|
|
foreground background func pictfile |
1776 |
|
|
funcfile u v transform |
1777 |
|
|
0 |
1778 |
|
|
m A1 A2 .. Am |
1779 |
|
|
</pre> |
1780 |
|
|
|
1781 |
|
|
<p> |
1782 |
|
|
|
1783 |
|
|
The mixing coefficient function "func" takes three |
1784 |
|
|
arguments, the red, green and blue values |
1785 |
|
|
corresponding to the pixel at (u,v). |
1786 |
|
|
|
1787 |
|
|
<p> |
1788 |
|
|
|
1789 |
|
|
<dt> |
1790 |
|
|
<a NAME="Mixtext"> |
1791 |
|
|
<b>Mixtext</b> |
1792 |
|
|
</a> |
1793 |
|
|
|
1794 |
|
|
<dd> |
1795 |
|
|
Mixtext uses one modifier for the text foreground, and one for the background: |
1796 |
|
|
|
1797 |
|
|
<pre> |
1798 |
|
|
mod mixtext id |
1799 |
|
|
4 foreground background fontfile textfile |
1800 |
|
|
0 |
1801 |
|
|
9+ |
1802 |
|
|
Ox Oy Oz |
1803 |
|
|
Rx Ry Rz |
1804 |
|
|
Dx Dy Dz |
1805 |
|
|
[spacing] |
1806 |
|
|
</pre> |
1807 |
|
|
|
1808 |
greg |
1.40 |
<p> |
1809 |
|
|
|
1810 |
greg |
1.1 |
or: |
1811 |
|
|
|
1812 |
|
|
<pre> |
1813 |
|
|
mod mixtext id |
1814 |
|
|
4+N |
1815 |
|
|
foreground background fontfile . |
1816 |
|
|
This is a line with N words ... |
1817 |
|
|
0 |
1818 |
|
|
9+ |
1819 |
|
|
Ox Oy Oz |
1820 |
|
|
Rx Ry Rz |
1821 |
|
|
Dx Dy Dz |
1822 |
|
|
[spacing] |
1823 |
|
|
</pre> |
1824 |
|
|
|
1825 |
greg |
1.40 |
<p> |
1826 |
|
|
|
1827 |
greg |
1.1 |
</dl> |
1828 |
|
|
|
1829 |
|
|
<p> |
1830 |
|
|
<hr> |
1831 |
|
|
|
1832 |
|
|
<h3> |
1833 |
|
|
<a NAME="Auxiliary">2.2. Auxiliary Files</a> |
1834 |
|
|
</h3> |
1835 |
|
|
|
1836 |
|
|
Auxiliary files used in <a HREF="#Textures">textures</a> and <a HREF="#Patterns">patterns</a> |
1837 |
|
|
are accessed by the programs during image generation. |
1838 |
|
|
These files may be located in the working directory, or in a library directory. |
1839 |
|
|
The environment variable RAYPATH can be assigned an alternate set of search directories. |
1840 |
|
|
Following is a brief description of some common file types. |
1841 |
|
|
|
1842 |
|
|
<p> |
1843 |
|
|
|
1844 |
|
|
<h4> |
1845 |
|
|
<a NAME="Function">12.2.1. Function Files</a> |
1846 |
|
|
</h4> |
1847 |
|
|
|
1848 |
|
|
A function file contains the definitions of variables, functions and constants used by a primitive. |
1849 |
|
|
The transformation that accompanies the file name contains the necessary rotations, translations and scalings |
1850 |
|
|
to bring the coordinates of the function file into agreement with the world coordinates. |
1851 |
|
|
The transformation specification is the same as for the <a HREF="#Generators">xform</a> command. |
1852 |
|
|
An example function file is given below: |
1853 |
|
|
|
1854 |
|
|
<pre> |
1855 |
|
|
{ |
1856 |
|
|
This is a comment, enclosed in curly braces. |
1857 |
|
|
{Comments can be nested.} |
1858 |
|
|
} |
1859 |
|
|
{ standard expressions use +,-,*,/,^,(,) } |
1860 |
|
|
vname = Ny * func(A1) ; |
1861 |
|
|
{ constants are defined with a colon } |
1862 |
|
|
const : sqrt(PI/2) ; |
1863 |
|
|
{ user-defined functions add to library } |
1864 |
|
|
func(x) = 5 + A1*sin(x/3) ; |
1865 |
|
|
{ functions may be passed and recursive } |
1866 |
|
|
rfunc(f,x) = if(x,f(x),f(-x)*rfunc(f,x+1)) ; |
1867 |
|
|
{ constant functions may also be defined } |
1868 |
|
|
cfunc(x) : 10*x / sqrt(x) ; |
1869 |
|
|
</pre> |
1870 |
|
|
|
1871 |
greg |
1.40 |
<p> |
1872 |
|
|
|
1873 |
greg |
1.1 |
Many variables and functions are already defined by the program, and they are listed in the file rayinit.cal. |
1874 |
|
|
The following variables are particularly important: |
1875 |
|
|
|
1876 |
|
|
<pre> |
1877 |
|
|
Dx, Dy, Dz - incident ray direction |
1878 |
|
|
Nx, Ny, Nz - surface normal at intersection point |
1879 |
|
|
Px, Py, Pz - intersection point |
1880 |
|
|
T - distance from start |
1881 |
|
|
Ts - single ray (shadow) distance |
1882 |
|
|
