ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/doc/ray.html
Revision: 1.40
Committed: Fri Dec 13 18:17:17 2024 UTC (4 months, 2 weeks ago) by greg
Content type: text/html
Branch: MAIN
CVS Tags: HEAD
Changes since 1.39: +56 -1 lines
Log Message:
docs: Added missing paragraph marks after preformatted block -- does it matter?

File Contents

# User Rev Content
1 greg 1.1 <html>
2 greg 1.40 <!-- RCSid $Id: ray.html,v 1.39 2024/12/09 19:21:38 greg Exp $ -->
3 greg 1.1 <head>
4     <title>
5 greg 1.33 The RADIANCE 6.0 Synthetic Imaging System
6 greg 1.1 </title>
7     </head>
8     <body>
9    
10     <p>
11    
12     <h1>
13 greg 1.33 The RADIANCE 6.0 Synthetic Imaging System
14 greg 1.1 </h1>
15    
16     <p>
17    
18 greg 1.4 Building Technologies Program<br>
19 greg 1.1 Lawrence Berkeley National Laboratory<br>
20     1 Cyclotron Rd., 90-3111<br>
21     Berkeley, CA 94720<br>
22     <a HREF="http://radsite.lbl.gov/radiance"</a>
23     http://radsite.lbl.gov/radiance<br>
24    
25     <p>
26     <hr>
27    
28     <h2>
29     <a NAME="Overview">Overview</a>
30     </h2>
31     <ol>
32     <li><a HREF="#Intro">Introduction</a><!P>
33     <li><a HREF="#Scene">Scene Description</a><!P>
34     <ol>
35     <li><a HREF="#Primitive"> Primitive Types</a>
36     <ol>
37     <li><a HREF="#Surfaces">Surfaces</a>
38     <li><a HREF="#Materials">Materials</a>
39     <li><a HREF="#Textures">Textures</a>
40     <li><a HREF="#Patterns">Patterns</a>
41     <li><a HREF="#Mixtures">Mixtures</a>
42     </ol><!P>
43     <li><a HREF="#Auxiliary">Auxiliary Files</a>
44     <ol>
45     <li><a HREF="#Function">Function Files</a>
46     <li><a HREF="#Data">Data Files</a>
47     <li><a HREF="#Font">Font Files</a>
48     </ol><!P>
49     <li><a HREF="#Generators">Generators</a>
50     </ol><!P>
51     <li><a HREF="#Image">Image Generation</a><!P>
52     <li><a HREF="#License">License</a><!P>
53     <li><a HREF="#Ack">Acknowledgements</a><!P>
54     <li><a HREF="#Ref">References</a><!P>
55     <li><a HREF="#Index">Types Index</a><!P>
56     </ol>
57    
58     <p>
59     <hr>
60    
61     <h2>
62     <a NAME="Intro">1. Introduction</a>
63     </h2>
64    
65     RADIANCE was developed as a research tool for predicting
66     the distribution of visible radiation in illuminated spaces.
67     It takes as input a three-dimensional geometric model
68     of the physical environment, and produces a map of
69     spectral radiance values in a color image.
70     The technique of ray-tracing follows light backwards
71     from the image plane to the source(s).
72     Because it can produce realistic images from a
73     simple description, RADIANCE has a wide range of applications
74     in graphic arts, lighting design,
75     computer-aided engineering and architecture.
76    
77     <p>
78     <img SRC="diagram1.gif">
79     <p>
80     Figure 1
81     <p>
82     The diagram in Figure 1 shows the flow between programs (boxes) and data
83     (ovals).
84     The central program is <i>rpict</i>, which produces a picture from a scene
85     description.
86 greg 1.30 <i>Rvu</i> is a variation of rpict that computes and displays images
87 greg 1.1 interactively, and rtrace computes single ray values.
88     Other programs (not shown) connect many of these elements together,
89     such as the executive programs
90     <i>rad</i>
91     and
92     <i>ranimate</i>,
93     the interactive rendering program
94     <i>rholo</i>,
95     and the animation program
96     <i>ranimove</i>.
97     The program
98     <i>obj2mesh</i>
99     acts as both a converter and scene compiler, converting a Wavefront .OBJ
100     file into a compiled mesh octree for efficient rendering.
101    
102     <p>
103     A scene description file lists the surfaces and materials
104     that make up a specific environment.
105     The current surface types are spheres, polygons, cones, and cylinders.
106     There is also a composite surface type, called mesh, and a pseudosurface
107     type, called instance, which facilitates very complex geometries.
108     Surfaces can be made from materials such as plastic, metal, and glass.
109     Light sources can be distant disks as well as local spheres, disks
110     and polygons.
111    
112     <p>
113     From a three-dimensional scene description and a specified view,
114     <i>rpict</i> produces a two-dimensional image.
115     A picture file is a compressed binary representation of the
116     pixels in the image.
117     This picture can be scaled in size and brightness,
118     anti-aliased, and sent to a graphics output device.
119    
120     <p>
121     A header in each picture file lists the program(s)
122     and parameters that produced it.
123     This is useful for identifying a picture without having to display it.
124     The information can be read by the program <i>getinfo</i>.
125    
126     <p>
127     <hr>
128    
129     <h2>
130     <a name="Scene">2. Scene Description</a>
131     </h2>
132    
133     A scene description file represents a three-dimensional physical environment in Cartesian (rectilinear) world coordinates.
134     It is stored as ASCII text, with the following basic format:
135    
136     <pre>
137     # comment
138    
139     modifier type identifier
140     n S1 S2 &quot;S 3&quot; .. Sn
141     0
142     m R1 R2 R3 .. Rm
143    
144     modifier alias identifier reference
145    
146     ! command
147    
148     ...
149     </pre>
150    
151 greg 1.40 <p>
152    
153 greg 1.1 A comment line begins with a pound sign, `#'.
154    
155     <p>
156     The <a NAME="scene_desc">scene description primitives</a>
157     all have the same general format, and can be either surfaces or modifiers.
158     A primitive has a modifier, a type, and an identifier.
159     <p>
160     A <a NAME="modifier"><b>modifier</b></a> is either the
161     identifier of a previously defined primitive, or &quot;void&quot;.
162     <br>
163     [ The most recent definition of a modifier is the
164     one used, and later definitions do not cause relinking
165     of loaded primitives.
166     Thus, the same identifier may be used repeatedly,
167     and each new definition will apply to the primitives following it. ]
168     <p>
169     An <a NAME="identifier"><b>identifier</b></a> can be any string
170     (i.e., any sequence of non-white characters).
171     <p>
172     The arguments associated with a primitive can be strings or real numbers.
173     <ul>
174     <li> The first integer following the identifier is the number of <b>string arguments</b>,
175     and it is followed by the arguments themselves (separated by white space or enclosed in quotes).
176     <li> The next integer is the number of integer arguments, and is followed by the <b>integer arguments</b>.
177     (There are currently no primitives that use them, however.)
178     <li> The next integer is the real argument count, and it is followed by the <b>real arguments</b>.
179     </ul>
180    
181     <p>
182     An <a NAME="alias"><b>alias</b></a> gets its type and arguments from
183     a previously defined primitive.
184     This is useful when the same material is
185     used with a different modifier, or as a convenient naming mechanism.
186     The reserved modifier name &quot;inherit&quot; may be used to specificy that
187     an alias will inherit its modifier from the original.
188     Surfaces cannot be aliased.
189    
190     <p>
191     A line beginning with an exclamation point, `!',
192     is interpreted as a command.
193     It is executed by the shell, and its output is read as input to the program.
194     The command must not try to read from its standard input, or confusion
195     will result.
196     A command may be continued over multiple lines using a
197     backslash, `\', to escape the newline.
198    
199     <p>
200     White space is generally ignored, except as a separator.
201     The exception is the newline character after a command or comment.
202     Commands, comments and primitives may appear in any
203     combination, so long as they are not intermingled.
204    
205     <p>
206     <hr>
207    
208     <h3>
209     <a NAME="Primitive">2.1. Primitive Types</a>
210     </h3>
211    
212     Primitives can be <a HREF="#Surfaces">surfaces</a>,
213     <a HREF="#Materials">materials</a>,
214     <a HREF="#Textures">textures</a> or
215     <a HREF="#Patterns">patterns</a>.
216     Modifiers can be <a HREF="#Materials">materials</a>,
217     <a HREF="#Mixtures">mixtures</a>,
218     <a HREF="#Textures">textures</a> or <a HREF="#Patterns">patterns</a>.
219     Simple surfaces must have one material in their modifier list.
220    
221     <p>
222     <hr>
223    
224     <h4>
225     <a NAME="Surfaces">2.1.1. Surfaces</a>
226     </h4>
227     <dl>
228    
229     A scene description will consist mostly of surfaces.
230     The basic types are given below.
231    
232     <p>
233    
234     <dt>
235     <a NAME="Source">
236     <b>Source </b>
237     </a>
238     <dd>
239     A source is not really a surface, but a solid angle.
240     It is used for specifying light sources that are very distant.
241     The direction to the center of the source and the number of degrees subtended by its disk are given as follows:
242    
243     <pre>
244     mod source id
245     0
246     0
247     4 xdir ydir zdir angle
248     </pre>
249    
250     <p>
251    
252     <dt>
253     <a NAME="Sphere">
254     <b>Sphere</b>
255     </a>
256     <dd>
257     A sphere is given by its center and radius:
258    
259     <pre>
260     mod sphere id
261     0
262     0
263     4 xcent ycent zcent radius
264     </pre>
265    
266     <p>
267    
268     <dt>
269     <a NAME="Bubble">
270     <b>Bubble</b>
271     </a>
272    
273     <dd>
274     A bubble is simply a sphere whose surface normal points inward.
275    
276     <p>
277    
278     <dt>
279     <a NAME="Polygon">
280     <b>Polygon</b>
281     </a>
282     <dd>
283     A polygon is given by a list of three-dimensional vertices,
284     which are ordered counter-clockwise as viewed from the
285     front side (into the surface normal).
286     The last vertex is automatically connected to the first.
287     Holes are represented in polygons as interior vertices
288     connected to the outer perimeter by coincident edges (seams).
289    
290     <pre>
291     mod polygon id
292     0
293     0
294     3n
295     x1 y1 z1
296     x2 y2 z2
297     ...
298     xn yn zn
299     </pre>
300    
301     <p>
302    
303     <dt>
304     <a NAME="Cone">
305     <b>Cone</b>
306     </a>
307     <dd>
308     A cone is a megaphone-shaped object.
309     It is truncated by two planes perpendicular to its axis,
310     and one of its ends may come to a point.
311     It is given as two axis endpoints, and the starting and ending radii:
312    
313     <pre>
314     mod cone id
315     0
316     0
317     8
318     x0 y0 z0
319     x1 y1 z1
320     r0 r1
321     </pre>
322    
323     <p>
324    
325     <dt>
326     <a NAME="Cup">
327     <b>Cup</b>
328     </a>
329     <dd>
330     A cup is an inverted <a HREF="#Cone">cone</a> (i.e., has an
331     inward surface normal).
332    
333     <p>
334    
335     <dt>
336     <a NAME="Cylinder">
337     <b>Cylinder</b>
338     </a>
339     <dd>
340     A cylinder is like a <a HREF="#Cone">cone</a>, but its
341     starting and ending radii are equal.