Rdot - cosine between ray and normal |
1883 |
|
|
arg(0) - number of real arguments |
1884 |
|
|
arg(i) - i'th real argument |
1885 |
|
|
</pre> |
1886 |
|
|
|
1887 |
greg |
1.40 |
<p> |
1888 |
|
|
|
1889 |
greg |
1.1 |
For mesh objects, the local surface coordinates are available: |
1890 |
|
|
|
1891 |
|
|
<pre> |
1892 |
|
|
Lu, Lv - local (u,v) coordinates |
1893 |
|
|
</pre> |
1894 |
|
|
|
1895 |
greg |
1.40 |
<p> |
1896 |
|
|
|
1897 |
greg |
1.1 |
For BRDF types, the following variables are defined as well: |
1898 |
|
|
|
1899 |
|
|
<pre> |
1900 |
|
|
NxP, NyP, NzP - perturbed surface normal |
1901 |
|
|
RdotP - perturbed dot product |
1902 |
|
|
CrP, CgP, CbP - perturbed material color |
1903 |
|
|
</pre> |
1904 |
|
|
|
1905 |
greg |
1.40 |
<p> |
1906 |
|
|
|
1907 |
greg |
1.1 |
A unique context is set up for each file so |
1908 |
|
|
that the same variable may appear in different |
1909 |
|
|
function files without conflict. |
1910 |
|
|
The variables listed above and any others defined in |
1911 |
|
|
rayinit.cal are available globally. |
1912 |
|
|
If no file is needed by a given primitive because all |
1913 |
|
|
the required variables are global, |
1914 |
|
|
a period (`.') can be given in place of the file name. |
1915 |
|
|
It is also possible to give an expression instead |
1916 |
greg |
1.9 |
of a straight variable name in a scene file. |
1917 |
|
|
Functions (requiring parameters) must be given |
1918 |
greg |
1.1 |
as names and not as expressions. |
1919 |
|
|
|
1920 |
|
|
<p> |
1921 |
|
|
Constant expressions are used as an optimization in function files. |
1922 |
|
|
They are replaced wherever they occur in an expression by their value. |
1923 |
|
|
Constant expressions are evaluated only once, so they must not contain any variables or values that can change, |
1924 |
|
|
such as the ray variables Px and Ny or the primitive argument function arg(). |
1925 |
|
|
All the math library functions such as sqrt() and cos() have the constant attribute, |
1926 |
|
|
so they will be replaced by immediate values whenever they are given constant arguments. |
1927 |
|
|
Thus, the subexpression cos(PI*sqrt(2)) is immediately replaced by its value, -.266255342, |
1928 |
|
|
and does not cause any additional overhead in the calculation. |
1929 |
|
|
|
1930 |
|
|
<p> |
1931 |
|
|
It is generally a good idea to define constants and variables before they are referred to in a function file. |
1932 |
|
|
Although evaluation does not take place until later, the interpreter does variable scoping and |
1933 |
|
|
constant subexpression evaluation based on what it has compiled already. |
1934 |
|
|
For example, a variable that is defined globally in rayinit.cal |
1935 |
|
|
then referenced in the local context of a function file |
1936 |
|
|
cannot subsequently be redefined in the same file |
1937 |
|
|
because the compiler has already determined the scope of the referenced variable as global. |
1938 |
|
|
To avoid such conflicts, one can state the scope of a variable explicitly by |
1939 |
|
|
preceding the variable name with a context mark (a back-quote) for a local variable, |
1940 |
|
|
or following the name with a context mark for a global variable. |
1941 |
|
|
|
1942 |
|
|
<p> |
1943 |
|
|
|
1944 |
|
|
<h4> |
1945 |
|
|
<a NAME="Data">2.2.2. Data Files</a> |
1946 |
|
|
</h4> |
1947 |
|
|
|
1948 |
|
|
Data files contain n-dimensional arrays of real numbers used for interpolation. |
1949 |
|
|
Typically, definitions in a function file determine how to index and use interpolated data values. |
1950 |
|
|
The basic data file format is as follows: |
1951 |
|
|
|
1952 |
|
|
<pre> |
1953 |
|
|
N |
1954 |
|
|
beg1 end1 m1 |
1955 |
|
|
0 0 m2 x2.1 x2.2 x2.3 x2.4 .. x2.m2 |
1956 |
|
|
... |
1957 |
|
|
begN endN mN |
1958 |
|
|
DATA, later dimensions changing faster. |
1959 |
|
|
</pre> |
1960 |
|
|
|
1961 |
greg |
1.40 |
<p> |
1962 |
|
|
|
1963 |
greg |
1.1 |
N is the number of dimensions. |
1964 |
|
|
For each dimension, the beginning and ending coordinate values and the dimension size is given. |
1965 |
|
|
Alternatively, individual coordinate values can be given when the points are not evenly spaced. |
1966 |
|
|
These values must either be increasing or decreasing monotonically. |
1967 |
|
|
The data is m1*m2*...*mN real numbers in ASCII form. |
1968 |
|
|
Comments may appear anywhere in the file, beginning with a pound |
1969 |
|
|
sign ('#') and continuing to the end of line. |
1970 |
|
|
|
1971 |
|
|
<p> |
1972 |
|
|
|
1973 |
|
|
<h4> |
1974 |
|
|
<a NAME="Font">2.2.3. Font Files</a> |
1975 |
|
|
</h4> |
1976 |
|
|
|
1977 |
|
|
A font file lists the polygons which make up a character set. |
1978 |
|
|
Comments may appear anywhere in the file, beginning with a pound |
1979 |
|
|
sign ('#') and continuing to the end of line. |
1980 |
|
|
All numbers are decimal integers: |
1981 |
|
|
|
1982 |
|
|
<pre> |
1983 |
|
|
code n |
1984 |
|
|
x0 y0 |
1985 |
|
|
x1 y1 |
1986 |
|
|
... |
1987 |
|
|
xn yn |
1988 |
|
|
... |
1989 |
|
|
</pre> |
1990 |
|
|
|
1991 |
greg |
1.40 |
<p> |
1992 |
|
|
|
1993 |
greg |
1.1 |
The ASCII codes can appear in any order. N is the number of vertices, and the last is automatically connected to the first. |
1994 |
|
|
Separate polygonal sections are joined by coincident sides. |
1995 |
|
|
The character coordinate system is a square with lower left corner at (0,0), lower right at (255,0) and upper right at (255,255). |
1996 |
|
|
|
1997 |
|
|
<p> |
1998 |
|
|
|
1999 |
|
|
<hr> |
2000 |
|
|
|
2001 |
|
|
<h3> |
2002 |
|
|
<a NAME="Generators">2.3. Generators</a> |
2003 |
|
|
</h3> |
2004 |
|
|
|
2005 |
|
|
A generator is any program that produces a scene description as its output. |
2006 |
|
|
They usually appear as commands in a scene description file. |
2007 |
|
|
An example of a simple generator is genbox. |
2008 |
|
|
|
2009 |
|
|
<ul> |
2010 |
|
|
|
2011 |
|
|
<li> |
2012 |
|
|
<a NAME="Genbox" HREF="../man_html/genbox.1.html"> |
2013 |
|
|
<b>Genbox</b> |
2014 |
|
|
</a> |
2015 |
|
|
takes the arguments of width, height and depth to produce a parallelepiped description. |
2016 |
|
|
<li> |
2017 |
|
|
<a NAME="Genprism" HREF="../man_html/genprism.1.html"> |
2018 |
|
|
<b>Genprism</b> |
2019 |
|
|
</a> |
2020 |
|
|
takes a list of 2-dimensional coordinates and extrudes them along a vector to |
2021 |
|
|
produce a 3-dimensional prism. |
2022 |
|
|
<li> |
2023 |
|
|
<a NAME="Genrev" HREF="../man_html/genrev.1.html"> |
2024 |
|
|
<b>Genrev</b> |
2025 |
|
|
</a> |
2026 |
|
|
is a more sophisticated generator that produces an object of rotation from parametric functions for radius and axis position. |
2027 |
|
|
<li> |
2028 |
|
|
<a NAME="Gensurf" HREF="../man_html/gensurf.1.html"> |
2029 |
|
|
<b>Gensurf</b> |
2030 |
|
|
</a> |
2031 |
|
|
tessellates a surface defined by the parametric functions x(s,t), y(s,t), and z(s,t). |
2032 |
|
|
<li> |
2033 |
|
|
<a NAME="Genworm" HREF="../man_html/genworm.1.html"> |
2034 |
|
|
<b>Genworm</b> |
2035 |
|
|
</a> |
2036 |
|
|
links cylinders and spheres along a curve. |
2037 |
|
|
<li> |
2038 |
|
|
<a NAME="Gensky" HREF="../man_html/gensky.1.html"> |
2039 |
|
|
<b>Gensky</b> |
2040 |
|
|
</a> |
2041 |
|
|
produces a sun and sky distribution corresponding to a given time and date. |
2042 |
|
|
<li> |
2043 |
|
|
<a NAME="Xform" HREF="../man_html/xform.1.html"> |
2044 |
|
|
<b>Xform</b> |
2045 |
|
|
</a> |
2046 |
|
|
is a program that transforms a scene description from one coordinate space to another. |
2047 |
|
|
Xform does rotation, translation, scaling, and mirroring. |
2048 |
|
|
|
2049 |
|
|
</ul> |
2050 |
|
|
|
2051 |