342    
343     <pre>
344     mod cylinder id
345     0
346     0
347     7
348     x0 y0 z0
349     x1 y1 z1
350     rad
351     </pre>
352    
353     <p>
354    
355     <dt>
356     <a NAME="Tube">
357     <b>Tube</b>
358     </a>
359     <dd>
360     A tube is an inverted <a HREF="#Cylinder">cylinder</a>.
361    
362     <p>
363    
364     <dt>
365     <a NAME="Ring">
366     <b>Ring</b>
367     </a>
368     <dd>
369     A ring is a circular disk given by its center,
370     surface normal, and inner and outer radii:
371    
372     <pre>
373     mod ring id
374     0
375     0
376     8
377     xcent ycent zcent
378     xdir ydir zdir
379     r0 r1
380     </pre>
381    
382     <p>
383    
384     <dt>
385     <a NAME="Instance">
386     <b>Instance</b>
387     </a>
388     <dd>
389     An instance is a compound surface, given
390     by the contents of an octree file (created by oconv).
391    
392     <pre>
393     mod instance id
394     1+ octree transform
395     0
396     0
397     </pre>
398    
399 greg 1.40 <p>
400 greg 1.1 If the modifier is &quot;void&quot;, then surfaces will
401     use the modifiers given in the original description.
402     Otherwise, the modifier specified is used in their place.
403     The transform moves the octree to the desired location in the scene.
404     Multiple instances using the same octree take
405     little extra memory, hence very complex
406     descriptions can be rendered using this primitive.
407    
408     <p>
409     There are a number of important limitations to be aware of
410     when using instances.
411     First, the scene description used to generate the octree must
412     stand on its own, without referring to modifiers in the
413     parent description.
414     This is necessary for oconv to create the octree.
415     Second, light sources in the octree will not be
416     incorporated correctly in the calculation,
417     and they are not recommended.
418     Finally, there is no advantage (other than
419     convenience) to using a single instance of an octree,
420     or an octree containing only a few surfaces.
421     An <a HREF="../man_html/xform.1.html">xform</a> command
422     on the subordinate description is prefered in such cases.
423     </dl>
424    
425     <p>
426    
427     <dt>
428     <a NAME="Mesh">
429     <b>Mesh</b>
430     </a>
431     <dd>
432     A mesh is a compound surface, made up of many triangles and
433     an octree data structure to accelerate ray intersection.
434     It is typically converted from a Wavefront .OBJ file using the
435     <i>obj2mesh</i> program.
436    
437     <pre>
438     mod mesh id
439     1+ meshfile transform
440     0
441     0
442     </pre>
443    
444 greg 1.40 <p>
445    
446 greg 1.1 If the modifier is &quot;void&quot;, then surfaces will
447     use the modifiers given in the original mesh description.
448     Otherwise, the modifier specified is used in their place.
449     The transform moves the mesh to the desired location in the scene.
450     Multiple instances using the same meshfile take little extra memory,
451     and the compiled mesh itself takes much less space than individual
452     polygons would.
453     In the case of an unsmoothed mesh, using the mesh primitive reduces
454     memory requirements by a factor of 30 relative to individual triangles.
455     If a mesh has smoothed surfaces, we save a factor of 50 or more,
456     permitting very detailed geometries that would otherwise exhaust the
457     available memory.
458     In addition, the mesh primitive can have associated (u,v) coordinates
459     for pattern and texture mapping.
460     These are made available to function files via the Lu and Lv variables.
461    
462     </dl>
463    
464     <p>
465     <hr>
466    
467     <h4>
468     <a NAME="Materials">2.1.2. Materials</a>
469     </h4>
470    
471     A material defines the way light interacts with a surface. The basic types are given below.
472    
473     <p>
474    
475     <dl>
476    
477     <dt>
478     <a NAME="Light">
479     <b>Light</b>
480     </a>
481     <dd>
482     Light is the basic material for self-luminous surfaces (i.e.,
483     light sources).
484     In addition to the <a HREF="#Source">source</a> surface type,
485     <a HREF="#Sphere">spheres</a>,
486     discs (<a HREF="#Ring">rings</a> with zero inner radius),
487     <a HREF="#Cylinder">cylinders</a> (provided they are long enough), and <a HREF="#Polygon">polygons</a> can act as light sources.
488     Polygons work best when they are rectangular.
489     Cones cannot be used at this time.
490     A pattern may be used to specify a light output distribution.
491     Light is defined simply as a RGB radiance value (watts/steradian/m2):
492    
493     <pre>
494     mod light id
495     0
496     0
497     3 red green blue
498     </pre>
499    
500     <p>
501    
502     <dt>
503     <a NAME="Illum">
504     <b>Illum</b>
505     </a>
506    
507     <dd>
508     Illum is used for secondary light sources with broad distributions.
509     A secondary light source is treated like any other light source, except when viewed directly.
510     It then acts like it is made of a different material (indicated by
511     the string argument), or becomes invisible (if no string argument is given,
512     or the argument is &quot;void&quot;).
513     Secondary sources are useful when modeling windows or brightly illuminated surfaces.
514    
515     <pre>
516     mod illum id
517     1 material
518     0
519     3 red green blue
520     </pre>
521    
522     <p>
523    
524     <dt>
525     <a NAME="Glow">
526     <b>Glow</b>
527     </a>
528    
529     <dd>
530     Glow is used for surfaces that are self-luminous, but limited in their effect.
531     In addition to the radiance value, a maximum radius for shadow testing is given:
532    
533     <pre>
534     mod glow id
535     0
536     0
537     4 red green blue maxrad
538     </pre>
539    
540 greg 1.40 <p>
541 greg 1.1 If maxrad is zero, then the surface will never be tested for shadow, although it may participate in an interreflection calculation.
542     If maxrad is negative, then the surface will never contribute to scene illumination.
543     Glow sources will never illuminate objects on the other side of an illum surface.
544     This provides a convenient way to illuminate local light fixture geometry without overlighting nearby objects.
545    
546     <p>
547    
548     <dt>
549     <a NAME="Spotlight">
550     <b>Spotlight</b>
551     </a>
552    
553     <dd>
554     Spotlight is used for self-luminous surfaces having directed output.
555     As well as radiance, the full cone angle (in degrees) and orientation (output direction) vector are given.
556     The length of the orientation vector is the distance of the effective
557     focus behind the source center (i.e., the focal length).
558    
559     <pre>
560     mod spotlight id
561     0
562     0
563     7 red green blue angle xdir ydir zdir
564     </pre>
565    
566     <p>
567    
568     <dt>
569     <a NAME="Mirror">
570     <b>Mirror</b>
571     </a>
572    
573     <dd>
574 greg 1.6 Mirror is used for planar surfaces that produce virtual source reflections.
575 greg 1.1 This material should be used sparingly, as it may cause the light source calculation to blow up if it is applied to many small surfaces.
576     This material is only supported for flat surfaces such as <a HREF="#Polygon">polygons</a> and <a HREF="#Ring">rings</a>.
577     The arguments are simply the RGB reflectance values, which should be between 0 and 1.
578     An optional string argument may be used like the illum type to specify a different material to be used for shading non-source rays.
579     If this alternate material is given as &quot;void&quot;, then the mirror surface will be invisible.
580     This is only appropriate if the surface hides other (more detailed) geometry with the same overall reflectance.
581    
582     <pre>
583     mod mirror id
584     1 material
585     0
586     3 red green blue
587     </pre>
588    
589     <p>
590    
591     <dt>
592     <a NAME="Prism1">
593     <b>Prism1</b>
594     </a>
595    
596     <dd>
597 greg 1.6 The prism1 material is for general light redirection from prismatic glazings, generating virtual light sources.
598 greg 1.1 It can only be used to modify a planar surface
599     (i.e., a <a HREF="#Polygon">polygon</a> or <a HREF="#Ring">disk</a>)
600     and should not result in either light concentration or scattering.
601     The new direction of the ray can be on either side of the material,
602 greg 1.6 and the definitions must have the correct bidirectional properties to work properly with virtual light sources.
603 greg 1.1 The arguments give the coefficient for the redirected light and its direction.
604    
605     <pre>
606     mod prism1 id
607     5+ coef dx dy dz funcfile transform
608     0
609     n A1 A2 .. An
610     </pre>
611    
612 greg 1.40 <p>
613    
614 greg 1.1 The new direction variables dx, dy and dz need not produce a normalized vector.
615     For convenience, the variables DxA, DyA and DzA are defined as the normalized direction to the target light source.
616     See <a HREF="#Function">section 2.2.1</a> on function files for further information.
617    
618     <p>
619    
620     <dt>
621     <a NAME="Prism2">
622     <b>Prism2</b>
623     </a>
624    
625     <dd>
626     The material prism2 is identical to <a HREF="#Prism1">prism1</a> except that it provides for two ray redirections rather than one.
627    
628     <pre>
629     mod prism2 id
630     9+ coef1 dx1 dy1 dz1 coef2 dx2 dy2 dz2 funcfile transform
631     0
632     n A1 A2 .. An
633     </pre>
634    
635     <p>
636    
637     <dt>
638     <a NAME="Mist">
639     <b>Mist</b>
640     </a>
641    
642     <dd>
643     Mist is a virtual material used to delineate a volume
644     of participating atmosphere.
645     A list of important light sources may be given, along with an
646     extinction coefficient, scattering albedo and scattering eccentricity
647     parameter.
648     The light sources named by the string argument list
649     will be tested for scattering within the volume.
650     Sources are identified by name, and virtual light sources may be indicated
651     by giving the relaying object followed by '&gt;' followed by the source, i.e:
652    
653     <pre>
654     3 source1 mirror1&gt;source10 mirror2&gt;mirror1&gt;source3
655     </pre>
656    
657 greg 1.40 <p>
658 greg 1.1 Normally, only one source is given per mist material, and there is an
659     upper limit of 32 to the total number of active scattering sources.
660     The extinction coefficient, if given, is added the the global
661     coefficient set on the command line.
662     Extinction is in units of 1/distance (distance based on the world coordinates),
663     and indicates the proportional loss of radiance over one unit distance.
664     The scattering albedo, if present, will override the global setting within
665     the volume.
666     An albedo of 0 0 0 means a perfectly absorbing medium, and an albedo of
667     1 1 1 means
668     a perfectly scattering medium (no absorption).
669     The scattering eccentricity parameter will likewise override the global
670     setting if it is present.
671     Scattering eccentricity indicates how much scattered light favors the
672 greg 1.8 forward direction, as fit by the Henyey-Greenstein function:
673 greg 1.1
674     <pre>
675     P(theta) = (1 - g*g) / (1 + g*g - 2*g*cos(theta))^1.5
676     </pre>
677    
678 greg 1.40 <p>
679    
680 greg 1.1 A perfectly isotropic scattering medium has a g parameter of 0, and
681     a highly directional material has a g parameter close to 1.
682     Fits to the g parameter may be found along with typical extinction
683     coefficients and scattering albedos for various atmospheres and
684     cloud types in USGS meteorological tables.
685     (A pattern will be applied to the extinction values.)
686    
687     <pre>
688     mod mist id
689     N src1 src2 .. srcN
690     0
691     0|3|6|7 [ rext gext bext [ ralb galb balb [ g ] ] ]
692     </pre>
693    
694 greg 1.40 <p>
695    
696 greg 1.1 There are two usual uses of the mist type.