|
|
<p> |
2052 |
|
|
<hr> |
2053 |
|
|
|
2054 |
|
|
<h2> |
2055 |
|
|
<a NAME="Image">3. Image Generation</a> |
2056 |
|
|
</h2> |
2057 |
|
|
|
2058 |
|
|
Once the scene has been described in three-dimensions, it is possible to generate a two-dimensional image from a given perspective. |
2059 |
|
|
|
2060 |
|
|
<p> |
2061 |
|
|
The image generating programs use an <a NAME="octree"><b>octree</b></a> to efficiently trace rays through the scene. |
2062 |
|
|
An octree subdivides space into nested octants which contain sets of surfaces. |
2063 |
|
|
In RADIANCE, an octree is created from a scene description by <a NAME="oconv1" HREF="../man_html/oconv.1.html"><b>oconv</b></a>. |
2064 |
|
|
The details of this process are not important, but the octree will serve as input to the ray-tracing programs and |
2065 |
|
|
directs the use of a scene description. |
2066 |
|
|
<ul> |
2067 |
|
|
<li> |
2068 |
greg |
1.30 |
<a NAME="rvu" HREF="../man_html/rvu.1.html"><b>Rvu</b></a> is ray-tracing program for viewing a scene interactively. |
2069 |
greg |
1.3 |
When the user specifies a new perspective, rvu quickly displays a rough image on the terminal, |
2070 |
greg |
1.1 |
then progressively increases the resolution as the user looks on. |
2071 |
|
|
He can select a particular section of the image to improve, or move to a different view and start over. |
2072 |
|
|
This mode of interaction is useful for debugging scenes as well as determining the best view for a final image. |
2073 |
|
|
|
2074 |
|
|
<li> |
2075 |
|
|
<a NAME="rpict" HREF="../man_html/rpict.1.html"><b>Rpict</b></a> produces a high-resolution picture of a scene from a particular perspective. |
2076 |
|
|
This program features adaptive sampling, crash recovery and progress reporting, all of which are important for time-consuming images. |
2077 |
|
|
</ul> |
2078 |
|
|
<p> |
2079 |
|
|
A number of <a NAME="filters"><b>filters</b></a> are available for manipulating picture files: |
2080 |
|
|
<ul> |
2081 |
|
|
<li> <a HREF="../man_html/pfilt.1.html"><b>Pfilt</b></a> |
2082 |
|
|
sets the exposure and performs antialiasing. |
2083 |
|
|
<li> <a HREF="../man_html/pcompos.1.html"><b>Pcompos</b></a> |
2084 |
|
|
composites (cuts and pastes) pictures. |
2085 |
|
|
<li> <a HREF="../man_html/pcomb.1.html"><b>Pcomb</b></a> |
2086 |
|
|
performs arbitrary math on one or more pictures. |
2087 |
|
|
<li> <a HREF="../man_html/pcond.1.html"><b>Pcond</b></a> |
2088 |
|
|
conditions a picture for a specific display device. |
2089 |
|
|
<li> <a HREF="../man_html/protate.1.html"><b>Protate</b></a> |
2090 |
|
|
rotates a picture 90 degrees clockwise. |
2091 |
|
|
<li> <a HREF="../man_html/pflip.1.html"><b>Pflip</b></a> |
2092 |
|
|
flips a picture horizontally, vertically, or both |
2093 |
|
|
(180 degree rotation). |
2094 |
|
|
<li> <a HREF="../man_html/pvalue.1.html"><b>Pvalue</b></a> |
2095 |
|
|
converts a picture to and from simpler formats. |
2096 |
|
|
</ul> |
2097 |
|
|
|
2098 |
|
|
<p> |
2099 |
|
|
Pictures may be displayed directly under X11 using the program |
2100 |
|
|
<a HREF="../man_html/ximage.1.html">ximage</a>, |
2101 |
|
|
or converted a standard image format using one of the following |
2102 |
|
|
<b>translators</b>: |
2103 |
|
|
<ul> |
2104 |
greg |
1.30 |
<li> <a HREF="../man_html/ra_bmp.1.html"><b>Ra_bmp</b></a> |
2105 |
greg |
1.19 |
converts to and from BMP image format. |
2106 |
greg |
1.1 |
<li> <a HREF="../man_html/ra_ppm.1.html"><b>Ra_ppm</b></a> |
2107 |
|
|
converts to and from Poskanzer Portable Pixmap formats. |
2108 |
|
|
<li> <a HREF="../man_html/ra_ps.1.html"><b>Ra_ps</b></a> |
2109 |
|
|
converts to PostScript color and greyscale formats. |
2110 |
|
|
<li> <a HREF="../man_html/ra_rgbe.1.html"><b>Ra_rgbe</b></a> |
2111 |
|
|
converts to and from Radiance uncompressed picture format. |
2112 |
|
|
<li> <a HREF="../man_html/ra_t16.1.html"><b>Ra_t16</b></a> |
2113 |
|
|
converts to and from Targa 16 and 24-bit image formats. |
2114 |
|
|
<li> <a HREF="../man_html/ra_t8.1.html"><b>Ra_t8</b></a> |
2115 |
|
|
converts to and from Targa 8-bit image format. |
2116 |
|
|
<li> <a HREF="../man_html/ra_tiff.1.html"><b>Ra_tiff</b></a> |
2117 |
|
|
converts to and from TIFF. |
2118 |
|
|
<li> <a HREF="../man_html/ra_xyze.1.html"><b>Ra_xyze</b></a> |
2119 |
|
|
converts to and from Radiance CIE picture format. |
2120 |
|
|
</ul> |
2121 |
|
|
|
2122 |
|
|
<p> |
2123 |
|
|
|
2124 |
|
|
<hr> |
2125 |
|
|
|
2126 |
|
|
<h2> |
2127 |
|
|
<a NAME="License">4. License</a> |
2128 |
|
|
</h2> |
2129 |
|
|
|
2130 |
|
|
<pre> |
2131 |
|
|
The Radiance Software License, Version 1.0 |
2132 |
|
|
|
2133 |
greg |
1.30 |
Copyright (c) 1990 - 2021 The Regents of the University of California, |
2134 |
greg |
1.1 |
through Lawrence Berkeley National Laboratory. All rights reserved. |
2135 |
|
|
|
2136 |
|
|
Redistribution and use in source and binary forms, with or without |
2137 |
|
|
modification, are permitted provided that the following conditions |
2138 |
|
|
are met: |
2139 |
|
|
|
2140 |
|
|
1. Redistributions of source code must retain the above copyright |
2141 |
|
|
notice, this list of conditions and the following disclaimer. |
2142 |
|
|
|
2143 |
|
|
2. Redistributions in binary form must reproduce the above copyright |
2144 |
|
|
notice, this list of conditions and the following disclaimer in |
2145 |
|
|
the documentation and/or other materials provided with the |
2146 |
|
|
distribution. |
2147 |
|
|
|
2148 |
|
|
3. The end-user documentation included with the redistribution, |
2149 |
|
|
if any, must include the following acknowledgment: |
2150 |
|
|
"This product includes Radiance software |
2151 |
|
|
(<a HREF="http://radsite.lbl.gov/">http://radsite.lbl.gov/</a>) |
2152 |
|
|
developed by the Lawrence Berkeley National Laboratory |
2153 |
|
|
(<a HREF="http://www.lbl.gov/">http://www.lbl.gov/</a>)." |
2154 |
|
|
Alternately, this acknowledgment may appear in the software itself, |
2155 |
|
|
if and wherever such third-party acknowledgments normally appear. |
2156 |
|
|
|
2157 |
|
|
4. The names "Radiance," "Lawrence Berkeley National Laboratory" |
2158 |
|
|
and "The Regents of the University of California" must |
2159 |
|
|
not be used to endorse or promote products derived from this |
2160 |
|
|
software without prior written permission. For written |
2161 |
|
|
permission, please contact [email protected]. |
2162 |
|
|
|
2163 |
|
|
5. Products derived from this software may not be called "Radiance", |
2164 |
|
|
nor may "Radiance" appear in their name, without prior written |
2165 |
|
|
permission of Lawrence Berkeley National Laboratory. |
2166 |
|
|
|
2167 |
greg |
1.15 |
THIS SOFTWARE IS PROVIDED ``AS IS" AND ANY EXPRESSED OR IMPLIED |
2168 |
greg |
1.1 |
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
2169 |
|
|
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
2170 |
|
|
DISCLAIMED. IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR |
2171 |
|
|
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
2172 |
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
2173 |
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF |
2174 |
|
|
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
2175 |
|
|
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
2176 |
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT |
2177 |
|
|
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
2178 |
|
|
SUCH DAMAGE. |
2179 |
|
|
</pre> |
2180 |
|
|
|
2181 |
greg |
1.40 |
<p> |
2182 |
|
|
|
2183 |
greg |
1.1 |
<hr> |
2184 |
|
|
|
2185 |
|
|
<h2> |
2186 |
|
|
<a NAME="Ack">5. Acknowledgements</a> |
2187 |
|
|
</h2> |