697     One is to surround a beam from a spotlight or laser so that it is
698     visible during rendering.
699     For this application, it is important to use a <a HREF="#Cone">cone</a>
700     (or <a HREF="#Cylinder">cylinder</a>) that
701     is long enough and wide enough to contain the important visible portion.
702     Light source photometry and intervening objects will have the desired
703     effect, and crossing beams will result in additive scattering.
704     For this application, it is best to leave off the real arguments, and
705     use the global rendering parameters to control the atmosphere.
706     The second application is to model clouds or other localized media.
707     Complex boundary geometry may be used to give shape to a uniform medium,
708     so long as the boundary encloses a proper volume.
709     Alternatively, a pattern may be used to set the line integral value
710     through the cloud for a ray entering or exiting a point in a given
711     direction.
712     For this application, it is best if cloud volumes do not overlap each other,
713     and opaque objects contained within them may not be illuminated correctly
714     unless the line integrals consider enclosed geometry.
715    
716     <dt>
717     <a NAME="Plastic">
718     <b>Plastic</b>
719     </a>
720    
721     <dd>
722     Plastic is a material with uncolored highlights.
723     It is given by its RGB reflectance, its fraction of specularity, and its roughness value.
724     Roughness is specified as the rms slope of surface facets.
725     A value of 0 corresponds to a perfectly smooth surface, and a value of 1 would be a very rough surface.
726     Specularity fractions greater than 0.1 and roughness values greater than 0.2 are not very realistic.
727     (A pattern modifying plastic will affect the material color.)
728    
729     <pre>
730     mod plastic id
731     0
732     0
733     5 red green blue spec rough
734     </pre>
735    
736     <p>
737    
738     <dt>
739     <a NAME="Metal">
740     <b>Metal</b>
741     </a>
742    
743     <dd>
744     Metal is similar to <a HREF="#Plastic">plastic</a>, but specular highlights are modified by the material color.
745     Specularity of metals is usually .9 or greater.
746     As for plastic, roughness values above .2 are uncommon.
747    
748     <p>
749    
750     <dt>
751     <a NAME="Trans">
752     <b>Trans</b>
753     </a>
754    
755     <dd>
756     Trans is a translucent material, similar to <a HREF="#Plastic">plastic</a>.
757     The transmissivity is the fraction of penetrating light that travels all the way through the material.
758     The transmitted specular component is the fraction of transmitted light that is not diffusely scattered.
759     Transmitted and diffusely reflected light is modified by the material color.
760     Translucent objects are infinitely thin.
761    
762     <pre>
763     mod trans id
764     0
765     0
766     7 red green blue spec rough trans tspec
767     </pre>
768    
769     <p>
770    
771     <dt>
772     <a NAME="Plastic2">
773     <b>Plastic2</b>
774     </a>
775    
776     <dd>
777     Plastic2 is similar to <a HREF="#Plastic">plastic</a>, but with anisotropic roughness.
778     This means that highlights in the surface will appear elliptical rather than round.
779     The orientation of the anisotropy is determined by the unnormalized direction vector ux uy uz.
780     These three expressions (separated by white space) are evaluated in the context of the function file funcfile.
781     If no function file is required (i.e., no special variables or functions are required), a period (`.') may be given in its place.
782     (See the discussion of <a HREF="#Function">Function Files</a> in the Auxiliary Files section).
783     The urough value defines the roughness along the u vector given projected onto the surface.
784     The vrough value defines the roughness perpendicular to this vector.
785     Note that the highlight will be narrower in the direction of the smaller roughness value.
786     Roughness values of zero are not allowed for efficiency reasons since the behavior would be the same as regular plastic in that case.
787    
788     <pre>
789     mod plastic2 id
790     4+ ux uy uz funcfile transform
791     0
792     6 red green blue spec urough vrough
793     </pre>
794    
795     <p>
796    
797     <dt>
798     <a NAME="Metal2">
799     <b>Metal2</b>
800     </a>
801    
802     <dd>
803     Metal2 is the same as <a HREF="#Plastic2">plastic2</a>, except that the highlights are modified by the material color.
804    
805     <p>
806    
807     <dt>
808     <a NAME="Trans2">
809     <b>Trans2</b>
810     </a>
811    
812     <dd>
813     Trans2 is the anisotropic version of <a HREF="#Trans">trans</a>.
814 greg 1.23 The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>,
815     and the real arguments are the same as for trans but with an additional roughness value.
816 greg 1.1
817     <pre>
818     mod trans2 id
819     4+ ux uy uz funcfile transform
820     0
821     8 red green blue spec urough vrough trans tspec
822     </pre>
823    
824     <p>
825    
826     <dt>
827 greg 1.23 <a NAME="Ashik2">
828     <b>Ashik2</b>
829     </a>
830    
831     <dd>
832     Ashik2 is the anisotropic reflectance model by Ashikhmin & Shirley.
833     The string arguments are the same as for <a HREF="#Plastic2">plastic2</a>, but the real
834     arguments have additional flexibility to specify the specular color.
835     Also, rather than roughness, specular power is used, which has no
836     physical meaning other than larger numbers are equivalent to a smoother
837     surface.
838 greg 1.31 Unlike other material types, total reflectance is the sum of
839     diffuse and specular colors, and should be adjusted accordingly.
840 greg 1.23 <pre>
841     mod ashik2 id
842     4+ ux uy uz funcfile transform
843     0
844     8 dred dgrn dblu sred sgrn sblu u-power v-power
845     </pre>
846    
847     <p>
848    
849     <dt>
850 greg 1.39 <a NAME="WGMDfunc">
851     <b>WGMDfunc</b>
852     </a>
853    
854     <dd>
855     WGMDfunc is a more programmable version of <a HREF="#Trans2">trans2</a>,
856     with separate modifier paths and variables to control each component.
857     (WGMD stands for Ward-Geisler-Moroder-Duer, which is the basis for
858     this empirical model, similar to previous ones beside Ashik2.)
859     The specification of this material is given below.
860     <pre>
861     mod WGMDfunc id
862     13+ rs_mod rs rs_urough rs_vrough
863     ts_mod ts ts_urough ts_vrough
864     td_mod
865     ux uy uz funcfile transform
866     0
867     9+ rfdif gfdif bfdif
868     rbdif gbdif bbdif
869     rtdif gtdif btdif
870     A10 ..
871     </pre>
872    
873 greg 1.40 <p>
874    
875 greg 1.39 The sum of specular reflectance (<I>rs</I>), specular transmittance (<I>ts</I>),
876     diffuse reflectance (<I>rfdif gfdif bfdif</I> for front and <I>rbdif gbdif bbdif</I> for back)
877     and diffuse transmittance (<I>rtdif gtdif btdif</I>) should be less than 1 for each
878     channel.
879    
880     <p>
881    
882     Unique to this material, separate modifier channels are
883     provided for each component.
884     The main modifier is used on the diffuse reflectance, both
885     front and back.
886     The <I>rs_mod</I> modifier is used for specular reflectance.
887     If "void" is given for <I>rs_mod</I>,
888     then the specular reflection color will be white.
889     The special "inherit" keyword may also be given, in which case
890     specular reflectance will share the main modifier.
891     This behavior is replicated for the specular transmittance modifier
892     <I>ts_mod</I>, which also has its own independent roughness expressions.
893     Finally, the diffuse transmittance modifier is given as
894     <I>td_mod</I>, which may also be "void" or "inherit".
895     Note that any spectra or color for specular components must be
896     carried by the named modifier(s).
897    
898     <p>
899    
900     The main advantage to this material over
901     <a HREF="#BRTDfunc">BRTDfunc</a> and
902     other programmable types described below is that the specular sampling is
903     well-defined, so that all components are fully computed.
904    
905     <p>
906    
907     <dt>
908 greg 1.1 <a NAME="Dielectric">
909     <b>Dielectric</b>
910     </a>
911    
912     <dd>
913     A dielectric material is transparent, and it refracts light as well as reflecting it.
914     Its behavior is determined by the index of refraction and transmission coefficient in each wavelength band per unit length.
915     Common glass has a index of refraction (n) around 1.5, and a transmission coefficient of roughly 0.92 over an inch.
916     An additional number, the Hartmann constant, describes how the index of refraction changes as a function of wavelength.
917     It is usually zero. (A <a HREF="#Patterns">pattern</a> modifies only the refracted value.)
918    
919     <pre>
920     mod dielectric id
921     0
922     0
923     5 rtn gtn btn n hc
924     </pre>
925    
926     <p>
927    
928     <dt>
929     <a NAME="Interface">
930     <b>Interface</b>
931     </a>
932    
933     <dd>
934     An interface is a boundary between two dielectrics.
935     The first transmission coefficient and refractive index are for the inside; the second ones are for the outside.
936     Ordinary dielectrics are surrounded by a vacuum (1 1 1 1).
937    
938     <pre>
939     mod interface id
940     0
941     0
942     8 rtn1 gtn1 btn1 n1 rtn2 gtn2 btn2 n2
943     </pre>
944    
945     <p>
946    
947     <dt>
948     <a NAME="Glass">
949     <b>Glass</b>
950     </a>
951    
952     <dd>
953     Glass is similar to <a HREF="#Dielectric">dielectric</a>, but it is optimized for thin glass surfaces (n = 1.52).
954     One transmitted ray and one reflected ray is produced.
955     By using a single surface is in place of two, internal reflections are avoided.
956     The surface orientation is irrelevant, as it is for <a HREF="#Plastic">plastic</a>, <a HREF="#Metal">metal</a>, and <a HREF="#Trans">trans</a>.
957     The only specification required is the transmissivity at normal incidence.
958     (Transmissivity is the amount of light not absorbed in one traversal
959     of the material.
960     Transmittance -- the value usually measured -- is the total light
961     transmitted through the pane including multiple reflections.)
962     To compute transmissivity (tn) from transmittance (Tn) use:
963    
964     <pre>
965     tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn
966     </pre>
967    
968 greg 1.40 <p>
969    
970 greg 1.1 Standard 88% transmittance glass has a transmissivity of 0.96.
971     (A <a HREF="#Patterns">pattern</a> modifying glass will affect the transmissivity.)
972     If a fourth real argument is given, it is interpreted as the index of refraction to use instead of 1.52.
973    
974     <pre>
975     mod glass id
976     0
977     0
978     3 rtn gtn btn
979     </pre>
980    
981     <p>
982    
983     <dt>
984     <a NAME="Plasfunc">
985     <b>Plasfunc</b>
986     </a>
987    
988     <dd>
989     Plasfunc in used for the procedural definition of plastic-like materials
990     with arbitrary bidirectional reflectance distribution functions (BRDF's).
991     The arguments to this material include the color and specularity,
992     as well as the function defining the specular distribution and the auxiliary file where it may be found.
993    
994     <pre>
995     mod plasfunc id
996     2+ refl funcfile transform
997     0
998     4+ red green blue spec A5 ..
999     </pre>
1000    
1001 greg 1.40 <p>
1002    
1003 greg 1.1 The function refl takes four arguments, the x, y and z
1004     direction towards the incident light, and the solid angle
1005     subtended by the source.
1006     The solid angle is provided to facilitate averaging, and is usually
1007     ignored.