2188 |
|
|
|
2189 |
|
|
This work was supported by the Assistant Secretary of Conservation and Renewable Energy, |
2190 |
|
|
Office of Building Energy Research and Development, |
2191 |
|
|
Buildings Equipment Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. |
2192 |
|
|
|
2193 |
|
|
<p> |
2194 |
|
|
Additional work was sponsored by the Swiss federal government |
2195 |
|
|
under the Swiss LUMEN Project and was carried out in the |
2196 |
|
|
Laboratoire d'Energie Solaire (LESO Group) at the |
2197 |
|
|
Ecole Polytechnique Federale de Lausanne (EPFL University) in Lausanne, Switzerland. |
2198 |
|
|
|
2199 |
|
|
<p> |
2200 |
|
|
|
2201 |
|
|
<hr> |
2202 |
|
|
|
2203 |
|
|
<h2> |
2204 |
|
|
<a NAME="Ref">6.</a> References |
2205 |
|
|
</h2> |
2206 |
|
|
<p> |
2207 |
|
|
<ul> |
2208 |
greg |
1.32 |
<li>Ward, Gregory J., Bruno Bueno, David Geisler-Moroder, |
2209 |
|
|
Lars O. Grobe, Jacob C. Jonsson, Eleanor |
2210 |
|
|
S. Lee, Taoning Wang, Helen Rose Wilson, |
2211 |
|
|
"<a href="https://doi.org/10.1016/j.enbuild.2022.111890">Daylight |
2212 |
|
|
Simulation Workflows Incorporating Measured Bidirectional |
2213 |
|
|
Scattering Distribution Functions</a>" |
2214 |
|
|
<em>Energy & Buildings</em>, Vol. 259, No. 11890, 2022. |
2215 |
greg |
1.27 |
<li>Wang, Taoning, Gregory Ward, Eleanor Lee, |
2216 |
|
|
"<a href="https://authors.elsevier.com/a/1XQ0a1M7zGwT7v">Efficient |
2217 |
|
|
modeling of optically-complex, non-coplanar exterior shading: |
2218 |
|
|
Validation of matrix algebraic methods</a>" |
2219 |
|
|
<em>Energy & Buildings</em>, vol. 174, pp. 464-83, Sept. 2018. |
2220 |
|
|
<li>Lee, Eleanor S., David Geisler-Moroder, Gregory Ward, |
2221 |
|
|
"<a href="https://eta.lbl.gov/sites/default/files/publications/solar_energy.pdf">Modeling |
2222 |
|
|
the direct sun component in buildings using matrix |
2223 |
|
|
algebraic approaches: Methods and |
2224 |
|
|
validation</a>," <em>Solar Energy</em>, |
2225 |
|
|
vol. 160, 15 January 2018, pp 380-395. |
2226 |
|
|
<li>Narain, Rahul, Rachel A. Albert, Abdullah Bulbul, |
2227 |
|
|
Gregory J. Ward, Marty Banks, James F. O'Brien, |
2228 |
|
|
"<a href="http://graphics.berkeley.edu/papers/Narain-OPI-2015-08/index.html">Optimal |
2229 |
|
|
Presentation of Imagery with Focus |
2230 |
|
|
Cues on Multi-Plane Displays</a>," |
2231 |
|
|
<em>SIGGRAPH 2015</em>. |
2232 |
|
|
<li>Ward, Greg, Murat Kurt, and Nicolas Bonneel, |
2233 |
|
|
"<a href="papers/WMAM14_Tensor_Tree_Representation.pdf">Reducing |
2234 |
|
|
Anisotropic BSDF Measurement to Common Practice</a>," |
2235 |
|
|
<em>Workshop on Material Appearance Modeling</em>, 2014. |
2236 |
|
|
<li>Banks, Martin, Abdullah Bulbul, Rachel Albert, Rahul Narain, |
2237 |
|
|
James F. O'Brien, Gregory Ward, |
2238 |
|
|
"<a href="http://graphics.berkeley.edu/papers/Banks-TPO-2014-05/index.html">The |
2239 |
|
|
Perception of Surface Material from Disparity and Focus Cues</a>," |
2240 |
|
|
<em>VSS 2014</em>. |
2241 |
greg |
1.19 |
<li>McNeil, A., C.J. Jonsson, D. Appelfeld, G. Ward, E.S. Lee, |
2242 |
|
|
"<a href="http://gaia.lbl.gov/btech/papers/4414.pdf"> |
2243 |
|
|
A validation of a ray-tracing tool used to generate |
2244 |
|
|
bi-directional scattering distribution functions for |
2245 |
|
|
complex fenestration systems</a>," |
2246 |
|
|
<em>Solar Energy</em>, 98, 404-14, |
2247 |
|
|
November 2013. |
2248 |
greg |
1.15 |
<li>Ward, G., R. Mistrick, E.S. Lee, A. McNeil, J. Jonsson, |
2249 |
greg |
1.17 |
"<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">Simulating |
2250 |
|
|
the Daylight Performance of Complex Fenestration Systems |
2251 |
|
|
Using Bidirectional Scattering Distribution Functions within |
2252 |
|
|
Radiance</a>," |
2253 |
greg |
1.18 |
<em>Leukos</em>, 7(4) |
2254 |
greg |
1.15 |
April 2011. |
2255 |