1008     The refl function should integrate to 1 over
1009     the projected hemisphere to maintain energy balance.
1010     At least four real arguments must be given, and these are made available along with any additional values to the reflectance function.
1011     Currently, only the contribution from direct light sources is considered in the specular calculation.
1012     As in most material types, the surface normal is always altered to face the incoming ray.
1013    
1014     <p>
1015    
1016     <dt>
1017     <a NAME="Metfunc">
1018     <b>Metfunc</b>
1019     </a>
1020    
1021     <dd>
1022     Metfunc is identical to <a HREF="#Plasfunc">plasfunc</a> and takes the same arguments,
1023     but the specular component is multiplied also by the material color.
1024    
1025     <p>
1026    
1027     <dt>
1028     <a NAME="Transfunc">
1029     <b>Transfunc</b>
1030     </a>
1031    
1032     <dd>
1033     Transfunc is similar to <a HREF="#Plasfunc">plasfunc</a> but with an arbitrary bidirectional transmittance distribution
1034     as well as a reflectance distribution.
1035     Both reflectance and transmittance are specified with the same function.
1036    
1037     <pre>
1038     mod transfunc id
1039     2+ brtd funcfile transform
1040     0
1041     6+ red green blue rspec trans tspec A7 ..
1042     </pre>
1043    
1044 greg 1.40 <p>
1045    
1046 greg 1.1 Where trans is the total light transmitted and tspec is the non-Lambertian fraction of transmitted light.
1047     The function brtd should integrate to 1 over each projected hemisphere.
1048    
1049     <p>
1050    
1051     <dt>
1052     <a NAME="BRTDfunc">
1053     <b>BRTDfunc</b>
1054     </a>
1055    
1056     <dd>
1057     The material BRTDfunc gives the maximum flexibility over surface reflectance and transmittance,
1058     providing for spectrally-dependent specular rays and reflectance and transmittance distribution functions.
1059    
1060     <pre>
1061     mod BRTDfunc id
1062     10+ rrefl grefl brefl
1063     rtrns gtrns btrns
1064     rbrtd gbrtd bbrtd
1065     funcfile transform
1066     0
1067     9+ rfdif gfdif bfdif
1068     rbdif gbdif bbdif
1069     rtdif gtdif btdif
1070     A10 ..
1071     </pre>
1072    
1073 greg 1.40 <p>
1074    
1075 greg 1.1 The variables rrefl, grefl and brefl specify the color coefficients for the ideal specular (mirror) reflection of the surface.
1076     The variables rtrns, gtrns and btrns specify the color coefficients for the ideal specular transmission.
1077     The functions rbrtd, gbrtd and bbrtd take the direction to the incident light (and its solid angle) and
1078     compute the color coefficients for the directional diffuse part of reflection and transmission.
1079     As a special case, three identical values of '0' may be given in place of these function names to indicate no directional diffuse component.
1080    
1081     <p>
1082     Unlike most other material types, the surface normal is not altered to face the incoming ray.
1083     Thus, functions and variables must pay attention to the orientation of the surface and make adjustments appropriately.
1084     However, the special variables for the perturbed dot product and surface normal, RdotP, NxP, NyP and NzP are reoriented
1085     as if the ray hit the front surface for convenience.
1086    
1087     <p>
1088     A diffuse reflection component may be given for the front side with rfdif, gfdif and bfdif for the front side of the surface
1089     or rbdif, gbdif and bbdif for the back side.
1090     The diffuse transmittance (must be the same for both sides by physical law) is given by rtdif, gtdif and btdif.
1091     A pattern will modify these diffuse scattering values, and will be available through the special variables CrP, CgP and CbP.
1092    
1093     <p>
1094     Care must be taken when using this material type to produce a physically valid reflection model.
1095     The reflectance functions should be bidirectional, and under no circumstances should the sum of reflected diffuse,
1096     transmitted diffuse, reflected specular, transmitted specular and the integrated directional diffuse component be greater than one.
1097    
1098     <p>
1099    
1100     <dt>
1101     <a NAME="Plasdata">
1102     <b>Plasdata</b>
1103     </a>
1104    
1105     <dd>
1106     Plasdata is used for arbitrary BRDF's that are most conveniently given as interpolated data.
1107     The arguments to this material are the <a HREF="#Data">data file</a> and coordinate index functions,
1108     as well as a function to optionally modify the data values.
1109    
1110     <pre>
1111     mod plasdata id
1112     3+n+
1113     func datafile
1114     funcfile x1 x2 .. xn transform
1115     0
1116     4+ red green blue spec A5 ..
1117     </pre>
1118    
1119 greg 1.40 <p>
1120    
1121 greg 1.1 The coordinate indices (x1, x2, etc.) are themselves functions of the x, y and z direction to the incident light, plus the solid angle
1122     subtended by the light source (usually ignored).
1123     The data function (func) takes five variables, the
1124     interpolated value from the n-dimensional data file, followed by the
1125     x, y and z direction to the incident light and the solid angle of the source.
1126     The light source direction and size may of course be ignored by the function.
1127    
1128     <p>
1129    
1130     <dt>
1131     <a NAME="Metdata">
1132     <b>Metdata</b>
1133     </a>
1134    
1135     <dd>
1136     As metfunc is to plasfunc, metdata is to <a HREF="#Plasdata">plasdata</a>.
1137     Metdata takes the same arguments as plasdata, but the specular component is modified by the given material color.
1138    
1139     <p>
1140    
1141     <dt>
1142     <a NAME="Transdata">
1143     <b>Transdata</b>
1144     </a>
1145    
1146     <dd>
1147     Transdata is like <a HREF="#Plasdata">plasdata</a> but the specification includes transmittance as well as reflectance.
1148     The parameters are as follows.
1149    
1150     <pre>
1151     mod transdata id
1152     3+n+
1153     func datafile
1154     funcfile x1 x2 .. xn transform
1155     0
1156     6+ red green blue rspec trans tspec A7 ..
1157     </pre>
1158    
1159     <p>
1160    
1161     <dt>
1162 greg 1.10 <a NAME="BSDF">
1163     <b>BSDF</b>
1164     </a>
1165    
1166     <dd>
1167     The BSDF material type loads an XML (eXtensible Markup Language)
1168     file describing a bidirectional scattering distribution function.
1169     Real arguments to this material may define additional
1170     diffuse components that augment the BSDF data.
1171     String arguments are used to define thickness for proxied
1172 greg 1.11 surfaces and the &quot;up&quot; orientation for the material.
1173 greg 1.10
1174     <pre>
1175     mod BSDF id
1176     6+ thick BSDFfile ux uy uz funcfile transform
1177     0
1178     0|3|6|9
1179     rfdif gfdif bfdif
1180     rbdif gbdif bbdif
1181     rtdif gtdif btdif
1182     </pre>
1183    
1184     <p>
1185 greg 1.11 The first string argument is a &quot;thickness&quot; parameter that may be used
1186 greg 1.10 to hide detail geometry being proxied by an aggregate BSDF material.
1187     If a view or shadow ray hits a BSDF proxy with non-zero thickness,
1188     it will pass directly through as if the surface were not there.
1189     Similar to the illum type, this permits direct viewing and
1190     shadow testing of complex geometry.
1191     The BSDF is used when a scattered (indirect) ray hits the surface,
1192     and any transmitted sample rays will be offset by the thickness amount
1193     to avoid the hidden geometry and gather samples from the other side.
1194     In this manner, BSDF surfaces can improve the results for indirect
1195     scattering from complex systems without sacrificing appearance or
1196     shadow accuracy.
1197     If the BSDF has transmission and back-side reflection data,
1198     a parallel BSDF surface may be
1199     placed slightly less than the given thickness away from the front surface
1200     to enclose the complex geometry on both sides.
1201 greg 1.12 The sign of the thickness is important, as it indicates
1202 greg 1.14 whether the proxied geometry is behind the BSDF
1203 greg 1.12 surface (when thickness is positive) or in front (when
1204     thickness is negative).
1205     <p>
1206     The second string argument is the name of the BSDF file,
1207     which is found in the usual auxiliary locations. The
1208     following three string parameters name variables for an
1209     &quot;up&quot; vector, which together with the surface
1210     normal, define the local coordinate system that orients the
1211     BSDF. These variables, along with the thickness, are defined
1212     in a function file given as the next string argument. An
1213     optional transform is used to scale the thickness and
1214     reorient the up vector.
1215     <p>
1216     If no real arguments are given, the BSDF is used by itself
1217     to determine reflection and transmission. If there are at
1218     least 3 real arguments, the first triplet is an additional
1219     diffuse reflectance for the front side. At least 6 real
1220     arguments adds diffuse reflectance to the rear side of the
1221     surface. If there are 9 real arguments, the final triplet
1222     will be taken as an additional diffuse transmittance. All
1223     diffuse components as well as the non-diffuse transmission
1224     are modified by patterns applied to this material. The
1225     non-diffuse reflection from either side are unaffected.
1226     Textures perturb the effective surface normal in the usual
1227     way.
1228     <p>
1229     The surface normal of this type is not altered to face the
1230     incoming ray, so the front and back BSDF reflections may
1231     differ. (Transmission is identical front-to-back by physical
1232     law.) If back visibility is turned off during rendering and
1233     there is no transmission or back-side reflection, only then
1234     the surface will be invisible from behind. Unlike other
1235     data-driven material types, the BSDF type is fully supported
1236     and all parts of the distribution are properly sampled.
1237 greg 1.10 <p>
1238    
1239     <dt>
1240 greg 1.26 <a NAME="aBSDF">
1241     <b>aBSDF</b>
1242 greg 1.25 </a>
1243    
1244     <dd>
1245 greg 1.26 The aBSDF material is identical to the BSDF type with two
1246 greg 1.25 important differences. First, proxy geometry is not
1247     supported, so there is no thickness parameter. Second, an
1248 greg 1.26 aBSDF is assumed to have some specular through component
1249     (the &rsquo;a&rsquo; stands for &quot;aperture&quot;),
1250 greg 1.25 which is treated specially during the direct calculation
1251     and when viewing the material. Based on the BSDF data, the
1252     coefficient of specular transmission is determined and used
1253     for modifying unscattered shadow and view rays.
1254    
1255     <pre>
1256 greg 1.26 mod aBSDF id
1257 greg 1.25 5+ BSDFfile ux uy uz funcfile transform
1258     0
1259     0|3|6|9
1260     rfdif gfdif bfdif
1261     rbdif gbdif bbdif
1262     rtdif gtdif btdif
1263     </pre>
1264    
1265     <p>
1266     If a material has no specular transmitted component, it is
1267     much better to use the BSDF type with a zero thickness
1268 greg 1.26 than to use aBSDF.
1269 greg 1.25 <p>
1270    
1271     <dt>
1272 greg 1.1 <a NAME="Antimatter">
1273     <b>Antimatter</b>
1274     </a>
1275    
1276     <dd>
1277     Antimatter is a material that can &quot;subtract&quot; volumes from other volumes.
1278     A ray passing into an antimatter object becomes blind to all the specified modifiers:
1279    
1280     <pre>
1281     mod antimatter id
1282     N mod1 mod2 .. modN
1283     0
1284     0
1285     </pre>
1286    
1287 greg 1.40 <p>
1288    
1289 greg 1.1 The first modifier will also be used to shade the area leaving the antimatter volume and entering the regular volume.
1290     If mod1 is void, the antimatter volume is completely invisible.
1291     Antimatter does not work properly with the material type <a HREF="#Trans">&quot;trans&quot;</a>,
1292     and multiple antimatter surfaces should be disjoint.
1293     The viewpoint must be outside all volumes concerned for a correct rendering.
1294    
1295     </dl>
1296    
1297     <p>
1298     <hr>
1299    
1300     <h4>
1301     <a NAME="Textures">2.1.3. Textures</a>
1302     </h4>
1303    
1304     A texture is a perturbation of the surface normal, and is given by either a function or data.
1305    
1306     <p>
1307    
1308     <dl>
1309    
1310     <dt>
1311     <a NAME="Texfunc">
1312     <b>Texfunc</b>
1313     </a>
1314    
1315     <dd>
1316     A texfunc uses an auxiliary function file to specify a procedural texture:
1317    
1318     <pre>
1319     mod texfunc id
1320     4+ xpert ypert zpert funcfile transform
1321     0
1322     n A1 A2 .. An
1323     </pre>
1324    
1325     <p>
1326    
1327     <dt>
1328     <a NAME="Texdata">
1329     <b>Texdata</b>
1330     </a>
1331    
1332     <dd>
1333     A texdata texture uses three data files to get the surface normal perturbations.
1334     The variables xfunc, yfunc and zfunc take three arguments each from the interpolated values in xdfname, ydfname and zdfname.
1335    
1336     <pre>
1337     mod texdata id
1338     8+ xfunc yfunc zfunc xdfname ydfname zdfname vfname x0 x1 .. xf
1339     0
1340     n A1 A2 .. An
1341     </pre>
1342    
1343 greg 1.40 <p>
1344    
1345 greg 1.1 </dl>
1346    
1347     <p>
1348     <hr>
1349    
1350     <h4>
1351     <a NAME="Patterns">2.1.4. Patterns</a>
1352     </h4>
1353    
1354     Patterns are used to modify the reflectance of materials. The basic types are given below.
1355    
1356     <p>
1357    
1358     <dl>
1359    
1360     <dt>
1361     <a NAME="Colorfunc">
1362     <b>Colorfunc</b>
1363     </a>
1364    
1365     <dd>
1366     A colorfunc is a procedurally defined color pattern. It is specified as follows:
1367    
1368     <pre>
1369     mod colorfunc id
1370     4+ red green blue funcfile transform
1371     0
1372     n A1 A2 .. An
1373     </pre>
1374    
1375     <p>
1376    
1377     <dt>
1378     <a NAME="Brightfunc">
1379     <b>Brightfunc</b>
1380     </a>
1381    
1382     <dd>
1383     A brightfunc is the same as a colorfunc, except it is monochromatic.
1384    
1385     <pre>
1386     mod brightfunc id
1387     2+ refl funcfile transform
1388     0
1389     n A1 A2 .. An
1390     </pre>
1391    
1392     <p>
1393    
1394     <dt>
1395     <a NAME="Colordata">
1396     <b>Colordata</b>
1397     </a>
1398    
1399     <dd>
1400     Colordata uses an interpolated data map to modify a material's color.
1401     The map is n-dimensional, and is stored in three auxiliary files, one for each color.
1402     The coordinates used to look up and interpolate the data are defined in another auxiliary file.
1403     The interpolated data values are modified by functions of one or three variables.
1404     If the functions are of one variable, then they are passed the corresponding color component (red or green or blue).
1405     If the functions are of three variables, then they are passed the original red, green, and blue values as parameters.
1406    
1407     <pre>
1408     mod colordata id
1409     7+n+
1410     rfunc gfunc bfunc rdatafile gdatafile bdatafile
1411     funcfile x1 x2 .. xn transform
1412     0
1413     m A1 A2 .. Am
1414     </pre>
1415    
1416     <p>
1417    
1418     <dt>
1419     <a NAME="Brightdata">
1420     <b>Brightdata</b>
1421     </a>
1422    
1423     <dd>
1424     Brightdata is like colordata, except monochromatic.
1425    
1426     <pre>
1427     mod brightdata id
1428     3+n+
1429     func datafile
1430     funcfile x1 x2 .. xn transform
1431     0
1432     m A1 A2 .. Am
1433     </pre>
1434    
1435     <p>
1436    
1437     <dt>
1438     <a NAME="Colorpict">
1439     <b>Colorpict</b>
1440     </a>
1441    
1442     <dd>
1443     Colorpict is a special case of colordata, where the pattern is a two-dimensional image stored in the RADIANCE picture format.
1444     The dimensions of the image data are determined by the picture such that the smaller dimension is always 1,
1445     and the other is the ratio between the larger and the smaller.
1446     For example, a 500x338 picture would have coordinates (u,v) in the rectangle between (0,0) and (1.48,1).
1447    
1448     <pre>
1449     mod colorpict id
1450     7+
1451     rfunc gfunc bfunc pictfile
1452     funcfile u v transform
1453     0
1454     m A1 A2 .. Am
1455     </pre>
1456    
1457     <p>
1458    
1459     <dt>
1460     <a NAME="Colortext">
1461     <b>Colortext</b>
1462     </a>
1463    
1464     <dd>
1465     Colortext is dichromatic writing in a polygonal font.
1466     The font is defined in an auxiliary file, such as helvet.fnt.
1467     The text itself is also specified in a separate file, or can be part of the material arguments.
1468     The character size, orientation, aspect ratio and slant is determined by right and down motion vectors.
1469     The upper left origin for the text block as well as the foreground and background colors must also be given.
1470    
1471     <pre>
1472     mod colortext id
1473     2 fontfile textfile
1474     0
1475     15+
1476     Ox Oy Oz
1477     Rx Ry Rz
1478     Dx Dy Dz
1479     rfore gfore bfore
1480     rback gback bback
1481     [spacing]
1482     </pre>
1483    
1484 greg 1.40 <p>
1485    
1486 greg 1.1 or:
1487    
1488     <pre>
1489     mod colortext id
1490     2+N fontfile . This is a line with N words ...
1491     0
1492     15+
1493     Ox Oy Oz
1494     Rx Ry Rz
1495     Dx Dy Dz
1496     rfore gfore bfore
1497     rback gback bback
1498     [spacing]
1499     </pre>
1500    
1501     <p>
1502    
1503     <dt>
1504     <a NAME="Brighttext">
1505     <b>Brighttext</b>
1506     </a>
1507    
1508     <dd>
1509     Brighttext is like colortext, but the writing is monochromatic.
1510    
1511     <pre>
1512     mod brighttext id
1513     2 fontfile textfile
1514     0
1515     11+
1516     Ox Oy Oz
1517     Rx Ry Rz
1518     Dx Dy Dz
1519     foreground background
1520     [spacing]
1521     </pre>
1522    
1523 greg 1.40 <p>
1524    
1525 greg 1.1 or:
1526    
1527     <pre>
1528     mod brighttext id
1529     2+N fontfile . This is a line with N words ...
1530     0
1531     11+
1532     Ox Oy Oz
1533     Rx Ry Rz
1534     Dx Dy Dz
1535     foreground background
1536     [spacing]
1537     </pre>
1538    
1539     <p>
1540    
1541     By default, a uniform spacing algorithm is used that guarantees every character will appear in a precisely determined position.
1542     Unfortunately, such a scheme results in rather unattractive and difficult to read text with most fonts.
1543     The optional spacing value defines the distance between characters for proportional spacing.
1544     A positive value selects a spacing algorithm that preserves right margins and indentation,
1545     but does not provide the ultimate in proportionally spaced text.
1546     A negative value insures that characters are properly spaced, but the placement of words then varies unpredictably.
1547     The choice depends on the relative importance of spacing versus formatting.
1548     When presenting a section of formatted text, a positive spacing value is usually preferred.
1549     A single line of text will often be accompanied by a negative spacing value.
1550     A section of text meant to depict a picture, perhaps using a special purpose font such as hexbit4x1.fnt, calls for uniform spacing.
1551     Reasonable magnitudes for proportional spacing are between 0.1 (for tightly spaced characters) and 0.3 (for wide spacing).
1552    
1553 greg 1.33 <p>
1554    
1555     <dt>
1556     <a NAME="Spectrum">
1557     <b>Spectrum</b>
1558     </a>
1559    
1560     <dd>
1561     The spectrum primitive is the most basic type for introducing spectral
1562     color to a material.
1563     Since materials only provide RGB parameters, spectral patterns
1564     are the only way to superimpose wavelength-dependent behavior.
1565    
1566     <pre>
1567     mod spectrum id
1568     0
1569     0
1570     5+ nmA nmB s1 s2 .. sN
1571     </pre>
1572    
1573     <p>
1574 greg 1.35 The first two real arguments indicate the extrema of the
1575 greg 1.33 spectral range in nanometers.
1576 greg 1.36 Subsequent real values correspond to multipliers at each wavelength.
1577 greg 1.34 The nmA wavelength may be greater or less than nmB,
1578     but they may not be equal, and their ordering matches
1579     the order of the spectral values.
1580 greg 1.33 A minimum of 3 values must be given, which would act
1581     more or less the same as a constant RGB multiplier.
1582     As with RGB values, spectral quantities normally range between 0
1583     and 1 at each wavelength, or average to 1.0 against a standard
1584     sensitivity functions such as V(lambda).
1585     The best results obtain when the spectral range and number
1586     of samples match rendering options, though resampling will handle
1587     any differences, zero-filling wavelenths outside the nmA to nmB
1588     range.
1589     A warning will be issued if the given wavelength range does not
1590     adequately cover the visible spectrum.
1591    
1592     <p>
1593    
1594     <dt>
1595     <a NAME="Specfile">
1596     <b>Specfile</b>
1597     </a>
1598    
1599     <dd>
1600     The specfile primitive is equivalent to the spectrum type, but
1601     the wavelength range and values are contained in a 1-dimensional
1602     data file.
1603     This may be a more convenient way to specify a spectral color,
1604     especially one corresponding to a standard illuminant such as D65
1605     or a library of measured spectra.
1606    
1607     <pre>
1608     mod specfile id
1609     1 datafile
1610     0
1611     0
1612     </pre>
1613    
1614     <p>
1615     As with the spectrum type, rendering wavelengths outside the defined
1616     range will be zero-filled.
1617     Unlike the spectrum type, the file may contain non-uniform samples.
1618    
1619     <p>
1620    
1621     <dt>
1622     <a NAME="Specfunc">
1623     <b>Specfunc</b>
1624     </a>
1625    
1626     <dd>
1627     The specfunc primitive offers dynamic control over a spectral
1628     pattern, similar to the colorfunc type.
1629    
1630     <pre>
1631     mod specfunc id
1632 greg 1.37 2+ sfunc funcfile transform
1633 greg 1.33 0
1634     2+ nmA nmB A3 ..
1635     </pre>
1636    
1637     <p>
1638     Like the spectrum primitive, the wavelength range is specified
1639     in the first two real arguments, and additional real values are
1640 greg 1.36 set in the evaluation context.
1641 greg 1.33 This function is fed a wavelenth sample
1642     between nmA and nmB as its only argument,
1643     and it returns the corresponding spectral intensity.