greg |
1.7 |
<li>Cater, Kirsten, Alan Chalmers, Greg Ward, |
2256 |
greg |
1.9 |
"<a href="http://www.anyhere.com/gward/papers/egsr2003.pdf">Detail to Attention: |
2257 |
greg |
1.7 |
Exploiting Visual Tasks for Selective Rendering</a>," |
2258 |
|
|
<em>Eurographics Symposium |
2259 |
|
|
on Rendering 2003</em>, June 2003. |
2260 |
greg |
1.1 |
<li>Ward, Greg, Elena Eydelberg-Vileshin, |
2261 |
greg |
1.15 |
"<a HREF="http://www.anyhere.com/gward/papers/egwr02/index.html">Picture Perfect RGB |
2262 |
|
|
Rendering Using Spectral Prefiltering and Sharp Color Primaries</a>," |
2263 |
greg |
1.1 |
Thirteenth Eurographics Workshop on Rendering (2002), |
2264 |
|
|
P. Debevec and S. Gibson (Editors), June 2002. |
2265 |
|
|
<li>Ward, Gregory, |
2266 |
greg |
1.15 |
"<a HREF="http://www.anyhere.com/gward/papers/cic01.pdf">High Dynamic Range Imaging</a>," |
2267 |
greg |
1.1 |
Proceedings of the Ninth Color Imaging Conference, November 2001. |
2268 |
|
|
<li>Ward, Gregory and Maryann Simmons, |
2269 |
greg |
1.15 |
"<a HREF="http://www.anyhere.com/gward/papers/tog99.pdf"> |
2270 |
greg |
1.1 |
The Holodeck Ray Cache: An Interactive Rendering System for Global Illumination in Nondiffuse |
2271 |
greg |
1.15 |
Environments</a>," ACM Transactions on Graphics, 18(4):361-98, October 1999. |
2272 |
|
|
<li>Larson, G.W., "<a HREF="http://www.anyhere.com/gward/papers/ewp98.pdf">The Holodeck: A Parallel |
2273 |
|
|
Ray-caching Rendering System</a>," Proceedings of the Second |
2274 |
greg |
1.1 |
Eurographics Workshop on Parallel Graphics and Visualisation, |
2275 |
|
|
September 1998. |
2276 |
|
|
<li>Larson, G.W. and R.A. Shakespeare, |
2277 |
greg |
1.2 |
<a HREF="http://radsite.lbl.gov/radiance/book/index.html"><em>Rendering with Radiance: |
2278 |
greg |
1.1 |
the Art and Science of Lighting Visualization</em></a>, |
2279 |
|
|
Morgan Kaufmann Publishers, 1998. |
2280 |
|
|
<li>Larson, G.W., H. Rushmeier, C. Piatko, |
2281 |
greg |
1.15 |
"<a HREF="http://radsite.lbl.gov/radiance/papers/lbnl39882/tonemap.pdf">A Visibility |
2282 |
greg |
1.1 |
Matching Tone Reproduction Operator for |
2283 |
greg |
1.15 |
High Dynamic Range Scenes</a>," LBNL Technical Report 39882, |
2284 |
greg |
1.1 |
January 1997. |
2285 |
greg |
1.15 |
<li>Ward, G., "<a HREF="http://radsite.lbl.gov/radiance/papers/erw95.1/paper.html">Making |
2286 |
|
|
Global Illumination User-Friendly</a>," Sixth |
2287 |
greg |
1.1 |
Eurographics Workshop on Rendering, Springer-Verlag, |
2288 |
|
|
Dublin, Ireland, June 1995.</li> |
2289 |
|
|
<li>Rushmeier, H., G. Ward, C. Piatko, P. Sanders, B. Rust, |
2290 |
greg |
1.15 |
"<a HREF="http://radsite.lbl.gov/mgf/compare.html"> |
2291 |
greg |
1.1 |
Comparing Real and Synthetic Images: Some Ideas about |
2292 |
greg |
1.15 |
Metrics</a>," Sixth Eurographics Workshop on Rendering, |
2293 |
greg |
1.1 |
Springer-Verlag, Dublin, Ireland, June 1995.</li> |
2294 |
greg |
1.15 |
<li>Ward, G., "<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.1/paper.html">The RADIANCE |
2295 |
|
|
Lighting Simulation and Rendering System</a>," <em>Computer |
2296 |
greg |
1.1 |
Graphics</em>, July 1994.</li> |
2297 |
greg |
1.15 |
<li>Rushmeier, H., G. Ward, "<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.2/energy.html">Energy |
2298 |
|
|
Preserving Non-Linear Filters</a>," <em>Computer |
2299 |
greg |
1.1 |
Graphics</em>, July 1994.</li> |
2300 |
greg |
1.15 |
<li>Ward, G., "A Contrast-Based Scalefactor for Luminance |
2301 |
|
|
Display," <em>Graphics Gems IV</em>, Edited by Paul Heckbert, |
2302 |
greg |
1.1 |
Academic Press 1994.</li> |
2303 |
greg |
1.15 |
<li>Ward, G., "<a HREF="http://radsite.lbl.gov/radiance/papers/sg92/paper.html">Measuring and |
2304 |
|
|
Modeling Anisotropic Reflection</a>," <em>Computer |
2305 |
greg |
1.1 |