1644    
1645 greg 1.38 <dt>
1646     <a NAME="Specdata">
1647     <b>Specdata</b>
1648     </a>
1649    
1650     <dd>
1651     Specdata is like brightdata and colordata, but with more
1652     than 3 specular samples.
1653    
1654     <pre>
1655     mod specdata id
1656     3+n+
1657     func datafile
1658     funcfile x1 x2 .. xn transform
1659     0
1660     m A1 A2 .. Am
1661     </pre>
1662    
1663     <p>
1664     The data file must have one more dimension than the coordinate
1665     variable count, as this final dimension corresponds to the covered
1666     spectrum.
1667     The starting and ending wavelengths are specified in "datafile"
1668     as well as the number of spectral samples.
1669     The function "func" will be called with two parameters, the
1670     interpolated spectral value for the current coordinate and the
1671     associated wavelength.
1672     If the spectrum is broken into 12 components, then 12 calls
1673     will be made to "func" for the relevant ray evaluation.
1674    
1675     <dt>
1676     <a NAME="Specpict">
1677     <b>Specpict</b>
1678     </a>
1679    
1680     <dd>
1681     Specpict is a special case of specdata, where the pattern is
1682     a hyperspectral image stored in the common-exponent file format.
1683     The dimensions of the image data are determined by the picture
1684     just as with the colorpict primitive.
1685    
1686     <pre>
1687     mod specpict id
1688     5+
1689     func specfile
1690     funcfile u v transform
1691     0
1692     m A1 A2 .. Am
1693     </pre>
1694    
1695     <p>
1696     The function "func" is called with the interpolated pixel value
1697     and the wavelength sample in nanometers, the same as specdata,
1698     with as many calls made as there are components in "specfile".
1699    
1700 greg 1.1 </dl>
1701    
1702     <p>
1703     <hr>
1704    
1705     <h4>
1706     <a NAME="Mixtures">2.1.5. Mixtures</a>
1707     </h4>
1708    
1709     A mixture is a blend of one or more materials or textures and patterns.
1710 greg 1.22 Blended materials should not be light source types or virtual source types.
1711 greg 1.1 The basic types are given below.
1712    
1713     <p>
1714    
1715     <dl>
1716    
1717     <dt>
1718     <a NAME="Mixfunc">
1719     <b>Mixfunc</b>
1720     </a>
1721    
1722     <dd>
1723     A mixfunc mixes two modifiers procedurally. It is specified as follows:
1724    
1725     <pre>
1726     mod mixfunc id
1727     4+ foreground background vname funcfile transform
1728     0
1729     n A1 A2 .. An
1730     </pre>
1731    
1732 greg 1.40 <p>
1733    
1734 greg 1.1 Foreground and background are modifier names that must be
1735     defined earlier in the scene description.
1736     If one of these is a material, then
1737     the modifier of the mixfunc must be &quot;void&quot;.
1738     (Either the foreground or background modifier may be &quot;void&quot;,
1739     which serves as a form of opacity control when used with a material.)
1740     Vname is the coefficient defined in funcfile that determines the influence of foreground.
1741     The background coefficient is always (1-vname).
1742    
1743     <p>
1744    
1745     <dt>
1746     <a NAME="Mixdata">
1747     <b>Mixdata</b>
1748     </a>
1749    
1750     <dd>
1751     Mixdata combines two modifiers using an auxiliary data file:
1752    
1753     <pre>
1754     mod mixdata id
1755     5+n+
1756     foreground background func datafile
1757     funcfile x1 x2 .. xn transform
1758     0
1759     m A1 A2 .. Am
1760     </pre>
1761    
1762 greg 1.40 <p>
1763    
1764 greg 1.1 <dt>
1765     <a NAME="Mixpict">
1766     <b>Mixpict</b>
1767     </a>
1768    
1769     <dd>
1770     Mixpict combines two modifiers based on a picture:
1771    
1772     <pre>
1773     mod mixpict id
1774     7+
1775     foreground background func pictfile
1776     funcfile u v transform
1777     0
1778     m A1 A2 .. Am
1779     </pre>
1780    
1781     <p>
1782    
1783     The mixing coefficient function &quot;func&quot; takes three
1784     arguments, the red, green and blue values
1785     corresponding to the pixel at (u,v).
1786    
1787     <p>
1788    
1789     <dt>
1790     <a NAME="Mixtext">
1791     <b>Mixtext</b>
1792     </a>
1793    
1794     <dd>
1795     Mixtext uses one modifier for the text foreground, and one for the background:
1796    
1797     <pre>
1798     mod mixtext id
1799     4 foreground background fontfile textfile
1800     0
1801     9+
1802     Ox Oy Oz
1803     Rx Ry Rz
1804     Dx Dy Dz
1805     [spacing]
1806     </pre>
1807    
1808 greg 1.40 <p>
1809    
1810 greg 1.1 or:
1811    
1812     <pre>
1813     mod mixtext id
1814     4+N
1815     foreground background fontfile .
1816     This is a line with N words ...
1817     0
1818     9+
1819     Ox Oy Oz
1820     Rx Ry Rz
1821     Dx Dy Dz
1822     [spacing]
1823     </pre>
1824    
1825 greg 1.40 <p>
1826    
1827 greg 1.1 </dl>
1828    
1829     <p>
1830     <hr>
1831    
1832     <h3>
1833     <a NAME="Auxiliary">2.2. Auxiliary Files</a>
1834     </h3>
1835    
1836     Auxiliary files used in <a HREF="#Textures">textures</a> and <a HREF="#Patterns">patterns</a>
1837     are accessed by the programs during image generation.
1838     These files may be located in the working directory, or in a library directory.
1839     The environment variable RAYPATH can be assigned an alternate set of search directories.
1840     Following is a brief description of some common file types.
1841    
1842     <p>
1843    
1844     <h4>
1845     <a NAME="Function">12.2.1. Function Files</a>
1846     </h4>
1847    
1848     A function file contains the definitions of variables, functions and constants used by a primitive.
1849     The transformation that accompanies the file name contains the necessary rotations, translations and scalings
1850     to bring the coordinates of the function file into agreement with the world coordinates.
1851     The transformation specification is the same as for the <a HREF="#Generators">xform</a> command.
1852     An example function file is given below:
1853    
1854     <pre>
1855     {
1856     This is a comment, enclosed in curly braces.
1857     {Comments can be nested.}
1858     }
1859     { standard expressions use +,-,*,/,^,(,) }
1860     vname = Ny * func(A1) ;
1861     { constants are defined with a colon }
1862     const : sqrt(PI/2) ;
1863     { user-defined functions add to library }
1864     func(x) = 5 + A1*sin(x/3) ;
1865     { functions may be passed and recursive }
1866     rfunc(f,x) = if(x,f(x),f(-x)*rfunc(f,x+1)) ;
1867     { constant functions may also be defined }
1868     cfunc(x) : 10*x / sqrt(x) ;
1869     </pre>
1870    
1871 greg 1.40 <p>
1872    
1873 greg 1.1 Many variables and functions are already defined by the program, and they are listed in the file rayinit.cal.
1874     The following variables are particularly important:
1875    
1876     <pre>
1877     Dx, Dy, Dz - incident ray direction
1878     Nx, Ny, Nz - surface normal at intersection point
1879     Px, Py, Pz - intersection point
1880     T - distance from start
1881     Ts - single ray (shadow) distance
1882     Rdot - cosine between ray and normal
1883     arg(0) - number of real arguments
1884     arg(i) - i'th real argument
1885     </pre>
1886    
1887 greg 1.40 <p>
1888    
1889 greg 1.1 For mesh objects, the local surface coordinates are available:
1890    
1891     <pre>
1892     Lu, Lv - local (u,v) coordinates
1893     </pre>
1894    
1895 greg 1.40 <p>
1896    
1897 greg 1.1 For BRDF types, the following variables are defined as well:
1898    
1899     <pre>
1900     NxP, NyP, NzP - perturbed surface normal
1901     RdotP - perturbed dot product
1902     CrP, CgP, CbP - perturbed material color
1903     </pre>
1904    
1905 greg 1.40 <p>
1906    
1907 greg 1.1 A unique context is set up for each file so
1908     that the same variable may appear in different
1909     function files without conflict.
1910     The variables listed above and any others defined in
1911     rayinit.cal are available globally.
1912     If no file is needed by a given primitive because all
1913     the required variables are global,
1914     a period (`.') can be given in place of the file name.
1915     It is also possible to give an expression instead
1916 greg 1.9 of a straight variable name in a scene file.
1917     Functions (requiring parameters) must be given
1918 greg 1.1 as names and not as expressions.
1919    
1920     <p>
1921     Constant expressions are used as an optimization in function files.
1922     They are replaced wherever they occur in an expression by their value.
1923     Constant expressions are evaluated only once, so they must not contain any variables or values that can change,
1924     such as the ray variables Px and Ny or the primitive argument function arg().
1925     All the math library functions such as sqrt() and cos() have the constant attribute,
1926     so they will be replaced by immediate values whenever they are given constant arguments.
1927     Thus, the subexpression cos(PI*sqrt(2)) is immediately replaced by its value, -.266255342,
1928     and does not cause any additional overhead in the calculation.
1929    
1930     <p>
1931     It is generally a good idea to define constants and variables before they are referred to in a function file.
1932     Although evaluation does not take place until later, the interpreter does variable scoping and
1933     constant subexpression evaluation based on what it has compiled already.
1934     For example, a variable that is defined globally in rayinit.cal
1935     then referenced in the local context of a function file
1936     cannot subsequently be redefined in the same file
1937     because the compiler has already determined the scope of the referenced variable as global.
1938     To avoid such conflicts, one can state the scope of a variable explicitly by
1939     preceding the variable name with a context mark (a back-quote) for a local variable,
1940     or following the name with a context mark for a global variable.
1941    
1942     <p>
1943    
1944     <h4>
1945     <a NAME="Data">2.2.2. Data Files</a>
1946     </h4>
1947    
1948     Data files contain n-dimensional arrays of real numbers used for interpolation.
1949     Typically, definitions in a function file determine how to index and use interpolated data values.
1950     The basic data file format is as follows:
1951    
1952     <pre>
1953     N
1954     beg1 end1 m1
1955     0 0 m2 x2.1 x2.2 x2.3 x2.4 .. x2.m2
1956     ...
1957     begN endN mN
1958     DATA, later dimensions changing faster.
1959     </pre>
1960    
1961 greg 1.40 <p>
1962    
1963 greg 1.1 N is the number of dimensions.
1964     For each dimension, the beginning and ending coordinate values and the dimension size is given.
1965     Alternatively, individual coordinate values can be given when the points are not evenly spaced.
1966     These values must either be increasing or decreasing monotonically.
1967     The data is m1*m2*...*mN real numbers in ASCII form.
1968     Comments may appear anywhere in the file, beginning with a pound
1969     sign ('#') and continuing to the end of line.
1970    
1971     <p>
1972    
1973     <h4>
1974     <a NAME="Font">2.2.3. Font Files</a>
1975     </h4>
1976    
1977     A font file lists the polygons which make up a character set.
1978     Comments may appear anywhere in the file, beginning with a pound
1979     sign ('#') and continuing to the end of line.
1980     All numbers are decimal integers:
1981    
1982     <pre>
1983     code n
1984     x0 y0
1985     x1 y1
1986     ...
1987     xn yn
1988     ...
1989     </pre>
1990    
1991 greg 1.40 <p>
1992    
1993 greg 1.1 The ASCII codes can appear in any order. N is the number of vertices, and the last is automatically connected to the first.
1994     Separate polygonal sections are joined by coincident sides.
1995     The character coordinate system is a square with lower left corner at (0,0), lower right at (255,0) and upper right at (255,255).
1996    
1997     <p>
1998    
1999     <hr>
2000    
2001     <h3>
2002     <a NAME="Generators">2.3. Generators</a>
2003     </h3>
2004    
2005     A generator is any program that produces a scene description as its output.
2006     They usually appear as commands in a scene description file.
2007     An example of a simple generator is genbox.
2008    
2009     <ul>
2010    
2011     <li>
2012     <a NAME="Genbox" HREF="../man_html/genbox.1.html">
2013     <b>Genbox</b>
2014     </a>
2015     takes the arguments of width, height and depth to produce a parallelepiped description.
2016     <li>
2017     <a NAME="Genprism" HREF="../man_html/genprism.1.html">
2018     <b>Genprism</b>
2019     </a>
2020     takes a list of 2-dimensional coordinates and extrudes them along a vector to
2021     produce a 3-dimensional prism.
2022     <li>
2023     <a NAME="Genrev" HREF="../man_html/genrev.1.html">
2024     <b>Genrev</b>
2025     </a>
2026     is a more sophisticated generator that produces an object of rotation from parametric functions for radius and axis position.
2027     <li>
2028     <a NAME="Gensurf" HREF="../man_html/gensurf.1.html">
2029     <b>Gensurf</b>
2030     </a>
2031     tessellates a surface defined by the parametric functions x(s,t), y(s,t), and z(s,t).
2032     <li>
2033     <a NAME="Genworm" HREF="../man_html/genworm.1.html">
2034     <b>Genworm</b>
2035     </a>
2036     links cylinders and spheres along a curve.
2037     <li>
2038     <a NAME="Gensky" HREF="../man_html/gensky.1.html">
2039     <b>Gensky</b>
2040     </a>
2041     produces a sun and sky distribution corresponding to a given time and date.
2042     <li>
2043     <a NAME="Xform" HREF="../man_html/xform.1.html">
2044     <b>Xform</b>
2045     </a>
2046     is a program that transforms a scene description from one coordinate space to another.
2047     Xform does rotation, translation, scaling, and mirroring.
2048    
2049     </ul>
2050    
2051     <p>
2052     <hr>
2053    
2054     <h2>
2055     <a NAME="Image">3. Image Generation</a>
2056     </h2>
2057    
2058     Once the scene has been described in three-dimensions, it is possible to generate a two-dimensional image from a given perspective.
2059    
2060     <p>
2061     The image generating programs use an <a NAME="octree"><b>octree</b></a> to efficiently trace rays through the scene.
2062     An octree subdivides space into nested octants which contain sets of surfaces.
2063     In RADIANCE, an octree is created from a scene description by <a NAME="oconv1" HREF="../man_html/oconv.1.html"><b>oconv</b></a>.
2064     The details of this process are not important, but the octree will serve as input to the ray-tracing programs and
2065     directs the use of a scene description.
2066     <ul>
2067     <li>
2068 greg 1.30 <a NAME="rvu" HREF="../man_html/rvu.1.html"><b>Rvu</b></a> is ray-tracing program for viewing a scene interactively.
2069 greg 1.3 When the user specifies a new perspective, rvu quickly displays a rough image on the terminal,
2070 greg 1.1 then progressively increases the resolution as the user looks on.
2071     He can select a particular section of the image to improve, or move to a different view and start over.
2072     This mode of interaction is useful for debugging scenes as well as determining the best view for a final image.
2073    
2074     <li>
2075     <a NAME="rpict" HREF="../man_html/rpict.1.html"><b>Rpict</b></a> produces a high-resolution picture of a scene from a particular perspective.
2076     This program features adaptive sampling, crash recovery and progress reporting, all of which are important for time-consuming images.
2077     </ul>
2078     <p>
2079     A number of <a NAME="filters"><b>filters</b></a> are available for manipulating picture files:
2080     <ul>
2081     <li> <a HREF="../man_html/pfilt.1.html"><b>Pfilt</b></a>
2082     sets the exposure and performs antialiasing.
2083     <li> <a HREF="../man_html/pcompos.1.html"><b>Pcompos</b></a>
2084     composites (cuts and pastes) pictures.
2085     <li> <a HREF="../man_html/pcomb.1.html"><b>Pcomb</b></a>
2086     performs arbitrary math on one or more pictures.
2087     <li> <a HREF="../man_html/pcond.1.html"><b>Pcond</b></a>
2088     conditions a picture for a specific display device.
2089     <li> <a HREF="../man_html/protate.1.html"><b>Protate</b></a>
2090     rotates a picture 90 degrees clockwise.
2091     <li> <a HREF="../man_html/pflip.1.html"><b>Pflip</b></a>
2092     flips a picture horizontally, vertically, or both
2093     (180 degree rotation).
2094     <li> <a HREF="../man_html/pvalue.1.html"><b>Pvalue</b></a>
2095     converts a picture to and from simpler formats.
2096     </ul>
2097    
2098     <p>
2099     Pictures may be displayed directly under X11 using the program
2100     <a HREF="../man_html/ximage.1.html">ximage</a>,
2101     or converted a standard image format using one of the following
2102     <b>translators</b>:
2103     <ul>
2104 greg 1.30 <li> <a HREF="../man_html/ra_bmp.1.html"><b>Ra_bmp</b></a>
2105 greg 1.19 converts to and from BMP image format.
2106 greg 1.1 <li> <a HREF="../man_html/ra_ppm.1.html"><b>Ra_ppm</b></a>
2107     converts to and from Poskanzer Portable Pixmap formats.
2108     <li> <a HREF="../man_html/ra_ps.1.html"><b>Ra_ps</b></a>
2109     converts to PostScript color and greyscale formats.
2110     <li> <a HREF="../man_html/ra_rgbe.1.html"><b>Ra_rgbe</b></a>
2111     converts to and from Radiance uncompressed picture format.
2112     <li> <a HREF="../man_html/ra_t16.1.html"><b>Ra_t16</b></a>
2113     converts to and from Targa 16 and 24-bit image formats.
2114     <li> <a HREF="../man_html/ra_t8.1.html"><b>Ra_t8</b></a>
2115     converts to and from Targa 8-bit image format.
2116     <li> <a HREF="../man_html/ra_tiff.1.html"><b>Ra_tiff</b></a>
2117     converts to and from TIFF.
2118     <li> <a HREF="../man_html/ra_xyze.1.html"><b>Ra_xyze</b></a>
2119     converts to and from Radiance CIE picture format.
2120     </ul>
2121    
2122     <p>
2123    
2124     <hr>
2125    
2126     <h2>
2127     <a NAME="License">4. License</a>
2128     </h2>
2129    
2130     <pre>
2131     The Radiance Software License, Version 1.0
2132    
2133 greg 1.30 Copyright (c) 1990 - 2021 The Regents of the University of California,
2134 greg 1.1 through Lawrence Berkeley National Laboratory. All rights reserved.
2135    
2136     Redistribution and use in source and binary forms, with or without
2137     modification, are permitted provided that the following conditions
2138     are met:
2139    
2140     1. Redistributions of source code must retain the above copyright
2141     notice, this list of conditions and the following disclaimer.
2142    
2143     2. Redistributions in binary form must reproduce the above copyright
2144     notice, this list of conditions and the following disclaimer in
2145     the documentation and/or other materials provided with the
2146     distribution.
2147    
2148     3. The end-user documentation included with the redistribution,
2149     if any, must include the following acknowledgment:
2150     &quot;This product includes Radiance software
2151     (<a HREF="http://radsite.lbl.gov/">http://radsite.lbl.gov/</a>)
2152     developed by the Lawrence Berkeley National Laboratory
2153     (<a HREF="http://www.lbl.gov/">http://www.lbl.gov/</a>).&quot;
2154     Alternately, this acknowledgment may appear in the software itself,
2155     if and wherever such third-party acknowledgments normally appear.
2156    
2157     4. The names &quot;Radiance,&quot; &quot;Lawrence Berkeley National Laboratory&quot;
2158     and &quot;The Regents of the University of California&quot; must
2159     not be used to endorse or promote products derived from this
2160     software without prior written permission. For written
2161     permission, please contact [email protected].
2162    
2163     5. Products derived from this software may not be called &quot;Radiance&quot;,
2164     nor may &quot;Radiance&quot; appear in their name, without prior written
2165     permission of Lawrence Berkeley National Laboratory.
2166    
2167 greg 1.15 THIS SOFTWARE IS PROVIDED ``AS IS&quot; AND ANY EXPRESSED OR IMPLIED
2168 greg 1.1 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
2169     OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
2170     DISCLAIMED. IN NO EVENT SHALL Lawrence Berkeley National Laboratory OR
2171     ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
2172     SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
2173     LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
2174     USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
2175     ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
2176     OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
2177     OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
2178     SUCH DAMAGE.
2179     </pre>
2180    
2181 greg 1.40 <p>
2182    
2183 greg 1.1 <hr>
2184    
2185     <h2>
2186     <a NAME="Ack">5. Acknowledgements</a>
2187     </h2>
2188    
2189     This work was supported by the Assistant Secretary of Conservation and Renewable Energy,
2190     Office of Building Energy Research and Development,
2191     Buildings Equipment Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
2192    
2193     <p>
2194     Additional work was sponsored by the Swiss federal government
2195     under the Swiss LUMEN Project and was carried out in the
2196     Laboratoire d'Energie Solaire (LESO Group) at the
2197     Ecole Polytechnique Federale de Lausanne (EPFL University) in Lausanne, Switzerland.
2198    
2199     <p>
2200    
2201     <hr>
2202    
2203     <h2>
2204     <a NAME="Ref">6.</a> References
2205     </h2>
2206     <p>
2207     <ul>
2208 greg 1.32 <li>Ward, Gregory J., Bruno Bueno, David Geisler-Moroder,
2209     Lars O. Grobe, Jacob C. Jonsson, Eleanor
2210     S. Lee, Taoning Wang, Helen Rose Wilson,
2211     &quot;<a href="https://doi.org/10.1016/j.enbuild.2022.111890">Daylight
2212     Simulation Workflows Incorporating Measured Bidirectional
2213     Scattering Distribution Functions</a>&quot;
2214     <em>Energy &amp; Buildings</em>, Vol. 259, No. 11890, 2022.
2215 greg 1.27 <li>Wang, Taoning, Gregory Ward, Eleanor Lee,
2216     &quot;<a href="https://authors.elsevier.com/a/1XQ0a1M7zGwT7v">Efficient
2217     modeling of optically-complex, non-coplanar exterior shading:
2218     Validation of matrix algebraic methods</a>&quot;
2219     <em>Energy & Buildings</em>, vol. 174, pp. 464-83, Sept. 2018.
2220     <li>Lee, Eleanor S., David Geisler-Moroder, Gregory Ward,
2221     &quot;<a href="https://eta.lbl.gov/sites/default/files/publications/solar_energy.pdf">Modeling
2222     the direct sun component in buildings using matrix
2223     algebraic approaches: Methods and
2224     validation</a>,&quot; <em>Solar Energy</em>,
2225     vol. 160, 15 January 2018, pp 380-395.