Graphics</em>, Vol. 26, No. 2, July 1992. </li> |
2306 |
greg |
1.15 |
<li>Ward, G., P. Heckbert, "<a HREF="http://radsite.lbl.gov/radiance/papers/erw92/paper.html">Irradiance |
2307 |
|
|
Gradients</a>," Third Annual Eurographics Workshop on |
2308 |
greg |
1.1 |
Rendering, Springer-Verlag, May 1992. </li> |
2309 |
greg |
1.15 |
<li>Ward, G., "<a HREF="http://radsite.lbl.gov/radiance/papers/erw91/erw91.html">Adaptive Shadow |
2310 |
|
|
Testing for Ray Tracing</a>" Photorealistic Rendering in |
2311 |
greg |
1.1 |
Computer Graphics, proceedings of 1991 Eurographics |
2312 |
|
|
Rendering Workshop, edited by P. Brunet and F.W. Jansen, |
2313 |
|
|
Springer-Verlag. </li> |
2314 |
greg |
1.15 |
<li>Ward, G., "Visualization," <em>Lighting Design and |
2315 |
greg |
1.1 |
Application</em>, Vol. 20, No. 6, June 1990. </li> |
2316 |
greg |
1.15 |
<li>Ward, G., F. Rubinstein, R. Clear, "<a HREF="http://radsite.lbl.gov/radiance/papers/sg88/paper.html">A Ray Tracing Solution for |
2317 |
|
|
Diffuse Interreflection</a>," <em>Computer Graphics</em>, |
2318 |
greg |
1.1 |
Vol. 22, No. 4, August 1988. </li> |
2319 |
greg |
1.15 |
<li>Ward, G., F. Rubinstein, "A New Technique for Computer |
2320 |
|
|
Simulation of Illuminated Spaces," <em>Journal of the |
2321 |
greg |
1.1 |
Illuminating Engineering Society</em>, Vol. 17, No. 1, |
2322 |
|
|
Winter 1988. </li> |
2323 |
|
|
</ul> |
2324 |
|
|
<p> |
2325 |
|
|
See the <a HREF="index.html">RADIANCE Reference Materials</a> page |
2326 |
|
|
for additional information. |
2327 |
|
|
<hr> |
2328 |
|
|
|
2329 |
|
|
<a NAME="Index"><h2>7. Types Index</h2></a> |
2330 |
|
|
|
2331 |
|
|
<pre> |
2332 |
|
|
<h4> |
2333 |
|
|
SURFACES MATERIALS TEXTURES PATTERNS MIXTURES</h4> |
2334 |
|
|
<a HREF="#Source">Source</a> <a HREF="#Light">Light</a> <a HREF="#Texfunc">Texfunc</a> <a HREF="#Colorfunc">Colorfunc</a> <a HREF="#Mixfunc">Mixfunc</a> |
2335 |
|
|
<a HREF="#Sphere">Sphere</a> <a HREF="#Illum">Illum</a> <a HREF="#Texdata">Texdata</a> <a HREF="#Brightfunc">Brightfunc</a> <a HREF="#Mixdata">Mixdata</a> |
2336 |
|
|
<a HREF="#Bubble">Bubble</a> <a HREF="#Glow">Glow</a> <a HREF="#Colordata">Colordata</a> <a HREF="#Mixtext">Mixtext</a> |
2337 |
|
|
<a HREF="#Polygon">Polygon</a> <a HREF="#Spotlight">Spotlight</a> <a HREF="#Brightdata">Brightdata</a> |
2338 |
|
|
<a HREF="#Cone">Cone</a> <a HREF="#Mirror">Mirror</a> <a HREF="#Colorpict">Colorpict</a> |
2339 |
|
|
<a HREF="#Cup">Cup</a> <a HREF="#Prism1">Prism1</a> <a HREF="#Colortext">Colortext</a> |
2340 |
|
|
<a HREF="#Cylinder">Cylinder</a> <a HREF="#Prism2">Prism2</a> <a HREF="#Brighttext">Brighttext</a> |
2341 |
|
|
<a HREF="#Tube">Tube</a> <a HREF="#Plastic">Plastic</a> |
2342 |
|
|
<a HREF="#Ring">Ring</a> <a HREF="#Metal">Metal</a> |
2343 |
|
|
<a HREF="#Instance">Instance</a> <a HREF="#Trans">Trans</a> |
2344 |
|
|
<a HREF="#Mesh">Mesh</a> <a HREF="#Plastic2">Plastic2</a> |
2345 |
|
|
<a HREF="#Metal2">Metal2</a> |
2346 |
|
|
<a HREF="#Trans2">Trans2</a> |
2347 |
|
|
<a HREF="#Mist">Mist</a> |
2348 |
|
|
<a HREF="#Dielectric">Dielectric</a> |
2349 |
|
|
<a HREF="#Interface">Interface</a> |
2350 |
|
|
<a HREF="#Glass">Glass</a> |
2351 |
|
|
<a HREF="#Plasfunc">Plasfunc</a> |
2352 |
|
|
<a HREF="#Metfunc">Metfunc</a> |
2353 |
|
|
<a HREF="#Transfunc">Transfunc</a> |
2354 |
|
|
<a HREF="#BRTDfunc">BRTDfunc</a> |
2355 |
|
|
<a HREF="#Plasdata">Plasdata</a> |
2356 |
|
|
<a HREF="#Metdata">Metdata</a> |
2357 |
|
|
<a HREF="#Transdata">Transdata</a> |
2358 |
greg |
1.10 |
<a HREF="#BSDF">BSDF</a> |
2359 |
greg |
1.1 |
<a HREF="#Antimatter">Antimatter</a> |
2360 |
|
|
|
2361 |
|
|
</pre> |
2362 |
|
|
|
2363 |
|
|
<p> |
2364 |
|
|
|
2365 |
|
|
|
2366 |
|
|
<hr> |
2367 |
|
|
<center>Last Update: October 22, 1997</center> |
2368 |
|
|
</body> |
2369 |
|
|
</html> |
2370 |
|
|
|