2226     <li>Narain, Rahul, Rachel A. Albert, Abdullah Bulbul,
2227     Gregory J. Ward, Marty Banks, James F. O'Brien,
2228     &quot;<a href="http://graphics.berkeley.edu/papers/Narain-OPI-2015-08/index.html">Optimal
2229     Presentation of Imagery with Focus
2230     Cues on Multi-Plane Displays</a>,&quot;
2231     <em>SIGGRAPH 2015</em>.
2232     <li>Ward, Greg, Murat Kurt, and Nicolas Bonneel,
2233     &quot;<a href="papers/WMAM14_Tensor_Tree_Representation.pdf">Reducing
2234     Anisotropic BSDF Measurement to Common Practice</a>,&quot;
2235     <em>Workshop on Material Appearance Modeling</em>, 2014.
2236     <li>Banks, Martin, Abdullah Bulbul, Rachel Albert, Rahul Narain,
2237     James F. O'Brien, Gregory Ward,
2238     &quot;<a href="http://graphics.berkeley.edu/papers/Banks-TPO-2014-05/index.html">The
2239     Perception of Surface Material from Disparity and Focus Cues</a>,&quot;
2240     <em>VSS 2014</em>.
2241 greg 1.19 <li>McNeil, A., C.J. Jonsson, D. Appelfeld, G. Ward, E.S. Lee,
2242     &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">
2243     A validation of a ray-tracing tool used to generate
2244     bi-directional scattering distribution functions for
2245     complex fenestration systems</a>,&quot;
2246     <em>Solar Energy</em>, 98, 404-14,
2247     November 2013.
2248 greg 1.15 <li>Ward, G., R. Mistrick, E.S. Lee, A. McNeil, J. Jonsson,
2249 greg 1.17 &quot;<a href="http://gaia.lbl.gov/btech/papers/4414.pdf">Simulating
2250     the Daylight Performance of Complex Fenestration Systems
2251     Using Bidirectional Scattering Distribution Functions within
2252     Radiance</a>,&quot;
2253 greg 1.18 <em>Leukos</em>, 7(4)
2254 greg 1.15 April 2011.
2255 greg 1.7 <li>Cater, Kirsten, Alan Chalmers, Greg Ward,
2256 greg 1.9 &quot;<a href="http://www.anyhere.com/gward/papers/egsr2003.pdf">Detail to Attention:
2257 greg 1.7 Exploiting Visual Tasks for Selective Rendering</a>,&quot;
2258     <em>Eurographics Symposium
2259     on Rendering 2003</em>, June 2003.
2260 greg 1.1 <li>Ward, Greg, Elena Eydelberg-Vileshin,
2261 greg 1.15 &quot;<a HREF="http://www.anyhere.com/gward/papers/egwr02/index.html">Picture Perfect RGB
2262     Rendering Using Spectral Prefiltering and Sharp Color Primaries</a>,&quot;
2263 greg 1.1 Thirteenth Eurographics Workshop on Rendering (2002),
2264     P. Debevec and S. Gibson (Editors), June 2002.
2265     <li>Ward, Gregory,
2266 greg 1.15 &quot;<a HREF="http://www.anyhere.com/gward/papers/cic01.pdf">High Dynamic Range Imaging</a>,&quot;
2267 greg 1.1 Proceedings of the Ninth Color Imaging Conference, November 2001.
2268     <li>Ward, Gregory and Maryann Simmons,
2269 greg 1.15 &quot;<a HREF="http://www.anyhere.com/gward/papers/tog99.pdf">
2270 greg 1.1 The Holodeck Ray Cache: An Interactive Rendering System for Global Illumination in Nondiffuse
2271 greg 1.15 Environments</a>,&quot; ACM Transactions on Graphics, 18(4):361-98, October 1999.
2272     <li>Larson, G.W., &quot;<a HREF="http://www.anyhere.com/gward/papers/ewp98.pdf">The Holodeck: A Parallel
2273     Ray-caching Rendering System</a>,&quot; Proceedings of the Second
2274 greg 1.1 Eurographics Workshop on Parallel Graphics and Visualisation,
2275     September 1998.
2276     <li>Larson, G.W. and R.A. Shakespeare,
2277 greg 1.2 <a HREF="http://radsite.lbl.gov/radiance/book/index.html"><em>Rendering with Radiance:
2278 greg 1.1 the Art and Science of Lighting Visualization</em></a>,
2279     Morgan Kaufmann Publishers, 1998.
2280     <li>Larson, G.W., H. Rushmeier, C. Piatko,
2281 greg 1.15 &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/lbnl39882/tonemap.pdf">A Visibility
2282 greg 1.1 Matching Tone Reproduction Operator for
2283 greg 1.15 High Dynamic Range Scenes</a>,&quot; LBNL Technical Report 39882,
2284 greg 1.1 January 1997.
2285 greg 1.15 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw95.1/paper.html">Making
2286     Global Illumination User-Friendly</a>,&quot; Sixth
2287 greg 1.1 Eurographics Workshop on Rendering, Springer-Verlag,
2288     Dublin, Ireland, June 1995.</li>
2289     <li>Rushmeier, H., G. Ward, C. Piatko, P. Sanders, B. Rust,
2290 greg 1.15 &quot;<a HREF="http://radsite.lbl.gov/mgf/compare.html">
2291 greg 1.1 Comparing Real and Synthetic Images: Some Ideas about
2292 greg 1.15 Metrics</a>,&quot; Sixth Eurographics Workshop on Rendering,
2293 greg 1.1 Springer-Verlag, Dublin, Ireland, June 1995.</li>
2294 greg 1.15 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.1/paper.html">The RADIANCE
2295     Lighting Simulation and Rendering System</a>,&quot; <em>Computer
2296 greg 1.1 Graphics</em>, July 1994.</li>
2297 greg 1.15 <li>Rushmeier, H., G. Ward, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg94.2/energy.html">Energy
2298     Preserving Non-Linear Filters</a>,&quot; <em>Computer
2299 greg 1.1 Graphics</em>, July 1994.</li>
2300 greg 1.15 <li>Ward, G., &quot;A Contrast-Based Scalefactor for Luminance
2301     Display,&quot; <em>Graphics Gems IV</em>, Edited by Paul Heckbert,
2302 greg 1.1 Academic Press 1994.</li>
2303 greg 1.15 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg92/paper.html">Measuring and
2304     Modeling Anisotropic Reflection</a>,&quot; <em>Computer
2305 greg 1.1 Graphics</em>, Vol. 26, No. 2, July 1992. </li>
2306 greg 1.15 <li>Ward, G., P. Heckbert, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw92/paper.html">Irradiance
2307     Gradients</a>,&quot; Third Annual Eurographics Workshop on
2308 greg 1.1 Rendering, Springer-Verlag, May 1992. </li>
2309 greg 1.15 <li>Ward, G., &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/erw91/erw91.html">Adaptive Shadow
2310     Testing for Ray Tracing</a>&quot; Photorealistic Rendering in
2311 greg 1.1 Computer Graphics, proceedings of 1991 Eurographics
2312     Rendering Workshop, edited by P. Brunet and F.W. Jansen,
2313     Springer-Verlag. </li>
2314 greg 1.15 <li>Ward, G., &quot;Visualization,&quot; <em>Lighting Design and
2315 greg 1.1 Application</em>, Vol. 20, No. 6, June 1990. </li>
2316 greg 1.15 <li>Ward, G., F. Rubinstein, R. Clear, &quot;<a HREF="http://radsite.lbl.gov/radiance/papers/sg88/paper.html">A Ray Tracing Solution for
2317     Diffuse Interreflection</a>,&quot; <em>Computer Graphics</em>,
2318 greg 1.1 Vol. 22, No. 4, August 1988. </li>
2319 greg 1.15 <li>Ward, G., F. Rubinstein, &quot;A New Technique for Computer
2320     Simulation of Illuminated Spaces,&quot; <em>Journal of the
2321 greg 1.1 Illuminating Engineering Society</em>, Vol. 17, No. 1,
2322     Winter 1988. </li>
2323     </ul>
2324     <p>
2325     See the <a HREF="index.html">RADIANCE Reference Materials</a> page
2326     for additional information.
2327     <hr>
2328    
2329     <a NAME="Index"><h2>7. Types Index</h2></a>
2330    
2331     <pre>
2332     <h4>
2333     SURFACES MATERIALS TEXTURES PATTERNS MIXTURES</h4>
2334     <a HREF="#Source">Source</a> <a HREF="#Light">Light</a> <a HREF="#Texfunc">Texfunc</a> <a HREF="#Colorfunc">Colorfunc</a> <a HREF="#Mixfunc">Mixfunc</a>
2335     <a HREF="#Sphere">Sphere</a> <a HREF="#Illum">Illum</a> <a HREF="#Texdata">Texdata</a> <a HREF="#Brightfunc">Brightfunc</a> <a HREF="#Mixdata">Mixdata</a>
2336     <a HREF="#Bubble">Bubble</a> <a HREF="#Glow">Glow</a> <a HREF="#Colordata">Colordata</a> <a HREF="#Mixtext">Mixtext</a>
2337     <a HREF="#Polygon">Polygon</a> <a HREF="#Spotlight">Spotlight</a> <a HREF="#Brightdata">Brightdata</a>
2338     <a HREF="#Cone">Cone</a> <a HREF="#Mirror">Mirror</a> <a HREF="#Colorpict">Colorpict</a>
2339     <a HREF="#Cup">Cup</a> <a HREF="#Prism1">Prism1</a> <a HREF="#Colortext">Colortext</a>
2340     <a HREF="#Cylinder">Cylinder</a> <a HREF="#Prism2">Prism2</a> <a HREF="#Brighttext">Brighttext</a>
2341     <a HREF="#Tube">Tube</a> <a HREF="#Plastic">Plastic</a>
2342     <a HREF="#Ring">Ring</a> <a HREF="#Metal">Metal</a>
2343     <a HREF="#Instance">Instance</a> <a HREF="#Trans">Trans</a>
2344     <a HREF="#Mesh">Mesh</a> <a HREF="#Plastic2">Plastic2</a>
2345     <a HREF="#Metal2">Metal2</a>
2346     <a HREF="#Trans2">Trans2</a>
2347     <a HREF="#Mist">Mist</a>
2348     <a HREF="#Dielectric">Dielectric</a>
2349     <a HREF="#Interface">Interface</a>
2350     <a HREF="#Glass">Glass</a>
2351     <a HREF="#Plasfunc">Plasfunc</a>
2352     <a HREF="#Metfunc">Metfunc</a>
2353     <a HREF="#Transfunc">Transfunc</a>
2354     <a HREF="#BRTDfunc">BRTDfunc</a>
2355     <a HREF="#Plasdata">Plasdata</a>
2356     <a HREF="#Metdata">Metdata</a>
2357     <a HREF="#Transdata">Transdata</a>
2358 greg 1.10 <a HREF="#BSDF">BSDF</a>
2359 greg 1.1 <a HREF="#Antimatter">Antimatter</a>
2360    
2361     </pre>
2362    
2363     <p>
2364    
2365    
2366     <hr>
2367     <center>Last Update: October 22, 1997</center>
2368     </body>
2369     </html>
2370